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Abstract

We consider a prey–predator model with Holling type II response function incorporating a prey refuge.

The purpose of the work is to offer mathematical analysis of the model and to discuss some significant

qualitative results that are expected to arise from the interplay of biological forces. Some numerical sim-

ulations are carried out.
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1. Introduction

The dynamic relationship between predators and their prey has long been and will continue to
be one of the dominant themes in both ecology and mathematical ecology due to its universal
existence and importance [1]. These problems may appear to be simple mathematically at first
sight, they are, in fact, often very challenging and complicated. Although the predator–prey
theory has seen much progress in the last 40 years, many long standing mathematical and eco-
logical problems remain open [1–7].

Differential equation models for interactions between species are one of the classical applica-
tions of mathematics to biology. The development and use of analytic techniques and the growth
of computer power have progressively improved our understanding of these types of models. In
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this paper we analyze a Lotka–Volterra type predator–prey model with Michaelis–Menten type
functional response. In this particular model the population density of the prey is resource limited
and each predator’s functional response to the prey approaches a constant as the prey population
increases (i.e. a type II response according to Holling [8]). In addition, a spatial refuge protects a
constant proportion of prey from predation.

Mite predator–prey interactions often exhibit spatial refugia which afford the prey some
degree of protection from predation and reduce the chance of extinction due to predation.
Maynard Smith [9] shows that the presence of a constant proportion refuge does not alter the
dynamical stability of the neutrally stable Lotka–Volterra model, while a constant number refuge
of any size replaces the neutrally stable behaviour with a stable equilibrium. Hassel [10] shows that
adding a large refuge to a model, which in the absence of a refuge exhibits divergent oscillations,
replaces the oscillatory behaviour with a stable equilibrium. These mathematical models and a
number of experiments indicate that refugia have a stabilizing effect on predator–prey interac-
tions, but, as Taylor [11] has mentioned, it would be an over simplification to assume this is
always the case.

The model considered is based on the predator–prey system:
dx
dt

¼ ax 1
�

� x
k

�
� byx
1þ ax

;

dy
dt

¼ �cy þ cbyx
1þ ax

;

ð1Þ
where x, y denote prey and predator population respectively at any time t, and a, k, c, b, a, c are all
positive constants. Here a represents the intrinsic growth rate and k the carrying capacity of the
prey; c is the death rate of the predator; b=a is the maximum number of prey that can be eaten by
each predator in unit time; 1=a is the density of prey necessary to achieve one half that rate; c is
the conversion factor denoting the number of newly born predators for each captured prey. The
term (bx=ð1þ axÞ) denotes the functional response of the predator. This response function is
termed as Holling type II response function [8].

This paper extends the above model by incorporating a refuge protecting mx of the prey, where
m 2 ½0; 1Þ is constant. This leaves ð1� mÞx of the prey available to the predator, and modifying
system (1) accordingly yields the system:
dx
dt

¼ ax 1
�

� x
k

�
� bð1� mÞyx
1þ að1� mÞx ;

dy
dt

¼ �cy þ cbð1� mÞxy
1þ að1� mÞx :

ð2Þ
This paper is organized as follows. Basic results are given in Section 2. In this section we study
the existence of equilibria and their dependence on the parameter m. We have concentrated more
on the interior equilibrium of the system as we are interested in the co-existence of the species. We
also study the stability and instability properties of the equilibria and existence of limit cycles for
the system (2). In Section 3, we present a numerical simulation to illustrate the established results.
Concluding remarks are presented in Section 4.
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2. Basic results

To ensure the existence and uniqueness of system (2), we seek the solution in R2
þ ¼

fx; y : x > 0; y > 0g so that all the standard results of existence, uniqueness and continuous
dependence on initial conditions are evidently satisfied.

2.1. Equilibria

We now study the existence of equilibria of system (2). Particularly we are interested in the
interior or positive equilibrium. Since refuge parameter m is the system parameter, positive
equilibrium exists only for some restricted levels of the parameter.

To begin with we list all possible equilibria

ii(i) The trivial equilibrium P0ð0; 0Þ.
i(ii) Equilibrium in the absence of predator (y ¼ 0) P1ðk; 0Þ.
(iii) The interior (positive) equilibrium P2ðx
; y
Þ, where
x
 ¼ c
ðcb � caÞð1� mÞ ; y
 ¼ ac

k
kðcb � caÞð1� mÞ � c

fðcb � caÞð1� mÞg2

" #
:

For the equilibrium P2ðx
; y
Þ to be positive we first need
cb � ca > 0: ð3Þ

For y
 to be positive, the constraint on m to be
06m < 1� c
kðcb � caÞ : ð4Þ
Thus, for the existence of the positive equilibrium both cb > ca and
06m < 1� c
kðcb � caÞmust be hold:
We see that x
 increases with m.
2.2. Boundedness of the system

The boundedness of solutions of the system is proved in the following theorem.

Theorem 1. All the solutions of system (2) which start in R2
þ are uniformly bounded.

Proof. We define the function w ¼ xþ ð1=cÞy. Therefore, time derivative
dw
dt

¼ dx
dt

þ 1

c
dy
dt

¼ ax 1
�

� x
k

�
� bð1� mÞxy
1þ að1� mÞx�

c
c
y þ bð1� mÞxy

1þ að1� mÞx :
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For each v > 0, we have
dw
dt

þ vw6
k
4a

ðvþ aÞ2 � 1

c
ðc � vÞ:
Now if we choose v < c, then righthand side is bounded for all ðx; yÞ 2 R2
þ. Thus we choose a

l > 0, such that
dw
dt

þ vw < l:
Applying the theory of differential inequality [12] we obtain
0 < wðx; yÞ < l
v
ð1� e�vtÞ þ wðxð0Þ; yð0ÞÞe�vt;
which, upon letting t ! 1, yields 0 < w < ðl=vÞ. So, we have that all the solutions of system (2)
that start in R2

þ are confined to the region B, where B ¼ fðx; yÞ 2 R2
þ : w ¼ l

v þ e;
for any e > 0g. h

2.3. Dynamic behaviour

In this subsection we shall discuss the stability properties of the equilibria P0, P1 and P2. The
Jacobian of the system about the equilibrium point P0ð0; 0Þ is given by
a 0

0 �c

� �
:

Hence the eigenvalues of this system are the roots of the equation ða � kÞð�k � cÞ ¼ 0. Therefore,
P0ð0; 0Þ is a saddle point. Jacobian matrix for P1ðk; 0Þ is given by
�a �bð1�mÞka
aþakað1�mÞ

0 �c þ cbð1�mÞak
aþakað1�mÞ

 !
:

The eigenvalues of the matrix are �a and �c þ cbð1�mÞk
1þakð1�mÞ. Hence P1ðk; 0Þ is locally asymptotically

stable when m > 1� c
kðcb�acÞ and unstable (saddle) when m6 1� c

kðcb�acÞ. When both P0ð0; 0Þ and
P1ðk; 0Þ are saddle, according to Theorem 3.1 of [13], system is persistent.

It is observed that, when P2 exists, P1 is unstable (saddle). Jacobian about P2 is given by
X Y
Z 0

� �
, where
X ¼ a � 2a
k

c
ðcb � caÞð1� mÞ �

a
kcbð1� mÞ ½kðcb � caÞð1� mÞ � c;

Y ¼ � c
c
;

Z ¼ a
kbð1� mÞ ½kðcb � caÞð1� mÞ � c:
The characteristic equation is k2 � kX þ YZ ¼ 0. The sum of the roots is equal to X and the
product of the roots is equal to YZ, which is always positive (by virtue of condition (4)).
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Now X will be negative if
m > 1� c
kðcb � caÞ �

cb
kaðcb � caÞ : ð5Þ
From (5) it is clear that if m > 1� c
kðcb�caÞ �

cb
kaðcb�caÞ, then P2 is locally asymptotically stable. Now if

m be such that m < 1� c
kðcb�caÞ �

cb
kaðcb�caÞ, then P2 is locally unstable in the xy-plane. If m ¼

1� c
kðcb�caÞ �

cb
kaðcb�caÞ, then system (2) enters into Hopf type small amplitude periodic solutions

(limit cycles) near P2.

2.4. Existence of limit cycles

In two dimensions it is well known that there can be no limit cycles in models of competitive or
cooperative systems. Further, it is known for predator–prey systems that the existence and sta-
bility of a limit cycle is related to the existence and stability of a positive equilibrium. We assume
that a positive equilibrium exists, for otherwise the predator population tends to extinction [14]. If
the equilibrium is asymptotically stable, there may exist limit cycles, the innermost of which must
be unstable from the inside and the outermost of which must be stable from the outside. If the
limit cycles do not exist in this case, the equilibrium is globally asymptotically stable. If the po-
sitive equilibrium exists and is unstable, there must occur at least one limit cycle.

In the present subsection, we shall prove that system (2) has unique stable limit cycle, when P2
becomes locally unstable.

Let us consider system (2) in the form
dx
dt

¼ xgðxÞ � ypðxÞ; xð0Þ > 0

dy
dt

¼ y½�c þ qðxÞ; yð0Þ > 0

ð6Þ
where gðxÞ ¼ að1� x
kÞ, pðxÞ ¼

bð1�mÞx
1það1�mÞx, qðxÞ ¼

cbð1�mÞx
1það1�mÞx. We have the following theorem regard

uniqueness of limit cycles of system (6).

Theorem 2 [2]. Suppose in system (6)
d

dx

xg0ðxÞ þ gðxÞ � xgðxÞ p0ðxÞ
pðxÞ

�c þ qðxÞ

0
@

1
A6 0
in 06 x < x
 and x
 < x6 k. Then system (6) has exactly one limit cycle which is globally asymp-
totically stable with respect to the set fðx; yÞ jx > 0; y > 0g n fp2ðx
; y
Þg.

By employing Theorem 2, we can prove easily the following theorem.

Theorem 3. If m6 1� c
kðcb�caÞ �

cb
kaðcb�caÞ, then system (2) has exactly one limit cycle which is globally

asymptotically stable with respect to the set fðx; yÞ jx > 0; y > 0g n fp2ðx
; y
Þg.
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Proof. This will be equivalent to proving
Table

Natur

Par

m 2
m ¼

mðA
m ¼
m 2
d

dx

x � a
k

 �
þ a 1� x

k

 �
� a 1� x

k

 �
1

1það1�mÞx

�c þ cbð1�mÞx
1það1�mÞx

" #
6 0
or
d

dx

x 2xþ 1
að1�mÞ � k

� �
x� k

2
4

3
5P 0;
where k ¼ c
ð1�mÞðcb�acÞ. It is equivalent to proving
ðx� kÞ2 þ k
k � 1

að1�mÞ

2

 !
� k2 P 0
or
k � 1
að1�mÞ

2
P k
i.e.
m6 1� c
kðcb � caÞ �

cb
kaðcb � caÞ :
The equality holds if and only if m ¼ 1� c
kðcb�caÞ �

cb
kaðcb�caÞ. This completes the proof. h

Combining all these results, we have the following theorem.

Theorem 4. If cb > ac, then the constraints on m for the existence and stability of the positive

equilibrium point are
1� c
kðcb � caÞ �

cb
kaðcb � caÞ < m < 1� c

kðcb � caÞ ;
and globally stable limit cycle exists when
m6 1� c
kðcb � caÞ �

cb
kaðcb � caÞ :
1

e of equilibria of system (2) when cb > ca

ameters P0ð0; 0Þ P1ðk; 0Þ P2ðx
; y
Þ Phase protrait

½0;AÞ Unstable Unstable Unstable, limit cycles exists Figs. 2 and 3

A Unstable Unstable Unstable, small amplitude

periodic solution occurs

Fig. 4

;BÞ Unstable Unstable Asymptotically stable Fig. 5

B Unstable Unstable Does not exist

ðB; 1Þ Unstable Stable Does not exist Fig. 8
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Thus, we find that it is possible to prevent the cycles and drive the state of the considered system to a
stable state by choosing the refuge parameter m appropriately (see Table 1.)
Fig. 1

(solid
A ¼ 1� c
kðcb � caÞ �

cb
kaðcb � caÞ ; B ¼ 1� c

kðcb � caÞ
3. Numerical example

Let a ¼ 10, k ¼ 100, a ¼ 0:02, c ¼ 0:09, b ¼ 0:6, c ¼ 0:02 in appropriate units. For these values
of parameters, we verify the existence and stability properties of the equilibrium for the system.
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Fig. 2. The phase portrait of system (2) for m ¼ 0:1.
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Also we construct a limit cycle and verify its global stability. It is found that if 0:32 < m < 0:91,
then the interior equilibrium point exists and stable and if 06m6 0:32 then it is unstable and
hence there should exist a globally stable limit cycle.

Fig. 1 shows the bifurcation behaviour of system (2) with m as the bifurcation parameter.
Let us take m ¼ 0:1, then the corresponding interior equilibrium point ð9:8; 19:65Þ is unstable.

Phase diagram is shown in Fig. 2. We observe that all solutions of the system initiating in the
interior of the positive quadrant of ðx; yÞ plane, except at the equilibrium, approach a unique limit
cycle eventually.
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Fig. 3. The phase portrait of system (2) for m ¼ 0:3.
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Fig. 4. Solution curves for m ¼ 0:32. There is a periodic solution around the equilibrium point P2ð13:0; 25:09Þ.
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Fig. 5. Solution curves for m ¼ 0:4. Both the populations converge to their equilibrium values.
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Fig. 6. The phase portrait of system (2) for m ¼ 0:5. P2ð17:65; 32:3Þ is a global attractor.
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In Fig. 2 we clearly observe that two distinct solutions of the system, one with initial value in
the interior of the limit cycle and the other with initial value in the exterior of the limit cycle,
approaching the limit cycle.

Next let m ¼ 0:3, then the corresponding interior equilibrium point ð12:6; 24:5Þ is also unstable.
The phase portrait is shown in Fig. 3.



0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

45

50

Prey

P
re

da
to

r

Fig. 8. The phase portrait of system (2) for m ¼ 0:95. It is seen that ð100; 0Þ is a global attractor.
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Fig. 7. Solution curves for m ¼ 0:85. Both the populations converge to their equilibrium values ð58:82; 53:82Þ.
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The behaviour of system (2) at the bifurcation point m ¼ 0:32 is shown in Fig. 4.When m ex-
ceeds the bifurcation point, the behaviour the system is shown in Figs. 5–7. We see that increasing
m stabilizes the system through Hopf bifurcation at m ¼ 0:32 leads to the periodic branch being
replaced by a branch of stable equilibria.

The behaviour of system (2) at m ¼ 0:95 is shown in Fig. 8. In this case the system has no
interior equilibrium and the boundary equilibrium point ð100; 0Þ is globally asymptotically stable.
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4. Concluding remarks

In this paper we have considered a prey–predator system incorporating a prey refuge. We
assumed that the predator response function is of Holling type II. Incorporating a refuge into
system (1) provides a more realistic model, since many prey mite populations do have some form
of refuge available. A refuge can be important for the biological control of a pest, however,
increasing the amount of refuge can increase prey densities and lead to population outbreaks. For
example, Hoy [15] mentions that ‘‘hotspots’’ of high spider mite densities in almond orchards can
trigger orchard-wide outbreaks. These hotspots are areas in which the predator is not successfully
controlling the prey and therefore can be considered refugia. We have given conditions for
existence and stability of the equilibria and persistent criteria for the system. In this study we have
proved that exactly one stable limit cycle occurs in this system when the positive equilibrium is
unstable. This proof also enables us to conclude that local asymptotic stability of the positive
equilibrium implies its global asymptotic stability. Finally a numerical simulation is taken to
verify some of the key results we obtained.
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