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ABSTRACT 

This paper deals with the inverse problem for Lagrangian 
dynamics for linear multi-degree-of-freedom systems. New 
results for linearly damped systems are obtained using 
extensions of results for single-degree-of-freedom systems. 
First, for a two-degree-of-freedom linear system with linear 
damping, the conditions for the existence of a Lagrangian are 
explicitly obtained by solving the Helmholtz conditions. Next, 
since the Helmholtz conditions are near-impossible to solve for 
general n-degree-of-freedom systems, a new simple procedure 
that does not require the use of the Helmholtz conditions and 
that is easily extended to n-degree-of-freedom linear systems, 
is developed.  The emphasis is on obtaining the Lagrangians 
for these multi-degree-of-freedom systems in a simple manner, 
using insights obtained from our understanding of the inverse 
problem for single- and two-degree-of-freedom systems. 
Specifically we include systems that commonly arise in linear 
vibration theory with positive definite mass matrices, and 
symmetric stiffness and damping matrices. This method yields 
several new Lagrangians for linear multi-degree-of-freedom 
systems. Finally, conservation laws for these damped multi-
degree-of-freedom systems are found using the Lagrangians 
obtained. 

 
INTRODUCTION 

 The inverse problem for Lagrangian dynamics--also 
known as the inverse problem of the calculus of variations-- is 
to obtain, for a system described by a given set of differential 
equations, a Lagrangian function such that the corresponding 
Euler-Lagrange equations obtained using the calculus of 
variations yield the given set of equations that describe the 
system. This problem has attracted many researchers in 

various fields of study for its usefulness. Bolza [1] gave a 
general procedure for finding a Lagrangian for a single-
degree-of-freedom dissipative system. This was followed by 
Leitmann [2] who provided some examples of non-potential 
forces and the corresponding Lagrangians for which a 
variational principle exists. This method was extended by 
Udwadia et al. [3] who used a more systematic derivation to 
obtain several classes of non-potential forces which could be 
used to obtain the equations of motion via variational calculus. 
Recently, the semi-inverse method [4] has been considered due 
to its simplicity and applicability to many cases. However, 
Refs. [1]-[4] consider only single-degree-of-freedom (SDOF) 
systems, and the analysis of this case is relatively easy because 
Darboux [5] proved in the nineteenth century that a 
Lagrangian can be always found for the inverse problem for 
such SDOF systems. For multi-degree-of-freedom (MDOF) 
systems the configuration variables are coupled with one 
another and this makes it difficult to solve the inverse problem. 
The general conditions for the existence of Lagrangians were 
apparently first obtained by Helmholtz [6,7] and are usually 
referred to as the Helmholtz conditions. Later, Douglas [8] 
analyzed in great detail the case of two degrees of freedom and 
obtained the necessary and sufficient conditions for their 
existence without utilizing these conditions. Using Douglas’ 
results Hojman and Ramos [9] proposed a simpler method to 
determine the existence of a Lagrangian for two-dimensional 
problems in which the potential function does not explicitly 
contain the generalized velocities. Mestdag et al. [10] derived 
the conditions under which there exists a Lagrangian and a 
dissipation function on the right hand side of the more general 
form of the Euler-Lagrange equation. They also provided some 
non-conservative systems to which their approach can be 
applied.  

In the present paper, the findings obtained in Refs. [2] and 
[3] are extended to dissipative, constant coefficient, linear 
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MDOF systems. The emphasis is on obtaining the Lagrangians 
for these MDOF systems in a simple manner, using insights 
obtained from our understanding of the inverse problem for 
SDOF and 2-DOF systems. It is shown that the solution to a 
gyroscopically damped linear system is easily found as a 
special case of the linearly damped case. Lagrangians for 
special linearly damped MDOF systems with symmetric 
stiffness and damping matrices are also obtained along with 
the corresponding Jacobi integrals, which are conserved over 
time. 
 
LAGRANGIANS FOR DAMPED LINEAR TWO-
DEGREE-OF-FREEDOM SYSTEMS 

We begin with the problem of finding a Lagrangian 
function for a linear mass-spring-damper system in single 
degree of freedom whose governing equation of motion is 
given by 

2 0mx bx kx    , m > 0, b, k ≥ 0 (1) 

where  x t  is a generalized displacement of the mass, the dot 
denotes the differentiation with respect to time t, and m, b, and 
k are the mass, damping, and stiffness coefficients, 
respectively, which are all assumed to be constants. 
Unfortunately, Eq. (1) cannot be directly derived as the Euler-
Lagrange equation from a variational principle because it does 
not satisfy the Helmholtz conditions [6,7] (see Eqs. (11)-(14)). 
However, in Refs. [2,3] it is shown that the following 
Lagrangian function results in Eq. (1): 

2
2 21 1 .

2 2

bt
mL e mx kx   
 

  (2) 

More precisely, substituting Eq. (2) into the Euler-Lagrange 

equation of the standard form 0d L L
dt x x

       
 yields 

     
2

2 0.
bt

me mx t bx t kx t       (3) 

Since the exponential factor in Eq. (3) is always positive in 
time, we can say that Eq. (3) is ‘equivalent’ to Eq. (1). This 
exponential factor, however, plays a significant role, because 
Eq. (3) does satisfy the Helmholtz conditions.  

Taking a hint from Eq. (2), we next consider a two-
degree-of-freedom mass-spring-damper system using the 
Lagrangian given by 

   2 2 2 2
1 1 1 1 2 2 2 2 1 1 2 2 1 2 1 2

1 1 ,
2 2

tL e m x k x m x k x b x x b x x dx x          
    (4) 

where im , ik , ib , 1,2i  , and   and d  are constants. Then, 
the corresponding Euler-Lagrange equations of motion are 
given by 

   1 1 1 1 1 2 2 1 1 1 2 0,m x m x b b x k x b d x           (5a) 

   2 2 2 2 2 1 1 2 2 2 1 0.m x m x b b x k x b d x           (5b) 

Depending on the choice of the constants, Eqs. (5) can 
represent various systems. For example, if we choose 1m m , 

2 2m m , 2  , 1 2 0b b  , 1 2 2k k k  , and d k , Eq. (4) 
becomes 

   2 2 2 2 2
1 1 2 2 1 2

1 2 ,
2

tL e mx kx mx kx kx x
 
     
  

   (6) 

and the corresponding equations of motion become 

1 1 1 22 2 0,mx mx kx kx      (7a) 

2 2 2 12 4 2 0,mx mx kx kx      (7b) 

which describe a classically damped 2-DOF system. In fact, 
Eqs. (7) describe the mechanical system shown in Fig. 1.  

 
Fig. 1:  Linear 2-DOF mass-spring-damper system with b = 2m 

In order to get a more systematic approach to the inverse 
problem for a constant coefficient linear 2-DOF system we 
consider the following equations of motion: 

1
1 1 1 1 2 1 1 1 2 0,f x a x b x c x d x         (8a) 

2
2 2 1 2 2 2 1 2 2 0,f x a x b x c x d x         (8b) 

where all coefficients are constants and we have divided each 
equation by the corresponding masses 1m  and 2m . More 
generally, we consider the following set of equations: 

 1
11 11 1 1 1 1 2 1 1 1 2 0,f x a x b x c x d x           (9a) 

 2
22 22 2 2 1 2 2 2 1 2 2 0,f x a x b x c x d x          (9b) 
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where   1,2ii i   are non-zero functions of t , 1x , 2x , 1x , 

and 2x , namely  11 11 1 2 1 2, , , ,t x x x x     and 

 22 22 1 2 1 2, , , ,t x x x x    . Next, we define functions 

  1,2i i   by 

 1 11 1 1 1 2 1 1 1 2: ,a x b x c x d x        (10a) 

 2 22 2 1 2 2 2 1 2 2: .a x b x c x d x        (10b) 

Now let us consider the n differential equations 
   , , , , 0j

ij it q t  q q q q 
 

( , 1,2, , )i j n  , where 
1 2 nq q q   

T
q   is a generalized displacement n-vector 

that describes the motion of a mechanical system in an n-
dimensional configuration space. The superscript “T” is used 
to denote the transpose of a vector (or a matrix), and the 
summation convention is used for repeated indices. The 
question of whether such a system can be obtained from a 
suitable Lagrangian,  , ,L t q q , through the use of the Euler-

Lagrange equations 0i i

d L L
dt q q
  

      
appears to have been 

first investigated by Helmholtz [6,7]. The necessary and 
sufficient conditions for the so-called ordered direct analytic 
representations are [7] 

   ,ij ji   (11) 

,ij ik
k jq q

  


  
 (12) 

2 ,j ki
ijj i kq

q q t q
 
    

       


 
 (13) 

1
2

j jki i
j i k j iq

q q t q q q
       

            


 
 (14) 

where the summation convention is applied for repeated 
indices. Eqs. (11)-(14) are a set of partial differential equations  
that need to be satisfied by the 2 1n   independent variables t, 
q , and q  everywhere in 2 1nR  . Throughout this paper we 
shall be dealing with Lagrangians that provide the so-called 
ordered direct analytic representations of the equations of 
motion [7]. 

After solving the Helmholtz conditions Eqs. (11)-(14), we 
have only the three possible cases summarized in Table 1. 
Also, corresponding to each case it includes one Lagrangian, 
which shall be obtained later. It is noted that there are many 
other possible Lagrangians which are different from the ones 
given in Table 1. 
 
Case Conditions Lagrangian 

I 

1
11 1

a te  , 11
22 1

2

a tb e
a

   , 

1 2a b , 2 1 1 2 1 2 1a d b c a a b  , 

2 0a  , 1 0b  , 1 0   

1

2 21
1 2

2

21 1 2
1 1 2

2

21 2
2 1 1 2

2

1
2 2

2

2

a t

bx x
a

c b cL e x x x
a

b d x b x x
a

 
 

 
 

   
 
 
   
 

 



 

II 

1
11 1

a te  , 11
22 1

2

a td e
c

  , 

2 0a  , 1 0b  , 1 2a b , 

2 0c  , 1 0d  , 1 0   

1

2 2 21 1
1 2 1

2

21 2
1 1 2 2

2

1
2 2 2

2

a t

d cx x x
c

L e
d dd x x x

c

   
 
 
  
 

 

 

III 

1
11 1

a te  , 2
22 2

b te  , 

2 0a  , 1 0b  , 

2 0c  , 1 0d  , 1 0  , 2 0   
(uncoupled) 

1

2

2 2
1 1 1

2 2
2 2 2

1 1
2 2
1 1
2 2

a t

b t

L e x c x

e x d x

   
 
   
 




 

Table 1 Three cases when a Lagrangian function of the system 
described by Eqs. (8) exists and a corresponding Lagrangian for 

each case 
 

Up to now we have derived the necessary and sufficient 
conditions for which there exists a Lagrangian function of the 
2-DOF system given by Eqs. (8), and obtained three cases 
summarized in Table 1. We next address the question of 
finding a Lagrangian for each of these cases. Since a 
Lagrangian for Case III is already known in Refs. [2,3] (also in 
Eq. (2)), we focus on obtaining a Lagrangian function for 
Cases I and II.  

For Case I, first, from Table 1, we know that the equations 
of motion are given by 

1 1 2
1 1 1 1 2 1 1 1 1 2

2

0,a t b ce x a x b x c x a b x
a

  
          

    (15a) 

 11
2 2 1 1 2 2 1 2 2

2

0,a tb e x a x a x c x d x
a

          (15b) 

where 1 1   is used. We next search for the conditions under 
which a Lagrangian  , ,L t x x  exists such that the 
corresponding Euler-Lagrange equations yield Eqs. (15), that 
is, 

   , , , , .ij j i
i i

d L L t x t
dt x x

 
  

     
x x x x  


 (16) 

Expanding the total time derivative, we have the following 
identities [7]: 

2

,ij
i j

L
x x




  
 (17a) 
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2 2

,j i
i j i i

L L Lx
x x x t x

  
  

    


 
 (17b) 

where , 1,2i j  . Knowing ij  and i  from Eqs. (15), (16), 
and Table 1, we obtain the following Lagrangian using Eqs. 
(17): 

     1 2 21
1 2 1 1 2 2 1 2 1 2

2

1 , , , , , , ,
2 2

a t bL e x x x p t x x x q t x x r t x x
a

 
     

 
      (18) 

where  1 2, ,p t x x ,  1 2, ,q t x x , and  1 2, ,r t x x  are arbitrary 
functions of their arguments within the requirements that 

1
1

2 1

,a tp q b e
x x
 

 
 

 

1 1 2
1 1 1 1 2

1 2

,a t b cp r e c x a b x
t x a

   
          

 

 11
2 1 2 2

2 2

.a tbr q e c x d x
x t a
 

  
 

 (19) 

For example, if we choose 

  1
1 2 1 2, , ,a tp t x x b x e  

 1 2, , 0,q t x x   

  1 2 21 1 2 1 2
1 2 1 1 2 2

2 2

, , ,
2 2

a t c b c b dr t x x e x x x x
a a

 
    

 
 (20) 

then the Lagrangian in Eq. (18) becomes 

1 2 2 2 21 1 1 2 1 2
1 2 1 1 2 2 1 1 2

2 2 2

1 ,
2 2 2 2

a t b c b c b dL e x x x x x x b x x
a a a

 
      

 
    (21) 

which is shown in Table 1. 
For Case II, following the same procedure shown in the 

previous Case I, we can again obtain Lagrangian functions and 
one possible Lagrangian is 

     1 2 21
1 2 1 1 2 2 1 2 1 2

2

1 , , , , , , ,
2 2

a t dL e x x x u t x x x v t x x w t x x
c

 
     

 
      (22) 

where  1 2, ,u t x x ,  1 2, ,v t x x , and  1 2, ,w t x x  are arbitrary 
functions of their arguments within the requirements that 

2 1

,u v
x x
 


 

 

 1
1 1 1 2

1

,a tu w e c x d x
t x

 
  

 
 

1 1 2
1 1 2

2 2

.a t d dv w e d x x
t x c

  
      

 (23) 

For example, if we choose 

 1 2, , 0,u t x x   

 1 2, , 0,v t x x   

  1 2 21 1 2
1 2 1 1 1 2 2

2

, , ,
2 2

a t c d dw t x x e x d x x x
c

 
    

 
  (24) 

then the Lagrangian Eq. (22) becomes 

1 2 2 2 21 1 1 2
1 2 1 1 1 2 2

2 2

1 ,
2 2 2 2

a t d c d dL e x x x d x x x
c c

 
     

 
   (25) 

which is listed in Table 1. Comparing Eqs. (7), which are the 
equations of motion of the system shown in Fig. 1, with Case 
II, we see that 

2 0,a   1 0,b   1 2 2,a b   2 ,
2
kc
m

   

1 ,kd
m

   1 1,   1
2 ,kc
m

  2 ,kd
m

  (26) 

and the Lagrangian given in Eq. (25) then reduces to the one 
given in Eq. (6). The obtained Lagrangians are summarized in 
Table 1. 

LAGRANGIANS FOR SPECIAL CONSTANT 
COEFFICIENT MULTI-DEGREE-OF-FREEDOM 
LINEAR SYSTEMS 

If the number of degrees of freedom of a system is much 
greater than two, then solving the Helmholtz conditions 
becomes quite complex, and hence obtaining Lagrangians for 
ordered direct analytic representations of n-degree-of-freedom 
systems by solving these conditions becomes, in general, 
extremely difficult, if not nearly impossible. In this section we 
therefore use ideas from SDOF and 2-DOF systems to expand 
our thinking to MDOF systems and hence all together bypass 
the need for solving the Helmholtz conditions. For 2-DOF 
systems, we used the Lagrangian given by Eq. (4), which we 
now generalize for an MDOF system as  

1 1 ,
2 2

tL e     
 

T T Tx Mx x Kx x Bx    (27) 
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where  1 2 nx x x  Tx  is a generalized displacement n-
vector, and M  and K  are the n by n symmetric mass and 
stiffness matrices, respectively. Also, the scalar   and the n by 
n matrix B  are determined according to the requirements of 
the problem as shall be shown shortly. Then the equation of 
motion obtained via the Euler-Lagrange equation is 

    .      T TMx M B B x K B x 0   (28) 

First, if we choose 0   and  TB B  (skew-symmetric), Eq. 
(28) becomes 

2 ,  Mx Bx Kx 0   (29) 

which is the general equation of motion for an n-degree-of-
freedom linear mechanical system with gyroscopic damping. 
The corresponding Lagrangian is 

1 1 1 1 ,
2 2 2 2

L      T T T T T Tx Mx x Kx x Bx x Mx x Kx x Bx        (30) 

where M and K are symmetric matrices, and B is a skew-
symmetric matrix. 

As stated before, Eq. (29) has a skew-symmetric damping 
matrix, B. However, in many practical applications, and 
especially in the theory of linear vibrations, the equations of 
motion have symmetric stiffness and damping matrices. In 
order to encompass such systems, we choose 0   and 

 TB B . Then, with the Lagrangian given in Eq. (27), the 
Euler-Lagrange equation yields 

   2 .     Mx M B x B K x 0   (31) 

When the skew-symmetric matrix B 0 , Eq. (31) reduces to 
the equation  

,  Mx Mx Kx 0   (32) 

which describes a proportionally damped system. The 
Lagrangian from which this equation is obtainable is simply 
given, using Eq. (27), by 

1 1 ,
2 2

tL e    
 

T Tx Mx x Kx   (33) 

for any matrix M 0 , and any symmetric matrix K . Having 
disposed off the case B 0 , from here on we shall concentrate 
then on the case when the skew-symmetric matrix B 0 . 

We would thus want the matrices 2 M B  and  B K  in 
Eq. (31) to be symmetric, where  B 0  is a skew-symmetric 
matrix. The required conditions are not obvious, so let us 
consider a 3-DOF system, which, by extension, will help us to 
adduce the general procedure for handling linearly damped 
MDOF systems. We start by considering diagonal mass 
matrices. If we have 

1

2

3

0 0
0 0 ,
0 0

m
m

m

 
   
  

M  
1

2

3

0 0
0 0 ,
0 0

k
k

k

 
   
  

K  

12 13

12 23

13 23

0
0 ,

0

b b
b b
b b

 
   
   

B  (34) 

then, Eq. (31) becomes 

1 1 1 12 13 1

2 2 12 2 23 2

3 3 13 23 3 3

1 12 13 1

12 2 23 2

13 23 3 3

0 0 2 2
0 0 2 2
0 0 2 2

0
0 ,
0

m x m b b x
m x b m b x

m x b b m x

k b b x
b k b x
b b k x






 
 
 

       
               
               

     
            
           

 
 
 

 (35) 

and the damping and stiffness matrices of this system are not 
symmetric. However, noting the negative sign in the term that 
involves 2

2x  in Eq. (21), if we choose to use the same B  
matrix as in Eq. (34) and 

1

2

3

0 0
0 0 ,
0 0

m
m

m

 
   
  

M  
1

2

3

0 0
0 0 ,
0 0

k
k

k

 
   
  

K   (36) 

in our Lagrangian given in Eq. (27), then the equations of 
motion that we obtain are 

1 1 1 12 13 1

2 2 12 2 23 2

3 3 13 23 3 3

1 12 13 1

12 2 23 2

13 23 3 3

0 0 2 2
0 0 2 2
0 0 2 2

0
0
0

m x m b b x
m x b m b x

m x b b m x

k b b x
b k b x
b b k x






 
 
 

       
                 
               

     
             
           

 
 
 

 (37) 

or equivalently, 
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1 1 1 12 13 1

2 2 12 2 23 2

3 3 13 23 3 3

1 12 13 1

12 2 23 2

13 23 3 3

0 0 2 2
0 0 2 2
0 0 2 2

0
0
0

m x m b b x
m x b m b x

m x b b m x

k b b x
b k b x
b b k x






 
 
 

       
               
               

     
            
           

 
 
 

 (38) 

in which the damping and stiffness matrices are now both 
symmetric if we set 13 0b  .  

We now generalize this observation to general n-DOF 
systems. Our aim is to find the appropriate matrices M , K , 
and B  which when inserted in the Lagrangian given in Eq. 
(27) will result in the Euler-Lagrange equation given in Eq. 
(31) that is of the form  

,  Mx Bx Kx 0   (39) 

where M  is a positive definite diagonal matrix, and the 
matrices B  and K  are both symmetric matrices, such as in 
Eq. (38).  

Consider the diagonal matrices  1 2, , , ndiag m m mM   

and  1 2, , , ndiag k k kK   where 2n  . We propose to: (i) 
change the signs of some of the elements of these matrices and 
(ii) provide a procedure to make the matrix M  positive 
definite, and the matrices B  and K  symmetric. We do this as 
follows. If we place negative signs on im , jm , km ,  , ik , 

jk , kk ,   ( , , , 1,2, ,i j k n  , and i j k   ), then the 
elements of the skew-symmetric matrix B  which is given by 

12 13 1

12 23 2

13 23 3

1 2 3

0
0

0

0

n

n

n

n n n

b b b
b b b
b b b

b b b

 
  
   
 
 
    

B





    


    (40) 

should have its elements altered by the following rule: 
(1) The elements are set so that 0ijb  , 0ikb  , 0jkb  , 

…, and 
(2) After deleting the ith, jth, kth,   rows and ith, jth, 

kth,   columns of the B matrix in Eq. (40), the 
remaining elements of B are set to zero. 

Clearly, if we want to place only one negative sign, say, on im  
and ik  ( 1,2, ,i n  ), then only the second rule (2) applies, 
since B is skew-symmetric. Also, changing the signs of all the 

im ’s and ik ’s ( 1,2, ,i n  ), i.e., 1 2, , , nm m m  and 

1 2, , , nk k k , will result in B 0 , a case already considered in 
Eqs. (32) and (33), though more generally. 
 For example, in a 4-DOF system if we have  

1

2

3

4

0 0 0
0 0 0

,
0 0 0
0 0 0

m
m

m
m

 
  
 
 
 

M  

1

2

3

4

0 0 0
0 0 0

,
0 0 0
0 0 0

k
k

k
k

 
  
 
 
 

K  

12 13 14

12 23 24

13 23 34

14 24 34

0
0

,
0

0

b b b
b b b
b b b
b b b

 
  
  
 
   

B  (41) 

that is, 2i   and 3j   in this case, then we should choose the 
elements of the B  matrix by the rule: 

(1) 23 0b  , and 
(2) After we delete the 2nd and 3rd rows and columns, 

the remaining elements should be set to zero, i.e., set 
14 0b  . 

In brief, we should choose the following B  matrix: 

12 13

12 24

13 34

24 34

0 0
0 0

.
0 0

0 0

b b
b b
b b

b b

 
  
 
 

  

B  (42) 

Now using the Lagrangian given by Eq. (27), with M and K 
defined in Eq. (41) and B defined in Eq. (42), the equations of 
motion given by Eq. (31) become 

1 12 131 1 1

12 2 242 2 2

13 3 343 3 3

24 34 44 4 4

1 12 13

12 2 24

13 3 34

24

2 2 00 0 0
2 0 20 0 0
2 0 20 0 0
0 2 20 0 0

0
0

0
0

m b bm x x
b m bm x x
b m bm x x

b b mm x x

k b b
b k b
b k b

b b







 
 
 

 

      
              
       
      

       

 


 
 

 
 
 
 

1

2

3

34 4 4

0
0
0
0

x
x
x

k x

     
     
     
     
     

   

  (43) 

or 
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1 12 131 1 1

12 2 242 2 2

13 3 343 3 3

24 34 44 4 4

1 12 13

12 2 24

13 3 34

24 34 4

2 2 00 0 0
2 0 20 0 0
2 0 20 0 0

0 2 20 0 0

0
0

0
0

m b bm x x
b m bm x x
b m bm x x

b b mm x x

k b b
b k b
b k b

b b k







 
 
 

 

      
            
      
      

       






 

 
 
 
 

1

2

3

4

0
0

,
0
0

x
x
x
x

    
     
     
     
     

  

  (44) 

and Eq. (44) has symmetric damping and stiffness matrices as 
well as a positive definite mass matrix. The corresponding 
Lagrangian is given by Eq. (27).  

As a special case, in an n-DOF system ( 2n  ) if one 
chooses  

 

1

2

3

4

1

0 0 0 0
0 0 0 0
0 0 0 0

,0 0 0 0

0 0 0 0 1 n
n

m
m

m
m

m

 
  
 
   
 
 
  

M






     



 

 

1

2

3

4

1

0 0 0 0
0 0 0 0
0 0 0 0

,0 0 0 0

0 0 0 0 1 n
n

k
k

k
k

k

 
  
 
   
 
 
  

K






     



 

1

1 2

2 3

3

0 0 0 0
0 0 0

0 0 0
,

0 0 0 0

0 0 0 0 0

b
b b

b b
b

 
  
 

  
 

 
 
  

B






     


 (45) 

using the matrices given by Eq. (45) in the Lagrangian given 
by Eq. (27), the Euler-Lagrange equation of motion given by 
Eq. (31) yields 

1 1

2 2

3 3

4 4

1 1 1

1 2 2 2

2 3 3 3

3 4 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

2 0 0 0
2 2 0 0
0 2 2 0
0 0 2 0

0 0 0 0

n n

n n

m x
m x

m x
m x

m x

m b x
b m b x

b m b x
b m x

m x









   
   
   
   
   
   
   
   
      

  
  
 

  
 
 
 
  






      







      


1 1 1

1 2 2 2

2 3 3 3

3 4 4

0 0 0 0
0 0 0

0 0 0
,

0 0 0 0

0 0 0 0 0n n

k b x
b k b x

b k b x
b k x

k x


 

 



 
 
 
 
 
 
 
  

     
          
     

      
     
     
     

         






       
  (46) 

which is the equation for an MDOF system with tridiagonal 
symmetric damping and stiffness matrices of the form of Eq. 
(39). It can give the equations of motion of certain systems 
consisting of a chain of masses in which each mass is 
connected to its neighbors by linear dashpots and springs. The 
strength of the procedure introduced in this section is that it 
totally bypasses the Helmholtz conditions which are near-
impossible to solve for arbitrarily large, finite values of n. 

As the last application of the results obtained so far, we 
propose a Jacobi integral that is conserved at all times for the 
types of linear MDOF systems considered here (see Eq. (31)). 
When the Lagrangian does not contain time explicitly (and the 
actual velocity is a virtual velocity), i.e., when 

 , , / 0L t t  q q , the Jacobi integral I given by [11] 

: LI L
 


Tq

q



 (47) 

is conserved. The Lagrangian in Eq. (31), however, contains 
time explicitly, but by using the transformation 

2
t

e


y x  (48) 

it becomes 

1 1 .
2 2 2 2 2

L                  
     

T
T Ty y M y y y Ky y B y y     (49) 
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Hence, the Jacobi integral is given by Eq. (47) as 

 1 1 ,
2 2 2 2 2

I               
   

T
T T T Ty y M y y y B B y y Ky y By     (50) 

and since the matrix B  is assumed to be skew-symmetric in 
this paper, Eq. (50) simplifies to 

1 1 .
2 2 2 2

I           
   

T
Ty y M y y y Ky   (51) 

Rewriting this Jacobi integral in terms of x  and x  by using 
Eq. (48), we obtain the conservation law 

   1 1, , constant.
2 2

tI t e       
T Tx x x x Mx x Kx      (52) 

Thus, for an MDOF linear system whose equation of motion is 
given by Eq. (31) it is guaranteed that the function  , ,I t x x  in 
Eq. (52) is conserved at all times. 
 

CONCLUSIONS 

We have discussed here extensions of the inverse problem 
of the calculus of variations for non-potential forces to multi-
degree-of-freedom systems. For a two-degree-of-freedom linear 
system with linear damping, the conditions for the existence of 
a Lagrangian are explicitly obtained by solving the Helmholtz 
conditions. Three general cases when such Lagrangians are 
guaranteed to exist are obtained, depending on the parameter 
values of the coupled linear systems. The Helmholtz conditions 
are near-impossible to solve for general n-degree-of-freedom 
systems, and though they are explicit, from a practical 
standpoint they provide little assistance in solving the inverse 
problem for such systems. By using and generalizing results 
for single-degree-of-freedom systems, a simple procedure that 
does not require the use of the Helmholtz conditions and that is 

easily extended to n-degree-of-freedom linear systems, is 
developed. We specifically include systems that commonly 
arise in the theory of linear vibrations--systems with positive 
definite mass matrices, and symmetric stiffness and damping 
matrices. The method yields several new Lagrangians for 
linear multi-degree-of-freedom systems. Conservation laws for 
such dissipative MDOF systems are also obtained by finding 
the corresponding Jacobi integrals. 
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