
TCP VON: Joint Congestion Control and Online
Network Coding for Wireless Networks

Wei Bao, Vahid Shah-Mansouri, Vincent W.S. Wong, and Victor C.M. Leung
Department of Electrical and Computer Engineering

The University of British Columbia, Vancouver, Canada
e-mail: {weib, vahids, vincentw, vleung}@ece.ubc.ca

Abstract—In this paper, we propose TCP Vegas with online
network coding (TCP VON), which incorporates online network
coding into TCP. It is shown that the use of online network coding
in transport layer can improve the throughput and reliability of
the end-to-end communication. Compared to generation based
network coding, in online network coding, packets can be decoded
consecutively instead of generation by generation. Thus, online
network coding incurs a low decoding delay. In TCP VON, the
sender transmits redundant coded packets when it detects packet
losses from acknowledgement. Otherwise, it transmits innovative
coded packets. We establish a Markov chain to analytically model
the average decoding delay of TCP VON. We also conduct ns-2
simulations to validate the proposed analytical model. Finally,
we compare the delay and throughput performance of TCP
VON and automatic repeat request (ARQ) network coding based
TCP (TCP ARQNC). Simulation results show that TCP VON
outperforms TCP ARQNC in terms of the average decoding delay
and network throughput.

I. INTRODUCTION

It has been shown that network coding can increase the
throughput and improve the reliability of the end-to-end
communication [1]–[3]. There are several related works for
network coding in a practical setting [4]–[6]. In these works,
the source divides native data packets into groups called
generations. Network coding is performed within the same
generation at the source and intermediate nodes. The source
starts to transmit the next generation of the packets only
after being acknowledged by the destination that the current
generation of the packets have been decoded. The decoding
delay of generation based network coding can be large since
the destination has to receive enough independent coded
packets before decoding a generation.

The concept of online network coding was proposed by
Sundararajan et al. [7] and discussed further in [8], [9]. For
online network coding, packets can be decoded consecutively
instead of generation by generation. In [8], a new encod-
ing rule was proposed to guarantee small decoding delay
by recovering packet losses within reasonable time. In [9],
the performance of online random linear network coding
approach for time division duplexing channels under Poisson
arrivals was studied. SlideOR [10] is an online network coding
scheme, which uses a moving sliding window at the source to
determine the set of native packets to be coded.

Recently, the joint problem of network coding and transport
layer design has received attention. Hassayoun et al. [11]
analyzed the performance of TCP in coded wireless mesh

networks with random packet loss. Chen et al. [12] proposed
a distributed rate control algorithm for network coding based
on the utility maximization model. An automatic repeat re-
quest (ARQ) network coding based TCP protocol (referred
to as TCP ARQNC in this paper) was proposed in [13] and
extended in [14]. This approach gives a new solution for the
sliding window based TCP algorithm. However, packets of
one generation are decoded when the receiver receives enough
independent coded packets. This can potentially lead to a large
decoding delay.

In this paper, our goal is to design an online network coding
based TCP for real time applications with a small decoding
delay. Our proposed algorithm includes a congestion control
part and an online network coding control part. For congestion
control, we use TCP Vegas [15]. We can distinguish random
packet losses from the congestion losses using the difference
between the time that a packet is transmitted and the time that
the sender is notified the packet is lost. The online network
coding is used to address the effect of random packet loss
for wireless links. The sender chooses to transmit either a
packet with new information or a redundant packet according
to the feedback information. Meanwhile, packets are decoded
consecutively instead of generation by generation so that the
average decoding delay is small. Another advantage of our
protocol is that there is no need to change the protocol stack
at the intermediate nodes. We only need to modify TCP in
the transport layer at the sender and receiver. In summary, the
main contributions of our work are as follows:

• We propose TCP Vegas with online network coding (TCP
VON), which is a combination of TCP Vegas and online
network coding with low decoding delay.

• We establish an analytical framework to model the TCP
VON and derive the average decoding delay.

• We conduct ns-2 simulations to validate the analytical
model and compare the performance of TCP VON with
TCP ARQNC [13]. The results show that TCP VON out-
performs TCP ARQNC in terms of network throughput
and average decoding delay.

This paper is organized as follows: Section II describes the
background. Our proposed TCP VON algorithm is presented in
Section III. The analytical model of our TCP VON is presented
in Section IV. The performance comparison is presented in
Section V. Conclusions are given in Section VI.

II. PRELIMINARIES AND BASIC DEFINITIONS

In this section, we first define different types of packets
and then present the basic idea of how packets are coded in
an online manner. According to the previous works in [4],
[5], [13], there are two types of data packets in the network,
namely native packets and coded packets. Native packets are
the original packets generated by the sender, which are treated
as vectors over a finite field Fq of size q. Each native packet
has a unique index number k corresponding to the order it
is generated. Let p

k

denote the kth native packet. A coded
packet is a linear combination of several native packets. For
example, if a coded packet q is a linear combination of packets
p
1

,p
2

, . . . ,p
m

, then q =
Pm

i=1

↵ipi

, where ↵i is a non-zero
multiplicative coefficient randomly selected from the field Fq .

A native packet p
k

is called a sent packet when the
sender has transmitted a coded packet of the form q =
↵kpk

+
P

l 6=k ↵lpl

. In this paper, we use the term transmit
for coded packets and the term send for native packets. A
native packet p

k

is sensed when the receiver has received
a coded packet q = ↵kpk

+
P

l 6=k ↵lpl

. That is, p
k

is
combined in a coded packet q, and q is received at the receiver.
Otherwise, p

k

is unsensed. As discussed in [13], a native
packet p

k

is defined as seen, when the receiver has enough
information to compute a linear combination of the form
(p

k

+ r
k

), where r
k

=
P

i>k ↵ipi

and ↵i 2 Fq . Otherwise,
p
k

is unseen. A native packet p
k

is called decoded when the
receiver has enough information to decode p

k

. Otherwise, p
k

is undecoded.
The decoding mechanism at the destination is based on

Gaussian elimination [10] [13] [14]. If we consider the native
packets as unknown variables, then the set of received packets
composes a system of linear equations. The decoding process
is equivalent to solving a set of linear equations. The receiver
can form a decoding matrix using the coefficients of coded
packets. Gaussian elimination can be applied to convert this
matrix to a reduced row echelon form and solve the linear
equations. Linear operations corresponding to the Gaussian
elimination are performed on the received packets.

At the sender side, let ip, iq and ir denote the smallest
index among the packets that have not been decoded, seen,
and sensed, respectively. Let is denote the smallest index of
the packet that has not been sent. Note that ip  iq  ir  is.
To transmit a new coded packet, the sender combines native
packets with consecutive indices within a coding window. Let
i
min

and i
max

denote the minimum and maximum index of the
native packets combined in the new coded packet, respectively.
That is, the coding window begins at i

min

and ends at i
max

.
To create a new coded packet, it is required that i

min

= iq .
However, i

max

can be equal to either is − 1 or is for two
reasons: First, it is not necessary to have i

min

< iq . Even if
packet p

l

(for l < iq) is combined in the coded packet, since p
l

has already been seen at the receiver, the Gaussian elimination
will eliminate the term of p

l

. Because p
iq may not be seen at

the receiver, the sender must combine p
iq in the new coded

packet. Therefore, i
min

= iq . We call the packet with index

(b) Innovative packet:

6p6 + 7p7 + 8p8 + 9p9 + 10p10 + 11p11 + 12p12

ip

Coding window

1 2 3 4 5 6 7 8 9 10 11 12 13

iriq is

imin imax

ip

Coding window

1 2 3 4 5 6 7 8 9 10 11 12 13

ir
iq is

imin imax

Code base
Next sensed

Next sent
Next decoded

(a) Redundant packet:

6p6 + 7p7 + 8p8 + 9p9 + 10p10 + 11p11

decoded

seen but not decoded

sensed but not seen

sent

Fig. 1. Example of coded packets. ip = 4, iq = 6 and ir = 8. The sender
can transmit either (a) a redundant packet or (b) an innovative packet.

iq the code base. Second, if i
max

> is, the transmitted packet
contains at least two new variables for the receiver. However,
it adds only one equation to the system of linear equations at
the receiver. Therefore, to provide decoding opportunity at the
receiver, i

max

 is. Since packet p
is−1

has already been sent,
we have i

max

≥ is − 1.
Consider the example in Fig. 1. If i

max

is equal to is,
then the transmitted packet is a linear combination of packets
p
iq ,piq+1

, . . . ,p
is . This packet contains information of a new

native packet for the receiver and increases the number of
variables at the receiver by one. We call such a packet an in-
novative packet. If i

max

is equal to is−1, then the coded packet
is a linear combination of native packets p

iq , . . . ,pis−1

, which
is called a redundant packet.

For the case that there is no packet loss, the receiver can
decode one native packet each time it receives an innovative
packet. On the other hand, for the case that there are packet
losses in the network, the sender should transmit redundant
packets to compensate the effect of packet losses.

Let Ip, Iq and Ir denote the index of the next packet to be
decoded, seen and sensed at the receiver, respectively. Note
that ip, iq and ir are variables at the sender while Ip, Iq and
Ir are variables at the receiver and in the ACK packets. When
an ACK arrives at the sender, ip, iq and ir are updated by the
values of Ip, Iq and Ir, respectively.

III. TCP VON ALGORITHM

In this section, we present the TCP VON algorithm for the
sender and receiver, separately.

A. Sender Side Operation

1) Congestion and Flow Control: For the congestion and
flow control, we use the TCP Vegas algorithm [15], which
has two distinct advantages. First, TCP Vegas detects and
reacts to congestion before it happens by monitoring the
round trip time instead of detecting packet loss. Second,
packet loss occurred on wireless links are not considered as
a sign of congestion. The sender maintains several variables
including congestion window size cwnd, measured round trip
time RTT , the minimum of all measured round trip times
BaseRTT , standard deviation of the measured round trip

time ∆, and the receive window size rwnd. The number of
packets on the flight is approximated by the number of sent but
unseen packets (i.e., is−iq), which is limited by the congestion
window size cwnd and receive window size rwnd

is − iq  min{cwnd, rwnd}. (1)

In order to focus on congestion control, we assume that
the buffer size at the receiver is large enough so that the
effect of the receive window rwnd can be ignored [15],
[16]. The congestion window size cwnd is adjusted ac-
cording to the algorithm from TCP Vegas [15]. We set
two predetermined threshold values a and b, a < b. If�

cwnd
BaseRTT − cwnd

RTT

�
⇥ BaseRTT < a, then cwnd is linearly

increased. If
�

cwnd
BaseRTT − cwnd

RTT

�
⇥BaseRTT > b, then cwnd

is linearly decreased. In our algorithm, we select the default
values of a = 1 packet and b = 3 packets.

2) Online Network Coding Control: The core of our online
network coding control is to decide whether to transmit an
innovative packet or a redundant packet such that the receiver
can decode the packets with small decoding delay. We start by
introducing the variables being used. The real gap RealGap
denotes the number of native packets sensed but unseen at the
sender. That is, RealGap = ir − iq . The value of RealGap
is updated whenever the sender receives an ACK packet.
RealGap shows the number of lost innovative packets. If
the RealGap is zero, it indicates that all packets have been
decoded at the receiver. If the RealGap is greater than zero,
it implies that there are packet losses in the system.

The old real gap OldRealGap is the variable to store the
previous value of RealGap. Whenever an ACK is received,
OldRealGap is set to be the value of RealGap just before
RealGap is being updated. RealGapDiff is the difference
between RealGap and OldRealGap (i.e., RealGapDiff =
RealGap − OldRealGap), which shows the decrease in
real gap upon receiving an ACK packet. RealGapDiff is
calculated right after RealGap has been updated.

The ExpGap is the maximum number of lost packets which
can be tolerated at the sender. It is updated whenever a redun-
dant packet is transmitted or RealGap is decreased. State is a
variable taking either REDUNDANT or INNOV ATIV E
to instruct whether the next packet to transmit is a redundant
packet or an innovative one. If RealGap > ExpGap, then
the number of lost packets exceeds the maximum number
that the sender can tolerate and the State will change into
REDUNDANT . The sender transmits a redundant packet.
If RealGap  ExpGap, State is INNOV ATIV E and the
sender transmits an innovative packet.

We now explain the use of ExpGap. First, both RealGap
and ExpGap are set to zero. During operation, the RealGap
is equal to one, which indicates a packet loss. The sender
transmits a redundant packet to compensate the packet loss and
ExpGap is increased by one. It causes RealGap to be equal
to ExpGap, and the sender does not transmit more redundant
packets during the period when RealGap is equal to ExpGap.

If the transmitted redundant packet gets lost in the network,
the sender should be able to detect the loss of the redundant

packet. Therefore, as soon as the sender transmits a redundant
packet, it starts a timer with value RTT + 4∆, where 4∆ is
used to provide some time margin. When the sender receives
an ACK indicating that the redundant packet is successfully
received by the receiver, the RealGap is decreased by one
before the timer expires. If RealGap has not been decreased
when the timer expires, it indicates that the redundant packet
has got lost. In this case, the sender decreases ExpGap by
one, which causes RealGap to be greater than ExpGap, so
that the sender transmits another redundant packet. Note that
one timer starts whenever a redundant packet is transmitted,
and each redundant packet has its own timer.

If the transmitted redundant packet is received success-
fully at the receiver, then the sender is informed by an
ACK packet indicating the decrease of RealGap by one
(i.e., RealGapDiff = 1). The sender decreases ExpGap
accordingly. The timer corresponding to the transmission of
the redundant packet is stopped. RealGapDiff can be larger
than one, which indicates that more than one redundant packets
have been received. In this case, ExpGap is decreased by
RealGapDiff . RealGapDiff oldest timers are stopped.

3) Algorithm of Sender Side Operation: Algorithm 1 shows
TCP VON algorithm at the sender. Lines 1 to 3 are used
for initialization. Let im denote the total number of native
packets created. As shown in Lines 5 to 8, if new data with
X bytes arrives from upper layer, ns = dX

L e native packets
are created, with length of L bytes (the last packet is padded
with 0 if necessary). The total number of native packets is
increased by ns. Lines 9 to 22 show the online network
coding algorithm. When RealGap is greater than ExpGap,
a redundant packet is transmitted, ExpGap is increased by
one, and a timer is started. Otherwise, an innovative packet
is transmitted. When an ACK packet received (Line 23), the
sender updates BaseRTT , ∆, ip, iq and ir (Lines 24 to 25).
Then, it calculates the value of OldRealGap, RealGap and
RealGapDiff (Lines 26 to 28). If the RealGapDiff is
larger than zero, the sender will decrease ExpGap accord-
ingly and RealGapDiff timers will be stopped. Then, the
congestion control is performed in Lines 33 to 37. Lines 39
to 41 show the timeout event. The ExpGap will be decreased
by one when a timeout event occurs.

B. Receiver Side Operation

Algorithm 2 shows TCP VON algorithm at the receiver. Ip,
Iq and Ir are initialized with value 1 and decoding matrix D
is initialized with an empty matrix (Line 1). When the receiver
receives a correct coded packet, it first checks the packet
header and retrieves i

min

, i
max

and the coding coefficients of
native packets combined (Line 5). The coefficients are added
as a new row to the decoding matrix and Gaussian elimination
is executed (Lines 6 to 7). Operations corresponding to the
Gaussian elimination are then performed on the received
packets so far (Line 11). The receiver finds the next packet
to be decoded in Lines 12 to 15. The sender increases the
value of Ip by one until it finds that the native packet with
index Ip is not decoded. Thus, Ip is equal to the index of

Algorithm 1 Algorithm of TCP VON at the Sender.
1: Set ip, iq , ir , is, i

min

, and i
max

to one and im to zero
2: Set RealGap and ExpGap to zero
3: Set State to INNOV ATIV E and cwnd to one
4: while the TCP connection is established
5: if data with length X bytes is received from upper layer
6: Segment data in ns := dX

L
e packets pim+1, . . . ,pim+ns

7: Set im := im + ns

8: end if
9: while is − iq  cwnd and i

max

 im
10: if RealGap > ExpGap
11: Set State := REDUNDANT
12: Set i

min

:= iq , i
max

:= is − 1
13: Set ExpGap := ExpGap+ 1
14: Start a countdown timer with value RTT + 4�
15: else
16: Set State := INNOV ATIV E
17: Set i

min

:= iq , i
max

:= is, is := i
max

+ 1
18: end if
19: Create coded packet q =

Pi
max

j=i
min

↵jpj

20: Include i
min

, i
max

and ↵i
min

, . . . , ↵i
max

in header
21: Transmit the coded packet
22: end while
23: if an ACK is received
24: Set ip := Ip, iq := Iq , ir := Ir
25: Compute BaseRTT and �
26: Set OldRealGap := RealGap
27: Set RealGap := ir − iq
28: Set RealGapDiff := RealGap−OldRealGap
29: if RealGapDiff > 0
30: Set ExpGap := ExpGap−RealGapDiff
31: Stop RealGapDiff oldest timers.
32: end if
33: if

�
cwnd

BaseRTT
− cwnd

RTT

�
⇥BaseRTT > 3

34: Set cwnd := cwnd− 1 in the next RTT
35: elseif

�
cwnd

BaseRTT
− cwnd

RTT

�
⇥BaseRTT < 1

36: Set cwnd := cwnd+ 1 in the next RTT
37: end if
38: end if
39: if a timer timeouts
40: ExpGap := ExpGap− 1
41: end if
42: end while

the first undecoded packet when the while loop is terminated.
Similarly, the receiver will find the first packet unseen in Lines
16 to 18, and the first packet unsensed in Lines 19 to 21.
Finally, an ACK packet indicating the indices Ip, Iq and Ir is
generated and sent at the receiver (Line 22).

IV. DECODING DELAY ANALYSIS OF TCP VON

In this section, we establish analytical model to determine
the decoding delay of TCP VON. The decoding delay is the
difference between the time that a packet is transmitted by the
sender and the time it is decoded at the receiver. We consider
a topology where the last hop is a wireless bottleneck link
with capacity C. The sender has a large file to send. The
packet size is L bits. The propagation delay from the sender
to the receiver is T

0

. Due to the congestion control mechanism
of TCP Vegas, the transmission rate at the sender is C, and
there is no congestion loss. The time to transmit a packet
is ⌧

0

= L/C. The end-to-end delay from the sender to the

Algorithm 2 Algorithm of TCP VON at the Receiver.
1: Set Ip := 1, Iq := 1, Ir := 1, D := []
2: while TCP connection is established
3: if a packet is received
4: if packet is not corrupted
5: Retrieve i

min

, i
max

, and the coding coefficients
6: Add coding coefficients as a new row to matrix D
7: Perform Gaussian elimination on D
8: if an all-zero row appears
9: Discard the packet and eliminate the row in D

10: else
11: Perform linear operations to packets

corresponding to the Gaussian elimination
12: while native packet with index Ip is decoded
13: Deliver data in pIp to upper layer
14: Ip := Ip + 1
15: end while
16: while native packet with index Iq is seen
17: Iq := Iq + 1
18: end while
19: while native packet with index Ir is sensed
20: Ir := Ir + 1
21: end while
22: Send an ACK packet indicating Ip, Iq and Ir
23: end if
24: else
25: Discard the corrupted packet
26: end if
27: end if
28: end while

receiver and from the receiver to the sender are approximately
T
1

= T
0

+ 3L/C and T
2

= T
0

, respectively. The round trip
time is RTT = T

1

+T
2

. We use K to denote the ratio of RTT
over ⌧

0

. We approximate K with dRTT/⌧
0

e. Since RTT is
much larger than ⌧

0

, the error of approximation is negligible.
Each packet experiences random loss at the wireless link

independently with probability p. Equivalently, we assume that
packets are corrupted independently with probability p. Let q

k

denote the kth coded packet received.
A group of packets is a set of packets which are decoded

together. The expected decoding time of a packet q
k

, denoted
as Γk, is the difference between its arrival time and the time
it is expected to be decoded if no further packet corruptions
happen. If there are no corrupted packet arrivals before q

k

and
q
k

is correctly received, Γk is equal to 0. However, if q
k

is
corrupted, Γk will be delayed up to RTT + ⌧

0

. It is because
the receiver has to wait for one redundant packet which is
expected to arrive after RTT + ⌧

0

seconds. There will be
several packets in one group in this case.

In Fig. 2(a), if there is no corrupted packet arrival at the
receiver, each packet can be decoded immediately with de-
coding delay T

1

. If a corrupted packet arrives, the consecutive
innovative packets cannot be decoded until a redundant packet
arrives. In Fig. 2(b), when a corrupted packet q

x

arrives,
the expected decoding time is RTT + ⌧

0

= (K + 1)⌧
0

. If
it receives a correct packet (e.g., packet q

x+1

or q
x+2

), the
expected decoding time decreases by ⌧

0

. However, if there is
another corrupted packet q

x+5

, the expected decoding time is

No corruption,

decoding delay

is T1

Redundant

Packet

0

...

One corrupted

packet, expected

decoding time is

delayed to

RTT+ 0 = (K+1) 0

One group

One group

(a) Zero or one packet corruption in one group.

...

...
...

...

0

Redundant Packet

x = (K+1) 0

x+1 = K 0

x+2 = (K 1) 0

x+5 = (K+1) 0

qx+5

Redundant Packet

One group

(b) Multiple packet corruptions in one group.

qx+2

qx+1

qx

Sx = K+1

Sx+1 = K

Sx+2 = K 1

Sx+5 = K+1

...

...

...
...

...

...
...

...

Fig. 2. Groups of packets with different number of corrupted packets.

(K + 1)⌧
0

. The expected decoding time Γk+1

is determined
based on Γk and whether q

k+1

is corrupted or correct. Thus,
Γk+1

is independent of Γk−1

, . . . ,Γ
1

. We use Sk to denote
the ratio of Γk to ⌧

0

(i.e., Sk = �k

⌧
0

). Therefore, Sk+1

is
independent of Sk−1

, . . . , S
1

.
The sequence S

1

, S
2

, . . . constructs a discrete Markov chain.
If a corrupted packet arrives, the expected decoding time
becomes (K+1)⌧

0

and the state becomes K+1. If a packet is
correctly received, the expected decoding time is decreased by
⌧
0

and the state decreases by 1. Fig. 3 shows the state transition
of the Markov chain. Let M = {mjk}

(K+2)⇥(K+2)

, j =
0, 1, . . .K + 1, k = 0, 1, . . .K + 1 denote the transition
probability matrix of the Markov chain. mj(K+1)

= p
(j = 0, 1, . . . ,K + 1), m

(j+1)j = 1 − p (j = 0, 1, . . . ,K),
m

00

= 1− p and all the other entries of M are 0.
When the state is 0, all the packets can be decoded. If there

are i packets in one group, there will be i transitions between
two consecutive visits of state 0 accordingly. Let Pi denote
the probability that there are i packets in one group. Matrix
M can be divided into four submatrices as

M =

✓
M

00

M
01

M
10

M
11

◆
(2)

=

0

BBB@

m
00

m
01

. . . m
0(K+1)

m
10

m
11

. . . m
1(K+1)

...
...

. . .
...

m
(K+1)0

m
(K+1)1

. . . m
(K+1)(K+1)

1

CCCA
.

1 2 3 4 K K+10

p
p

p
p

p

p
1 p

1 p 1 p 1 p 1 p 1 p 1 p 1 p

p

Fig. 3. State transition of Markov chain.

We have P
1

= m
00

and P
2

=
PK+1

j=1

m
0jmj0 = M

01

M
10

.
In general, we have

Pi =

K+1X

j
1

=1

K+1X

j
2

=1

. . .

K+1X

ji�1

=1

m
0j

1

mj
1

j
2

. . .mji�2

ji�1

mji�1

0

= M
01

Mi−2

11

M
10

, i ≥ 3. (3)

The decoding delay of the ith (last) packet in the group with
i packets is equal to the propagation delay T

1

. The decoding
delay of the (i − 1)th packet in the group is T

1

+ ⌧
0

. The
decoding delay of the (i− j)th (j = 0, 1, . . . , i−1) the packet
in the group is T

1

+ j⌧
0

. The average decoding delay of a
group with i packets is

⌧i =
Pi−1

j=0

(T
1

+ j⌧
0

) /i = T
1

+ (i− 1)⌧
0

/2, i ≥ 1. (4)

Let t denote the total transmission time, ⌧T (t) denote the
total decoding delay of all the packets during time t and N(t)
denote the total number of packets transmitted during time t.
We use ni(t) to denote the number of groups with i packets
in total during time t. We have N(t) =

P1
i=1

ini(t) and
⌧T (t) =

P1
i=1

ini(t)⌧i. For large values of t, by the law of
large numbers, the limit of ni(t)/

P1
j=1

nj(t) approaches Pi,
the probability that there are i packets in one group. Thus, the
average decoding delay can be computed as

⌧ = lim
t!1

⌧T (t)

N(t)
= lim

t!1

P1
i=1

ini(t)⌧iP1
i=1

ini(t)

= lim
t!1

P1
i=1

i
⇣
ni(t)/

⇣P1
j=1

nj(t)
⌘⌘

⌧i
P1

i=1

i
⇣
ni(t)/

⇣P1
j=1

nj(t)
⌘⌘ =

P1
i=1

iPi⌧iP1
i=1

iPi
.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of TCP VON
via ns-2 simulations. We first validate our analytical model
by comparing the analytical and simulation results. Then, we
compare the throughput and delay performance of TCP VON
and TCP ARQNC [13], [14]. Unless stated otherwise, the
packet size L is set to 1250 bytes. The results are average
on 50 simulation runs and each simulation lasts 100 seconds.

We consider a single-hop wireless network with one sender
and one receiver. C is the capacity of the wireless link. Fig. 4
shows the comparison between the analytical and simulation
results under different loss probabilities p. The propagation
delay from the sender to the receiver T

0

is 5 ms. The random
packet loss probability varies from 0 to 0.1 with step of
0.01. The results show that the simulation results match the
analytical results, validating the correctness of our analytical
model.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Loss probability p

A
v

e
ra

g
e
 d

e
c
o

d
in

g
 d

e
la

y
 (

s)

Analytical, C = 30 Mb/s

Simulation, C = 30 Mb/s

Analytical, C = 20 Mb/s

Simulation, C = 20 Mb/s

Analytical, C = 10 Mb/s

Simulation, C = 10 Mb/s

Fig. 4. Analytical and simulation results of average decoding delay for single
hop topology under different values of p (T

0

= 5 ms, and L = 1250 bytes).

Next, we compare the performance of TCP ARQNC [13],
[14] and TCP VON. For TCP ARQNC, the coded packets are
transmitted in a generation by generation fashion. There are
N

0

native packets in one generation and each coded packet
is a linear combination of the N

0

native packets. For each
generation, the sender first transmits NG = N

0

+ R
0

coded
packets, where R

0

is the redundant factor. The receiver can
decode all the native packets if N

0

or more coded packets are
successfully received at the receiver. If more than R

0

packets
are lost, the sender has to transmit more linear combinations
until the receiver receives enough independent coded packets.

We consider a three-hop tandem topology for simulations.
The first two hops are wired links with capacity of 50 Mb/s and
propagation delay of 5 ms. The last hop is wireless link with
capacity of 10 Mb/s, propagation delay of 2 ms, and random
packet loss probability p. There is a TCP session between the
source and destination.

We investigate the joint throughput and delay performance
of the different TCP schemes using ns-2 simulation. Fig. 5
shows the throughput and delay performance of TCP VON and
TCP ARQNC when packet loss probability p changes from 0
to 0.1 with step of 0.01. The throughput performance of TCP
ARQNC is much worse than that of TCP VON when N

0

and
R

0

are small. When we increase N
0

and R
0

, although the
throughput of TCP ARQNC is increased, the decoding delay
performance degrades a lot. Both of the throughput and delay
performance of TCP VON are better than that of TCP ARQNC
when p is small (e.g., p < 0.05).

VI. CONCLUSIONS

In this paper, we proposed TCP VON, which incorporates
online network coding into TCP. By executing online network
coding control, packets can be decoded consecutively and the
decoding delay is small. Then, we established a Markov chain
model to compute the analytical delay performance of TCP
VON. We also conducted ns-2 simulations to validate the
correctness of our analytical models. Finally, we compared
the delay and throughput performance of TCP VON and TCP
ARQNC. Results showed that TCP VON outperforms TCP

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7

8

9

10

Average delay (s)

A
v

e
ra

g
e
 t

h
ro

u
g

h
p

u
t

(M
b

/s
)

TCP VON

TCP ARQNC, N
0
 = 200, R

0
 = 20

TCP ARQNC, N
0
 = 100, R

0
 = 10

TCP ARQNC, N
0
 = 20, R

0
 = 2

TCP ARQNC, N
0
 = 10, R

0
 = 1

p = 0

p = 0.1

p = 0.1

Fig. 5. Performance comparison for three-hop tandem topology under
different values of packet loss probability p.

ARQNC. For future work, we plan to carry out empirical study
of TCP VON and apply it in real networks.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Trans. on Information Theory, vol. 46, no. 4,
pp. 1204–1216, Jul. 2000.

[2] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. on Information Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[3] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. on Networking, vol. 11, no. 5, pp. 371–381, Oct.
2003.

[4] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc.
of 41st Allerton Annual Conference on Communication, Control, and
Computing, Urbana-Champaign, IL, Oct. 2003.

[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM Trans.
on Networking, vol. 16, no. 3, pp. 497–510, June 2008.

[6] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proc. of ACM
SIGCOMM, Kyoto, Japan, Aug. 2007.

[7] J. K. Sundararajan, D. Shah, and M. Médard, “ARQ for network coding,”
in Proc. of IEEE International Symposium on Information Theory,
Toronto, Canada, Jul. 2008.

[8] J. Barros, R. A. Costa, D. Munaretto, and J. Widmer, “Effective delay
control in online network coding,” in Proc. of IEEE INFOCOM, Rio de
Janeiro, Brazil, Apr. 2009.

[9] D. E. Lucani, M. Médard, and M. Stojanovic, “Online network coding
for time-division duplexing,” in Proc. of IEEE GLOBECOM, Miami,
FL, Dec. 2010.

[10] Y. Lin, B. Liang, and B. Li, “SlideOR: Online opportunistic network
coding in wireless mesh networks,” in Proc. of IEEE INFOCOM, San
Diego, CA, Mar. 2010.

[11] S. Hassayoun, P. Maille, and D. Ros, “On the impact of random losses
on TCP performance in coded wireless mesh networks,” in Proc. of
IEEE INFOCOM, San Diego, CA, Mar. 2010.

[12] L. Chen, T. Ho, S. H. Low, M. Chiang, and J. C. Doyle, “Optimization
based rate control for multicast with network coding,” in Proc. of IEEE
INFOCOM, Anchorage, AK, May 2007.

[13] J. K. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher, and J. Bar-
ros, “Network coding meets TCP,” in Proc. of IEEE INFOCOM, Rio
de Janeiro, Brazil, Apr. 2009.

[14] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network coding meets TCP: Theory and
implementation,” Proc. of the IEEE, vol. 99, no. 3, pp. 490–512, Mar.
2011.

[15] L. Brakmo and L. Peterson, “TCP Vegas: End-to-end congestion
avoidance on a global Internet,” IEEE Journal on Selected Areas in
Communication, vol. 13, no. 8, pp. 1465–1480, Oct. 1995.

[16] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proc. of
ACM SIGCOMM, Vancouver, Canada, Sept. 1998.

