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Abstract
Thermal comfort has traditionally been measured solely by
temperature. While other methods such as Predicted Mean
Vote (PMV) are available for measuring thermal comfort, the
parameters required for an accurate value are overly com-
plicated to obtain and require a great deal of sensory input.
This paper proposes to bypass overly cumbersome or sim-
plistic measures thermal comfort by bringing humans in the
loop. By using humans as sensors, we can accurately adjust
temperatures to improve occupant comfort. We show that oc-
cupants are more comfortable with a system that continually
adjusts to thermal preference than a system that attempts to
predict user comfort based on environmental factors. In ad-
dition, we also show that such a system is able to save 10.1%
energy while improving the quality of service.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human Factors

General Terms
Experimentation, Measurement, Performance

Keywords
HVAC conditioning, PMV, thermal comfort, phones

1 Introduction
Recently, works have shown how wireless sensor net-
works can be utilized to reduce the energy consumed by
buildings[5][3] [9]. However, within the WSN community,
little research has been done to improve the quality of service
for users. Instead, the aim has been simply to maintain, or
in some cases potentially decrease quality of service in order
to achieve greater efficiency. While increasing efficiency is
an important goal, the service that HVAC systems provide is
arguably more important than reducing energy. Before we
attempt to reduce energy for HVAC systems, we must first
ensure that the system is providing adequate service.
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Building managers typically rely on building manage-
ment systems (BMS) to maintain user comfort. Managers
choose a single temperature set-point for occupied peri-
ods. This set-point is typically chosen based on the crite-
ria set by American Society of Heating, Refrigeration, Air-
Conditioning Engineering (ASHRAE) Standard 55 [2]. This
standard uses Predicted Mean Vote (PMV), to estimate the
most comfortable temperature. PMV uses multiple parame-
ters such as humidity, temperature, and air flow to estimate
how warm or cold occupants feel on a discrete scale from
-3 to 3. Positive values indicates occupants are warm and
negative values indicates occupants are cold. A PMV of 0
indicates occupants are comfortable. Temperature set-points
are chosen by assuming fixed values of most parameters and
then solving for a temperature that will give a PMV of 0.

Estimating PMV is inherently prone to error. Often,
many of the values for parameters such as clothing coeffi-
cients or activity levels are given fixed values based on ta-
bles supplied by bodies such as ASHRAE. The clothing co-
efficient has been shown to differ by up to 20% depending
on the table and method [4] [2]. Other parameters such as
mean radiant temperature is currently not measured by most
BMS systems and is again often estimated [13]. While it is
possible that PMV estimates could be improved by attempt-
ing to measure the parameters such as occupant activity, per-
ceived air-flow, and radiant heat for each space, this would
require additional cost in terms of installation and develop-
ment of specialized sensors. Even if perfect measurement is
possible, the differences among individual preferences make
error in the PMV estimate inevitable.

Rather than develop an entire testbed used to sensing pa-
rameters related to thermal comfort, we propose a more di-
rect means of measuring user thermal comfort; ask the users.
For this application, humans are the best sensors available.
As data muling is to using humans to transport of data, par-
ticipatory sensing is to using humans to sense data. We pro-
pose leveraging existing wireless infrastructure such as cell
phones and use humans as sensors. By controlling room tem-
peratures directly using user feedback, we are more likely to
increase the overall thermal comfort. This is already done
in private offices where individual thermostats are available.
However, for rooms with multiple users, it is not straight-
forward to regulate temperatures from a single thermostat,
such that the comfort of the majority is maximized.

In this paper we contribute the following:
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• We demonstrate a learned and real-time method of uti-
lizing user data to remove error when calculating PMV
and show that both are more effective than current stan-
dard approaches of estimating PMV.

• We tested our strategies over long periods (up to 5
months) and show that temperature control based on ac-
tual feedback is substantially more effective than base-
line approaches that rely solely on thermal comfort
models. We show 67% and 100% satisfaction rates for
our learned and real-time control strategies respectively.

• We show that improving comfort can improve energy
efficiency. We found that our real-time system was able
to save 10.1% energy over standard baseline strategy.

2 Related Work
While there have been sensors and sensor networks de-
veloped for measuring thermal comfort, there has been no
work that has actuated temperatures using participatory sens-
ing. Within the building community, multiple works have
been done to develop different models of thermal comfort
[10] and study the effects of temperature on thermal com-
fort [14, 12, 8]. Psychological studies have also shown that
direct control can lead to greater satisfaction [11], which is
an important factor for building management.

Authors of [15] developed a comfort sensor that mea-
sures air temperature, air motion, mean radiant tempera-
ture, and humidity. Input from these sensors are then used
with PMV or standard effective temperature (SET*) models.
They examine how their sensor choice affects the estimates
of PMV as compared with ideal sensors. The main drawback
is that there is no verification that compares the sensed com-
fort with the actual comfort. For factors such as air speed,
it is unclear how many of these sensors are required for ad-
equate estimates of thermal comfort. As occupants provide
comfort level directly, our approach guarantees appropriate
coverage and accurate data. Their work also does not discuss
how this information can be used for temperature actuation.

In the paper [13], the authors propose an architecture for
thermal comfort. They utilize SunSPOT nodes to measure
air temperature. They assume mean radiant temperature is
equal to dry bulb temperature and for the remaining param-
eters, they assume fixed values. Sensors are distributed in a
room and used to estimate a PMV value at each location.
These values are used to extrapolated PMV values at un-
known locations within the room. They do not address how
much coverage is required or how sensor coverage could po-
tentially affect the error derived from the interpolated values.
They do not compare their results with actual occupant com-
fort and do not discuss how these estimates are integrated
with temperature control. Again, our participatory approach
bypasses these issues by eliminating measurement error and
obtaining measurement at the precise user location.

Authors of [7] developed a participatory sensing cell
phone application for measuring temperature, lighting and
air quality. For measuring temperature, they used a 5 point
scale rather than a 7 point scale. They tested their applica-
tion over the course of 10 days in 8 different rooms and col-
lected 200 data points; they do not mention how many oc-
cupants participated. They compare measured temperature

reading with user data and the analyze differences. They
do not use this data to actuate temperature changes as we
do. Our work discusses how differences from the measured
PMV and sensed data can be used for correction of tempera-
tures. Our deployment has run for a substantially longer pe-
riod (5 months). Since user feedback directly impacts their
environment, the incentive to participate provides us with
more data. As illustration, a single room of our deployment
over a 10 day period had 362 data points whereas their 8
room deployment only yielded 200 data points.

3 Thermovote Overview
Our deployment uses the BACnet based HVAC system in-
stalled in our building. BACnet is a client-server based com-
munication protocol designed for the building automation
and control networks [6]. The system is administrated us-
ing WebCtrl, which is a web interface developed by Auto-
mated Logic that sends BACnet commands over the network.
Buildings are typically divided into zones. Each of these
zones contains a collection of BACnet points where each
BACnet point represents an interface to a particular sensor
or point of control. For example, a room will often have a
BACnet point for measuring zone temperature and another
point for changing the temperature set-point. In order to use
these points, we “read” or “write” commands to a point. One
of the features of WebCtrl is an interface that allows the use
of SOAP, an xml based protocol, to create commands to read
and write BACNet points within WebCtrl. This feature is
used to change temperature set-points and to monitor VAV
airflow and discharge temperatures.

3.1 Design Considerations
Deciding what is a comfortable temperature is difficult. Oc-
cupants often have conflicting perceptions of what consti-
tutes a comfortable temperature. We asked users in a sur-
vey what temperature they considered comfortable. We then
compared this temperature to the actual comfortable temper-
ature they were experiencing, we found a root mean squared
error of 3.8 Fo. We decided to use the same 7 point scale
as specified in ASHRAE standard 55. This scale uses values
from -3 (cold) to 3 (hot) for indicating comfort. While users
may not agree on a numerical temperature, they are more
likely to agree on whether they feel warm or cold.

The next consideration is how to use this information. If
a person states they are warm, then how much should the
temperature be changed? We decided to indirectly use the
Fanger’s PMV model (ASHRAE 55), which is one of the
most widely used and studied models for thermal comfort.
Typically these models are used to predict user comfort level.
In our case, we know the actual comfort level. We can thus
work backwards to solve for the parameters that will give a
more comfortable temperature given user feedback. This is
discussed in more detail in Section 4.

Lastly, we need to address how to handle diverging opin-
ions. What happens if one person feels cold while another
feels hot? To handle this issue, we use a voting based
scheme. Users are allowed one vote valued from -3 (cold)
to 3 (warm) for each voting period. After each voting pe-
riod, votes can be then tallied and aggregated.



Figure 1. Screenshot of the iPhone application.

3.2 Participatory Sensors
For our application, users provide one of the following “read-
ings”; hot, warm, slightly warm, neutral, slightly cool, cool,
and cold. Users are able to provide participatory readings
by using a cell phone application (IPhone and Android) or
by a website. Figure 1 shows each of these input methods.
Security is an issue as false feedback can negatively impact
room temperatures. For the website and cell phone appli-
cations, security is achieved by authenticating through the
school central authentication service (CAS). To prevent peo-
ple for voting in rooms they do not occupy, we require users
to submit a room request, which we manually verify to en-
sure they occupy the space. Once a user room request is
approved, the user may provide thermal feedback for that
room. Rooms are stored so users do not have to repeatedly
enter their choice, reducing the burden of providing data.

As with any participatory sensing application, privacy is
an issue that should be considered. Since thermal comfort
level is not considered sensitive, most occupants feel com-
fortable providing this information. Occupants would have
to report this information regardless if they were to request
temperature change from management. Erring on the side of
caution, we chose not to include any identifiers when storing
user feedback in our database.

4 Temperature Control
This section examines a real-time and learned strategy for
temperature control. We start with a discussion of how base-
line temperatures are typically established and how PMV is
utilized. We then show a method of using participatory sens-
ing to achieve temperature control in real-time.

4.1 Baseline Control
Determining a set-points for temperatures is often an impre-
cise exercise. ASHRAE 55 specifies guidelines for creat-
ing comfortable temperatures through the PMV metric. To
calculate the PMV, the following parameters are required:
metabolism (M), external work (W ),mean radiant tempera-
ture (Trad), air temperature (Tair), relative Humidity (h), par-
tial water vapor pressure (P), clothing coefficient ( fcl), air
velocity (vair), outer clothing temperature Tcl . These param-
eters are used in the following to calculate PMV:

ˆPMV (M,w,Trad ,Tair,h,C,vair) = (0.028+0.303e−0.036M){(M−W )

−3.05−3(5.733−6.99×10−4(M−W )−P)−0.42((M−W )−58.15)

−0.017M(5.867−Pa)−0.0014M(34− ta)−3.96×10−8 fcl((Tcl +273)4

− (Trad +273)4)− fcl × (Tcl −Tair)
}

(1)

Parameter High Solar Gain Low Solar Gain

Metabolism 70W/m2 70W/m2

MRT 75 Fo 72 Fo

Relative Humidity 30% 30%

Clothing 1.0 1.0

Air Velocity 0.1 m/s 0.1 m/s

Table 1. Parameters used for initial PMV estimate and
temperature set-points.

From a practical standpoint, only air temperature and rela-
tive humidity are commonly sensed by a BMS. Air velocity
can be measured, but often differs depending on occupant lo-
cation making it difficult to determine the average airflow for
occupants. Mean radiant temperature (MRT) is the average
weighted temperatures of the surroundings. Solar gain heat-
ing the surrounding surfaces of a room will affect the MRT.
MRT can be measured using a black globe thermometer, but
these sensor are typically not included in BMS deployments.
The remaining parameters such as metabolism and the cloth-
ing coefficient are typically estimated.

The initial heating set-points for our building during the
winter months was 74 Fo/23.3 Co for rooms with little solar
gain. Rooms with more exposure to solar gain had heating
set-points of 72 Fo/22.2 Co. These set-points were deter-
mined by estimating values for all the parameters except air
temperature (see Table 4.1). One drawback to this strategy
is that since many of parameters are fixed, the error of the
PMV will vary depending on changing environmental fac-
tors. For example, the PMV may be accurate in the morning
for a particular room when there is no sun. However, if the
room receives more sun in the afternoon, then the error of
the PMV estimate will increase. The following strategy is
designed to dynamically correct these PMV errors.

4.2 Learned Control Schedule
Since many of the parameters of PMV system are estimated,
these estimates can differ from actual comfort. If we collect
data from users, we can compare the estimated PMV with
the actual comfort and create a temperature correction factor.
For example, if the estimated PMV is 0, but the measured
value from occupants is -1, then can increase temperatures
to offset this PMV error of -1. This can be done as follows,

ˆPMV (M,w,Trad ,Tair+To f f set ,h,C,vair)−AMV = 0 (2)

where To f f set is a temperature offset that will correct the ini-
tial estimate as compared with the actual mean vote AMV .

The intuition behind the learned control strategy is that
it uses collected user feedback to learn the temperature cor-
rection offsets for different parts of the day. For example, a
room that feels warmer in the afternoon would have an tem-
perature adjustment for that period. We can adjust tempera-
tures dynamically throughout the day according to these off-
sets and help correct for changes in the environment. Algo-
rithm 1 shows the algorithm for the learned control schedule.
Every n minutes (10 minutes), we examine the previous user
votes for this particular window of time and find the actual
mean vote. We then find the To f f set to correct for the initial
PMV estimate. We then compare the current air temperature
Tair with the current set-point Tset point . If the difference be-
tween Tair and Tset point is less than a certain threshold, then



we know that the air temperature is currently at the specified
set-point and we then change the set-point by To f f set . We do
not change the set-point if the difference is above the thresh-
old; this is because the system is in the process of bringing
the room to the specified set-point. This threshold should
be set to the amplitude of temperature change caused by the
PID controller. To prevent voting bias, for each user, we only
count the most recent vote for each 10 minute period.

While the learned control strategy is an improvement
over the baseline strategy, there are still limitations with this
approach. The main limitation of this approach is that the
corrections are based on the time when user data was col-
lected. For example, if the data was collected in the win-
ter, then applying the same corrections during the summer
may not be valid. This seasonal error could be minimized
by collecting data at different times of the applying correc-
tions accordingly. However, there are still situations such as
heat waves, where the historical corrective offsets may be in-
accurate. The main strength of this approach is that it does
not require an advanced BMS. Most modern thermostats are
capable of creating daily temperature schedules. One could
pre-compute the corrected set-points and enter the tempera-
tures into the system.

Algorithm 1 Learned Control Schedule
ˆPMV ← See Equation 1

AMV (i, j)← Actual Mean Vote from previous data from time i to j

Tset point ← Current temperature set-point
ti← Time at instance i
thresh← Threshold to consider Tair ≈ Tset point

for Every n minutes do
tcurrent ← Current time

Solve for To f f set :
ˆPMV (M,w,Trad ,Tair+To f f set ,h,C,vair)+AMV (tc, tc+n) = 0

if |Tset point −Tair|< thresh then
Tset point = Tair+To f f set

end if

end for

4.3 Real-Time Control
The real-time control strategy performs the same correction
as the learned strategy except the corrections are done in real-
time. Every n minutes (10 minutes), we examine the previ-
ous user votes for this particular window of time and find the
actual mean vote and find the To f f set to correct for the initial
PMV estimate. We then compare the current air temperature
Tair with the current set-point Tset point . If the difference be-
tween Tair and Tset point is less than a certain threshold, then
we know that the air temperature is currently at the specified
set-point and we then change the set-point by To f f set . We do
not change the set-point if the difference is above the thresh-
old; this is because the system is in the process of bringing
the room to the specified set-point. This threshold should be
set to the amplitude of temperature change of the PID con-
troller. To prevent voting bias, for each user, we only count
the most recent vote for each 10 minute period.

5 User Studies
For our study, we recruited 39 participants to provide

feedback. The building was constructed within the past 6

(a) Office (b) Lab

Figure 2. Layout of Office and Lab.

years and is LEED Gold certified. We ran the baseline,
learned, and real-time system in an administrative office (5
zones, Figure 2(a)) and a graduate lab (2 zones, Figure 2(a)).
There were a total of 39 participants (all the personnel in
these areas) and the study was conducted over 5 weeks. The
study was conducted in the winter where the system was al-
ways in heating mode.
Study 1, Baseline Evaluation: The first week, was used to
determine the actual performance of the static schedule. Dur-
ing this period, we asked occupants to log their comfort level.
The purpose of this evaluation was collect data for creating
a learned control schedule and to examine baseline perfor-
mance. At the end of the week, we sent out a survey to gather
information regarding their past experiences regarding ther-
mal comfort within the building and overall satisfaction.
Study 2, Learned Control Schedule: User feedback from the
first week allowed us to correct our initial estimate for PMV.
We then created a new dynamic temperature schedule using
the method described in Section 4.2. Occupants again were
asked to log their their comfort level so we could compare the
corrected PMV with their actual comfort level. At the end of
the week, we sent another survey asking about temperatures
during the week and their overall satisfaction with the new
temperature schedule.
Study 3, Real-Time Control: 3 weeks were used to test the
real-time control strategy described in Section 4.3. At the
end of this period we again sent another survey regarding
their satisfaction with the system.
Study 4, Long Term Real-Time Control: 5 months were
used to test the real-time control strategy described in Sec-
tion 4.3. At the end of this period we again sent another
survey regarding their satisfaction with the system.

6 Results
For our analysis, we examine three different aspects for each
strategy. We start with the performance of each strategy with
respect to thermal comfort. We then examine maintenance
issues for this type of system. Finally we examine how the
system changes the energy consumption.

6.1 Thermal Comfort
We start by examining the baseline comfort level of occu-
pants. Figure 3 shows the votes for several rooms over a 5
week period as a function of time. During the baseline pe-
riod, most occupants felt Cool to Cold as can be seen from
the votes in Figure 3. Figure 4(a) shows the initial PMV es-
timate based on the fixed parameters described in Table 4.1
for the high solar gain. We see that this initial estimate is
close to zero (Neutral) most of the time, however, since the
BMS is not always able to meet the target set-point, there
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Figure 3. Study voting patterns for the different control strategies for two representative zones
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Figure 4. The initial PMV estimate, corrected PMV,
votes, and temperature for Office Zone 2.

(a) Thermal Comfort Baseline Learned Real-time

Cold 29% 27% 0%

Cool 29% 9% 0%

Slightly Cool 18% 9% 22%

Neutral 0% 19% 67%

Slightly Warm 12% 27% 11%

Warm 12% 9% 0%

Hot 0% 0% 0%

(a) Satisfaction Baseline Learned Real-time

Dissatisfied 33% 8% 0%

Somewhat Dissatisfied 42% 17% 0%

Neutral 0% 8% 0%

Somewhat Satisfied 17% 50% 77%

Satisfied 8% 17% 23%

Table 2. Office thermal comfort and satisfaction.

is some variability in the PMV estimates and it fluctuates
around zero. Nevertheless, a value so close to zero should
indicate that the occupants are comfortable. However, if we
examine the votes during this period, we see that occupants
actually voted that they were cool to cold. The survey re-
sults also reflect this finding. The summed percentage cold
to cool for baseline (Table 2(a) column 1) is 76%. No oc-
cupant indicated that they felt comfortable. The satisfaction
survey reflected this showing that 75% of occupants were not
satisfied with the conditioning of the room. This indicates
that there is error in the PMV estimate and a positive tem-
perature offset is required to correct the PMV estimate. We
estimated the AMV by averaging the votes over 10 minute
periods. The total we average over is the number of unique
occupants who have voted for the current day. If occupants
do not vote during a period, then it is assumed they voted
neutral –this is because occupants seldom ever report they
are comfortable, but are eager to report when they are not–.
Once calculated, we can then use the average vote to cor-
rect the PMV estimate. The PMV Corrected Estimate line in
Figure 4(a) shows the PMV after correcting for the error.

The second week where the learned strategy was applied
showed improved results. Office Zone 2 showed AMV val-
ues closer to zero (Figure 3). The decrease in votes indicates
the PMV estimate learned from the prior week is closer and
that temperatures are more comfortable. Figure 4(b) shows



0 2 4 6 8 10 12 14 16 18 20
0

5

10

Weekly Set−point Change and Vote Volume

Week

D
e

g
re

e
s
 F

o
 C

h
a

n
g

e
d

 

 

0 2 4 6 8 10 12 14 16 18 20
0

50

100

A
v
e

ra
g

e
 V

o
te

 C
o

u
n

t

Weekly Temp Change

Average Weekly Vote
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the corrected PMV estimate for Office Zone 2, which is close
to zero. In Office Zone 1, however, while the total number
of votes decreased, there were more votes that were slightly
warm to hot (Figure 3). This is likely due to the temperature
conditions of the baseline week. If temperatures of the base-
line week are significantly different than temperatures dur-
ing a given week, then the PMV correction may not be valid.
Overall, however, the surveys showed occupants to be more
comfortable. Table 2(a) column 1 shows 19% of occupants
were comfortable as opposed to 0% for baseline. We also see
that less people indicated that they felt slightly cool to cold;
only 45% percent felt cold to slightly cool versus the 76%
found for baseline. Occupants were also more satisfied with
the learned temperature schedule; 67% total were satisfied
or somewhat satisfied (Table 2(b), column 2) whereas only
25% were satisfied or somewhat satisfied with the baseline
(Table 2(b), column 1).

The real-time strategy showed significantly improved
thermal comfort and satisfaction for the three week short
term study. Figure 3 shows the frequency of the votes de-
creased 67% from the learned schedule to the first week of
the real-time study. Figure 4(c) shows the corrected PMV
estimate is close to 0. This is expected since occupants are
correcting the PMV estimate in real-time. When conditions
change, they are able to account for the change through vot-
ing. Again, this is also reflected in the surveys. 67% felt
comfortable, 22% felt slightly cool, and 11% felt warm (Ta-
ble 2(a), column 3). Table 2(b) column 3) shows that 77%
were satisfied and 23% were somewhat satisfied; 0% of oc-
cupants were dissatisfied or somewhat dissatisfied.

In addition to the three weeks of real-time results pro-
vided by the office areas, we also have 5 months of ex-
tended real-time strategy results from Lab 1. Here we also
saw significant improvements. Table 3(b) column 1 shows
that 100% were not satisfied with the baseline service. Af-
ter using the real-time strategy, the results showed that 80%
were satisfied with the real-time system. Baseline tempera-
tures for Lab 1 where split; almost half of the lab was cold
(46%) while the other half (54%) was warm (Table 3(a);
0% felt comfortable. For the real-time strategy, 53% felt
comfortable. In general, people who did not feel comfort-
able perceived colder temperatures (25% felt slightly cold to
cold); 13% felt slightly cool, 6% cool, and 6% cold. 19%

(a) Thermal Comfort Baseline Real-time

Cold 23% 19%

Cool 23% 11%

Slightly Cool 0% 16%

Neutral 0% 38%

Slightly Warm 15% 11%

Warm 14% 5%

Hot 25% 0%

(a) Satisfaction Baseline Real-time

Dissatisfied 46% 0%

Somewhat Dissatisfied 54% 7%

Neutral 0% 13%

Somewhat Satisfied 0% 27%

Satisfied 0% 53%

Table 3. Lab 1 thermal comfort and satisfaction.

of the people felt slightly warm to hot. Interestingly, despite
47% of the people not indicating neutral temperature, 80% of
the occupants were satisfied with the system indicating that
absolute comfort is not required for user satisfaction. Fig-
ure 5 shows the weekly vote volume variation over the past 5
months (right y axis). For this graph, we only include the ac-
tual votes and do not consider implicit neutral votes. Initially,
we see quite a few people voting at the beginning. We can
see that after the first month, the mean and variance of the
votes remain stationary. This is because as temperatures be-
come more comfortable, the number of votes decreases and
then eventually stabilizes. This is also reflected in the total
temperature change experienced each week (Figure 5, left y
axis). This figure shows the total amount of temperature set-
point change experienced for each week. At the beginning,
the set-points were changed a total of approximately 10 de-
grees, which corresponds with the initial high vote volume.
As the weeks go on, the amount the set-point changes each
week gets reduced; between weeks 5 and 14, the total weekly
change is only between 1.2-2.5 Fo. The weekly change in-
creases somewhat (3-3.6 Fo) during weeks 15 to 20. This is
due to Spring/Summer season change. Overall, if we do not
include the first month, we see that the total amount of set-
point changes is between 1.2-3.9Fo. These long term results
show that even after the initial “novelty” period, occupants
still use the system consistently.

These results also provide some interesting insight re-
garding thermal comfort level for majority. For the real-time
system, we initially see many votes. Over time, the number
of votes decreases and then the rate remains fairly constant.
Once the temperature converges to a comfortable level, it
tends to remain static. This is particularly true for areas with
fewer occupants and can be seen in Figure 3 for Zone 1 and
Zone 2. For larger areas such as the lab, the vote rate tends
to be larger as it is more likely to have greater variety for
thermal preference; however, the temperature set-point still
remains fairly static.

This raises the question of perceived thermal comfort
consistency. At the individual level, occupants are 100% ac-
curate when determining if they are comfortable; only their
opinion matters. However, issues of temperature control can
arise if users have diverging opinions for room temperatures.
Figure 6 shows the variance among user votes during the
baseline period. For Office Zones 3 and 4, votes are ex-
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Figure 6. Variation of votes for zones occupied by more
than one occupant. The dark thick line (red) shows the
median vote. The top and bottom of the box are the 25th
and 75th quantiles. The “whiskers” show extreme data
not considered outliers. Outliers are plotted as “+”.

tremely consistent among occupants. For these zones we
only see a few outliers. Office Zone 1 shows the largest vari-
ation. Most occupants voted “Cold” (-3), but enough “Hot”
votes were recorded during this period that these readings
are not considered outliers. One possibility is that this differ-
ence could be amplified by competing thermal preference.
The minority of occupants not wishing the temperatures to
increase may attempt to offset the majority’s vote by voting
for the extreme opposite. We also see greater variation for
Office Zones 2 and 5, but see the differences are smaller.

The convergence of temperatures over time also suggests
that many people hold a similar feeling for what is comfort-
able. However, we suspect that the scale between neutral to
hot and neutral to cold differs significantly among occupants.
What one occupant might perceive as slightly warm another
may perceive as hot. Despite this difference they are still
likely to have the same perception of what is comfortable.
Since users can feel the results from their own input, they
can re-correct the temperatures until they feel comfortable;
they essentially function as part of a proportional integral
derivative controller eliminating the input error.

6.2 Maintenance and Management
In addition to thermal comfort, another important factor to
consider is system management. For building management,
reducing the number of complaints is of critical importance.
In our surveys, we also included questions regarding users’
experience interacting with facilities management.

During the learned and real-time study period, users only
contacted us twice. The first issue regarded extreme tem-
peratures for three areas connected to a shared VAV unit.
In this configuration, a single VAV conditions the air for
multiple rooms. The proportion of air each room receives
from the VAV is controlled by manually adjusting each room
damper. In this case, one room was receiving approximately
200 CFM the air and each of the remaining rooms were only
receiving 50 CFM. Once the cause was determined facilities
was informed of the issue. The other was when a network
outage caused our vote system to go off-line. Based on the
survey results, 100% of occupants were either satisfied or
somewhat satisfied with our resolution.

In addition to issues reported by users, we were also able
to correct other issues by examining votes. During one af-
ternoon, we noticed a sudden increase of votes indicating
overly warm temperatures in the lab area. When we inves-
tigated further, we discovered one of the VAV’s connected

(a) Contact for past year

Did Not Contact 37%

Unable to Contact 6%

Did Contact 56%

(b) Satisfaction with resolutions

Dissatisfied 33%

Somewhat Dissatisfied 2%

Neutral 0%

Somewhat Satisfied 33%

Satisfied 11%

Table 4. User interaction with facilities management be-
fore Thermovote.

to the BMS was locked in a default state. This default state
used overly warm temperature set-points and prevented set-
point change commands from being accepted. Over the first
few weeks, this occurred on multiple occasions. Once aware
of this state, we began including checks to ensure that out
set-point changes were being accepted, and configured the
system to email us when the state occurred. Without the vote
feedback, it would have been difficult for facilities to know
the problem existed unless they happened to examine that
specific VAV or if a user contacted facilities.

Prior to Thermovote, 56% of occupants contacted facil-
ities regarding room temperature during the past year (Fig-
ure 4). Of these occupants, 44% were satisfied or somewhat
satisfied. Given that 76% of occupants were dissatisfied with
thermal comfort in the office (Table 2(b)) and only 56% ac-
tually contacted facilities, we estimate 24% choose not to
contact facilities. Since that majority of occupants who con-
tacted facilities were not satisfied with the results, it is pos-
sible that these 24% occupants view contacting facilities as
ineffective method of adjusting temperature. This is not en-
tirely surprising. Even if facilities is attentive, responding
to each complaint, if they do not collectively incorporate all
feedback from the users, it is unlikely set-points will con-
verge to a comfortable temperature.

6.3 Energy Consumption
In this section we examine how the different strategies af-
fects energy consumption of the HVAC system. Rooms are
conditioned primarily using variable air volume (VAV) units.
The main air handler unit drives air to each of the VAV units.
Air moves through a water coil in each of these units, heat-
ing or cooling the air. To measure energy we use the follow-
ing equation: Q= mCair(Tin−Tout). Q is energy transferred
from the coil to the air,m is the total air mass passing through
the coil, Cair is the specific heat of air, Tin is air temperature
of the incoming air, Tout is the temperature of the outgoing
air after passing through the coil. These three parameters
are measured by the BMS. By measuring the airflow and the
supply and discharge temperatures, we are able to calculate
the amount of energy consumed by each VAV. The mass m
can be calculated by measuring the airflow over a period of
time to determine the volume of air and then multiplying the
volume by air density. Airflow, Tin, and Tout are measured
measured by the BMS.

Interestingly, the real-time system showed 10.1% sav-
ings over the baseline strategy; this shows that in certain
situations a real-time system could potentially save energy.
To account for energy differences caused by factors such as
weather and humidity, baseline energy consumption was cal-
culated from similar days from historical data. The baseline
week had an average temperature of 55.0 Fo with a standard
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Figure 7. The energy cost of using a space heater.

deviation of 1.5 Fo. The real-time week used had an aver-
age temperature of 54.4 Fo with standard deviation 1.9 Fo.
While the temperatures in the office zone increased on aver-
age 2.1 Fo, temperatures in the lab zones decrease on average
3.3 Fo. Room temperatures tended to be similar causing less
“thermal competition” between rooms and increasing overall
efficiency. For example, a room conditioned to 72 Fo next to
room conditioned to 76 Fo will cause additional expenditure
of energy due to the thermal transfer between the walls.

Another factor to consider is personal conditioning de-
vices such as as space heaters. During a walk through of
the area, we found 4 heaters ranging from 1000W to 1500W.
We do not have data regarding the actual usage of the heaters,
but provide a rough estimate of their potential energy impact.
We used the energy consumption data from [1] for represen-
tative 1500W space heater, which uses 950W to maintain 70
Fo. 10 hours, then 15KW more energy for each Figure 7
shows the energy increase caused if the heater is different
amounts of time per day (6 hours, 3 hours) over the course
of a typical week. This is a 7% increase in energy for the
week for approximately 33% of the zones. If extrapolated
over the entire building, space heaters potentially consume
a significant amount of energy that could be saved through
proper conditioning.

7 Discussion
In this section, we discuss some of our experiences and ob-
servations while utilizing participatory sensing. Unlike tra-
ditional sensing, when using participatory sensing, one is at
the mercy of the users. One concern for this application was
participation. Would users be willing to provide feedback for
an entire week? Would enough data provided be sufficient to
estimate the AMV in order to condition effectively?

We found participants to be very enthusiastic about pro-
viding votes. Indeed, some participants actually voted every
15 minutes for the entire first week; occupants wanted to en-
sure their thermal welfare. Unlike some participatory sens-
ing applications, for this particular application, users have a
vested interest to provide feedback. We believe that this is
an important factor for the success of a participatory sens-
ing application. This interest however can be a double edged
sword. There is evidence that some people can provide spu-
rious feedback. By over-inflating estimates of their comfort
level, users hope to give their preference more weight and
thus better comfort. While in this application, this did not
seem to affect overall user satisfaction, this must be taken
into consideration when attempting other participatory sens-
ing applications. Human perception of control must not be
overlooked. Studies have shown that users who perceive they
have control are more likely to be satisfied [11]. Our results
seem to confirm that some degree of control greatly increases
satisfaction and perceived comfort.

For our application, one method of reducing this bias
would be to change the voting scale from a 7 point scale to a
3 point scale. This would only allow users to choose “hot”,
“neutral”,and “cold” removing possibility of bias. However,
this would also remove useful information. While this ap-
proach would remove the over weighting of outliers, it would
also remove the comfort level of the majority; we would no
longer be able to tell if the majority is slightly warm or hot.

8 Conclusion
In this paper, we developed Thermovote, a temperature con-
trol system that utilizes participatory sensing in order to actu-
ate temperature change. We developed IPhone and Android
applications along with a website that allows users to pro-
vide feedback regarding their thermal comfort and show a
real-time method of using user data for controlling the tem-
peratures of rooms. This is achieved using a method of cor-
recting PMV estimates using AMV in order to determine
temperature changes. We tested our real-time system over
a period of 5 months. We also ran three studies over a period
of 5 weeks testing the learned and real-time strategies. We
showed 100% satisfaction for the real-time strategy whereas
only 25% were satisfied with the baseline strategy. In ad-
dition, we show that adjusting thermal comfort can actually
increase efficiency. For our deployment we show 10.1% en-
ergy savings over the baseline strategy.
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