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ABSTRACT 24 

We investigated whether seasonal forecasts from the National Centers for 25 

Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) contribute to the 26 

skill of seasonal soil moisture (SM) forecasts over conterminous U.S. (CONUS) relative to 27 

Ensemble Streamflow Prediction  (ESP). The benchmark ESP forecasts were performed using 28 

the Variable Infiltration Capacity (VIC) land surface hydrology model (termed ESP_VIC). We 29 

compared the ESP_VIC forecasts to SM forecasts performed using VIC with the same initial 30 

conditions, but with forcing derived from bias-corrected daily precipitation, temperature, and 31 

wind forecasts from CFSv2 (CFSv2_VIC) for the period from 1982 to 2009 initialized on 32 

January 1 and July 5.  Overall, SM forecast skill is seasonally and regionally dependent. 33 

Forecast skill is higher over the western interior of CONUS for both ESP_VIC and CFSv2_VIC 34 

relative to the eastern part of the domain.  For the western interior of CONUS where soil 35 

moisture has strong persistence, ESP_VIC has equal or slightly higher skill than CFSv2_VIC 36 

forecasts for all lead times.  CFSv2_VIC performs better than ESP_VIC over regions where 37 

precipitation (P) is modulated by atmospheric circulation at short lead times.  These regions 38 

include the Tennessee and Ohio Valleys and the Southwest, where P forecasts from CFSv2 are 39 

skillful at one month lead.  At leads 2-3 months though, ESP_VIC and CFSv2_VIC have 40 

essentially equivalent forecast skill over almost the entire CONUS.  We also argue that ESP, 41 

rather than persistence (as used in many studies), is a more relevant benchmark for evaluation of 42 

seasonal hydroclimate forecasts. 43 

  44 



3 
 

1. Introduction 45 

        Drought is among the costliest natural disasters in the United States, with average losses 46 

exceeding $10 billion [NCDC, 2011].  Drought early warning systems based on hydroclimate 47 

forecasts can help local and federal governments to reallocate resources for mitigating drought 48 

impacts [Hayes et al. 2004].  Currently, both the Environmental Modeling Center (EMC) of 49 

the National Centers for Environmental Prediction (NCEP) and the University of Washington 50 

(UW) routinely produce hydroclimate forecasts of soil moisture and runoff to support the 51 

Climate Prediction Center (CPC) operational Seasonal Drought Outlook.  The EMC uses the 52 

hydrological prediction system developed by the Princeton University group  [Luo et al. 2007] 53 

based on the NCEP Climate Forecast System version 1 (CFSv1).  The UW uses the Ensemble 54 

Streamflow Prediction (ESP) method to predict soil moisture and runoff on seasonal time 55 

scales [Wood and Lettenmaier 2006].  Both systems use the VIC model as the core of their 56 

hydroclimate forecast systems. 57 

NCEP recently upgraded their CFS system (to CFSv2) with improved model physics and 58 

higher spatial resolution [ http://cfs.ncep.noaa.gov].  Y uan et al. [2011] examined forecast skill 59 

of 2m temperature (T2m) and precipitation (P), and found a substantial increase in Lead-1month 60 

forecast skill relative to CFSv1 over the CONUS.  The question we raise in this paper is 61 

whether these improvements in P and T2m forecasts lead to improved ability to forecast soil 62 

moisture (SM), a primary variable required for agricultural drought forecasting. 63 

        For seasonal SM forecasting, skill comes from the initial hydrologic conditions (IHCs) 64 

and climate forecast (CF) skill.  Shukla and Lettenmairer [2011] compared the forecast skill of 65 

ESP, a method widely used in hydrology which is based solely on knowledge of IHCs (no CF) 66 

as represented by a land surface hydrology model, and a method that Wood and Lettenmaier 67 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[2008] termed reverse ESP (rESP), which is based on climatology for IHCs but perfect CF.  68 

Comparison of SM forecast skill for ESP and rESP isolates the contributions due to IHCs and 69 

CF.  They found the IHCs dominate SM forecast skill at leads 1 to 2 months, and CF thereafter.  70 

For some parts of CONUS, such as the western interior region, IHCs play an important role 71 

even at longer leads.  It should be emphasized that while ESP is a practical tool that is widely 72 

used in hydrology, rESP is not, because it assumes perfect forecasts.  In this paper, rather than 73 

perfect CFs, we assess SM forecast skill relative to ESP for SM forecasts in which CFSv2 is the 74 

CF source. 75 

2. Methods 76 

a)  VIC simulation 77 

We used VIC model version 4.0.6 [Liang et al. 1994] to perform the forecast experiments.  78 

This is the same version of VIC that is used in the University of Washington (UW) quasi-79 

operational Surface Water Monitor (SWM; 80 

http://www.hydro.washington.edu/forecast/monitor).  We ran the model in water balance mode 81 

(essentially meaning that the effective surface temperature is assumed to be equal to surface air 82 

temperature) with a spatial resolution of 0.5 degrees.  To spin up the model’s SM and snow 83 

storages, the VIC model was run from 1 Jan 1979 to 1 Dec 2010 with initial conditions on 31 84 

December 1978 taken from UW’s SWM archive.  Forcings for the simulation were derived 85 

from observations from index stations using the procedure outlined in Wood and Lettenmaier 86 

[2006].  This long-term simulation is labeled as VIC(SIM).  The SM taken from VIC(SIM) was 87 

also used for verification and to derive parameters for downscaling and error correction. 88 

b) Bias correction and spatial downscaling (BCSD) method 89 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The BCSD method is a quantile mapping approach that is commonly used to correct biases 90 

of hydroclimate forecasts [Wood et al. 2002; Wood and Schaake 2008].  The BCSD method 91 

corrects the full probability distribution of the variable in question.  92 

c) ESP_VIC and CFSv2_VIC experiments 93 

All experiments were carried out for the period during which CFSv2 hindcasts are available 94 

(1982-2009).  We examined forecasts initiated on 1 January and 5 July.  Both the ESP and 95 

CFSv2_VIC experiments have the same IHCs, obtained from VIC(SIM) on the same forecast 96 

date for the target year. 97 

i)  ESP_VIC 98 

    For a given target year, each member of the ESP_VIC ensemble, was selected randomly 99 

from the historical period from 1950-2009  with the target year excluded.  VIC Forcings (P, 100 

Tmax and Tmin) were derived from the time series of observations for that ensemble member 101 

starting from the forecast initialization date and proceeding through the end of 3 months.  Other 102 

variables such as downward solar and longwave radiation, required to force VIC were indexed 103 

to the daily mean temperature and temperature range following the approach outlined in Maurer 104 

et al. [2002], while surface wind was taken from the lowest vertical level of the NCEP/NCAR 105 

reanalysis.  These forcings were then used to drive the VIC model to obtain daily SM values for 106 

that forecast ensemble.  The process was repeated for N ensemble members by selecting N 107 

different years in the historical period.  The ensemble average SM forecast is the equally 108 

weighted mean of all members.  We tested the ESP forecasts for N=10, 20, 30, 40 and 50 and 109 

found that about N=20 produced stable results, and is at least approximately consistent with the 110 

16 ensemble members available for CFSv2 (see below).  111 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ii)   CFSv2_VIC 112 

For the CFSv2_VIC forecasts, the VIC forcings were derived from the CFSv2 seasonal 113 

hindcast archive from National Climate Data Center (NCDC).  Archived CFSv2 seasonal 114 

hindcasts were performed every 5 days from 1 Jan 1982 to 27 December 2009 with a frozen 115 

model and data assimilation system.  On each day, four forecast runs were initialized at 0Z, 6Z, 116 

12Z and 18Z of that day.  Each run lasts for 9 months.  To obtain a total of 16 ensemble 117 

members, we used four ensemble members each initialized on the nominal forecast date (Dfcst) 118 

as well as Dfcst -5 , Dfcst -10 and Dfcst-15.  Time series of 6-hourly P, T2m and 850-hPa winds 119 

were obtained from the CFSv2 hindcast archive for each ensemble member.  The forecast date 120 

Dfcst is always the first day of the target month on which a set of (four) ensemble members were 121 

initiated.  For each ensemble member, the daily Tmax, Tmin, P and 850-hPa winds were bi-122 

linearly interpolated to the VIC grids with a spatial resolution of 0.5 degrees from the CFSv2 123 

grid (with approximate resolution of 1 degree).  Monthly mean P and T2m at each lead were 124 

corrected for bias using the BCSD method. The probability distribution of P or T2m was 125 

determined by using all hindcast members in the training period.  We chose to correct monthly 126 

means instead of daily means because the 28-year record is not long enough to establish a stable 127 

daily climatology, and to avoid problems with mis-representing interactions among the three 128 

primary variables. The correction was equally distributed to all days within the month.  Then, 129 

forcings derived from the bias-corrected daily P and Tmax, Tmin  were used to drive the VIC 130 

model to obtain the SM forecasts.     131 

The monthly mean CFSv2_VIC and ESP_VIC SM forecasts were corrected using BCSD to 132 

the probability distribution of the historical simulation, VIC(SIM). Even though P , Tmax and 133 

Tmin are error corrected, the relationship between SM and the forcings is not linear. For 134 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example, errors in evapotranspiration feed back to SM forecasts. Therefore, we chose to 135 

perform a second stage error correction.  For ESP_VIC, we found that the second stage error 136 

correction does not result in statistically significant differences in the forecasts, however for 137 

consistency, we performed the second stage bias correction to both sets of forecasts. 138 

iii)  Verification 139 

The SM hindcasts from both experiments (ESP_VIC and CFSv2_VIC) were cross 140 

validated against VIC(SIM) for the target year.  The root-mean-square error (RMSE) between 141 

hindcasts and VIC(SIM) was used to estimate forecast skill.  We normalized the RMSE by the 142 

standard deviation of the SM anomalies from VIC(SIM).  If RMSE is greater than 1, then there 143 

is no skill because the errors are larger than interannual variability.   144 

To measure the relative skill of the two experiments, we calculated the RMSE ratio R 145 

between the two experiments.  Let RMSE(i) be the RMSE for hindcasts produced by 146 

experiment i  (i=1, 2),   147 

𝑅 𝑒𝑥𝑝1/𝑒𝑥𝑝2 = !"#$(!)
!"#$(!)

                                                                      Eq. (1) 148 

 If R is less than 1, then experiment 1 has higher skill than experiment 2. The reverse is 149 

true if R is greater than 1 [Shukla and Lettenmaier 2011].   150 

Let the variance Si be equal to (RMSE(i))2 (assuming bias is small as a result of bias 151 

correction).  We tested whether the difference in variances (S1 and S2 ) between two experiments 152 

is statistically significant at the 5% level using Bartlett’s test as applied by Lettenmaier and 153 

Burges [1978].  154 

3. Forecast skill  155 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       Fig. 1 shows the normalized RMSE for forecasts initialized on 1 January and 5 July for the 156 

ESP_VIC experiments while the skill for the CFSv2_VIC is given in Fig. 2.  Forecasts in areas 157 

where the normalized RMSE was greater than 1 were considered unskillful.  Both experiments 158 

forecasts have strongly seasonally dependent skill.  In general, skill is higher in January and 159 

lower in July.  Skill also is regionally dependent.  Skill is higher over the western interior of 160 

CONUS where forecasts are skillful even at leads longer than one month and is lower over the 161 

eastern U.S.  At Lead- 1, forecasts from both ESP_VIC and CFSv2_VIC generally are skillful.  162 

At Lead -2 , both forecasts are skillful mostly over the western interior of CONUS.  The areas 163 

where CFSv2_VIC has low skill are also areas where ESP_VIC has low skill.  For July, both 164 

forecasts show low skill for Lead -2 east of about 100 oW except Texas. Figures 1d and 1h show 165 

the RMSE ratio for ESP relative to persistence RMSE(ESP)/RMSE(persistence) which is less 166 

than 1 essentially everywhere. ESP_VIC forecasts are more skillful than persistence because 167 

they have full knowledge of the IHCs and climatologic forcing in comparison to persistence of 168 

SM. 169 

The question we seek to answer is whether forcing derived from CFS_VIC forecasts are more 170 

skillful than those derived from ESP_VIC forecasts, which resample their forcing from 171 

climatology.  Figures 3a-3d shows  the RMSE ratio (ESP_VIC/CFSV2_VIC) (contoured).  The 172 

red (black) contour lines indicate where CFSv2_VIC (ESP_VIC) generally has higher skill.  The 173 

areas that the differences between the variances of CFSv2_VIC and ESP_VIC are statistically 174 

significant at the 5% level based on the Bartlett test as applied by Lettenmaier and Burges [1978] 175 

are shaded. 176 

Overall, the differences in skill between the two experiments are statistically significant only 177 

at Lead 1.  For January, the areas with statistically significant skill differences cover the 178 



9 
 

Northern Central and the western interior region. For July, the areas are limited to the area west 179 

of 115oW.  For these areas, ESP_VIC is more skillful than CFSv2_VIC (ratio <0.9 black contour 180 

lines).  CFSv2_VIC adds more skill over the eastern CONUS which arguably is more 181 

dynamically active (RMSE ratio> 1.1 contoured red) but only if the P forecasts are skillful.  182 

These are the regions that show the RMSE of rESP is low relative to ESP, where CF is especially 183 

important to overall forecast skill [Shukla and Lettenmaier 2011].  The ESP approach is 184 

generally most skillful in the areas where SM is persistent and is less skillful over the 185 

dynamically active areas where the interannual variability of soil moisture is low compared with 186 

that of precipitation during the forecast period.  This latter condition leads to low forecast skill 187 

along a swath from the Gulf States to the Tennessee and Ohio Valleys in January.  Precipitation 188 

over these areas depends on the path and strength of moisture transport from the Gulf of Mexico, 189 

which is determined by dynamic forcings.  For the Southwest, SM increases after the monsoon 190 

onset which varies from late June to early August [Higgins et al., 1997].  The timing of monsoon 191 

onset and retreat depends on the establishment of monsoon circulation.  At that point, ESP_VIC 192 

does not have that information, and arguably for this reason ESP_VIC forecast skill is lower than 193 

CFSv2_VIC over Arizona and New Mexico for July.  194 

Figures 3e-3h shows the cross validated (normalized) RMSE skill for CFSv2 monthly mean P 195 

forecasts after the BCSD bias correction verified against the P analyses.  There is a good 196 

correspondence between the forecast skill for P and the RMSE R ratio for SM (Figs. 3a-3d).  The 197 

areas where the P forecasts have high skill are also the region where CFSv2_VIC SM forecasts 198 

have higher skill than ESP_VIC.  For January, ESP_VIC is more skillful than the CFSv2_VIC 199 

forecasts over the interior of the West and the North Central CONUS for Lead 1 (Fig.3a).  In 200 

these regions, P forecasts have low skill with normalized RMSE>1 (Fig. 3e).  On the other hand, 201 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CFSv2 P forecasts are generally skillful over the Gulf coast, the Southwest and the Ohio and 202 

Tennessee Valleys. These are regions where the CFSv2_VIC SM forecasts are more skillful than 203 

ESP_VIC.  For July, ESP_VIC has higher skill over most of the West where the P forecast skill 204 

is low. The CFSv2_VIC is more skillful than the ESP_VIC over the Southwest monsoon region. 205 

4.  Discussion and conclusions  206 

We have evaluated ESP_VIC and CFSv2_VIC SM forecasts over the CONUS for 207 

January and July for the period 1982-2009.  As pointed out by Shukla and Lettenmaier [2011], 208 

SM forecast skill is regionally and seasonally dependent.  Overall, predictive skill is higher over 209 

the western part of CONUS for both ESP_VIC and CFSv2_VIC and lower over the eastern part 210 

of CONUS. Over the CONUS, there are two distinct hydroclimate regimes.  The Interior of the 211 

West is dry and has high water holding capacity.  The characteristic time To can be considered 212 

as a measure of persistence [Trenberth 1984].  Fig. 2d shows that To computed from SM based 213 

on VIC(SIM) is about 2 years over the western U.S.  The eastern U.S. is wetter with more 214 

frequent precipitation.  SM is less persistent but To for SM nonetheless is about 6 months, which 215 

is much longer than To for precipitation.  This accounts for the regional differences in SM 216 

forecast skill.  217 

Persistence has commonly been used as a baseline for evaluation of forecast skill 218 

because of its simplicity and availability [Schubert et al. 1992].  For SM, persistence can 219 

produce relatively skillful forecasts.  However, ESP forecasts generally are more skillful than 220 

persistence (Figs.1d and 1h)  because they exploit full knowledge of the IHCs and the seasonal 221 

cycle of  climatologic forcing.  Furthermore, it is always possible to obtain reliable IHCs 222 

(assuming the existence of consistent long-term model forcing data, which is generally the case 223 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over CONUS) from a land surface model such as VIC.  Therefore, we argue that for SM (and 224 

other hydrologic forecasts) ESP is a more relevant benchmark than persistence. It sets a higher 225 

bar for alternative methods, such as CFSv2_VIC.     226 

       Does CFSv2_VIC add any values to the ESP_VIC forecasts? Over the western interior of 227 

CONUS, ESP_VIC generally is superior to CFSv2_VIC due to the strong persistence of SM 228 

and because of the low skill of the P forecasts from the CFSv2 for both winter and summer. 229 

Figure 3 shows that there is a good correspondence between areas  where  P forecasts have skill 230 

(Figs. 3e and 3g) and areas where CFSv2_VIC has RMSE ratios greater than 1 – especially at 231 

Lead -1 (Figs.3a and  3c, colored red).  When and where P forecasts from the CFSv2 are 232 

skillful, the CFSv2_VIC does add values to SM forecasts.  233 

     One reason that the CFSv2_VIC has low skill is the design of CFSv2 hindcasts. They were 234 

performed every 5 days. For 16 member ensemble, the old member is about 15 days old. It does 235 

not exploit the skillful weather forecast at the beginning of forecast [Shukla et al. 2012]. Better 236 

weighting of ensemble members may also improve skill.  237 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Figure 1 284 

 285 

 286 

Fig.1: RMSE of ESP_VIC experiments for SM forecasts initialized in January 1 at (a) Lead-1 month, (b)  Lead -2  287 
and (c) Lead- 3 , (d) RMSE ratio RMSE(ESP)/RMSE(persistence) for Lead-1 month. (e) -(h) same as (a)-(d) 288 
but for July. Contours are indicated by the color bar.   289 

290 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Figure 2 291 

 292 

Fig.2: (a)-(c) same as Fig.1 (a)-(c), but for CFSv2_VIC experiment. (d) Characteristic time T0. Contour 293 
interval is 6 months, ( e)-(g) same as (a)-(c), but for July.   294 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Figure 3 295 

 296 

Fig.3: The  RMSE ratio  RMSE((ESP_VIC)/RMSE(CFS2_VIC) (contoured )  for (a) Lead-1 month  January forecasts  (b) Lead-297 
2  January forecasts. The shading indicates areas that the differences in skill between the ESP_VIC and CFSv2_VIC are 298 
statistically significant at the 5% level. (c)-(d) same as (a)-(b), but for July forecasts. (e)-(h)same as (a)-(d), but the RMSE 299 
skill  for the CFSv2 P forecasts after the BCSD correction. Contour intervals are given by the color bar. 300 


