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Abstract

The thermal conductivity of compositionally disordered binary crystals with atoms interacting through Lennard-Jones potentials has
been studied as a function of temperature. The two species in the crystal differ in mass, hard-core atomic diameter, well depth and relative
concentration. The isobaric Monte Carlo was used to equilibrate the samples at near-zero pressure. The isoenergy molecular dynamics
combined with the Green–Kubo approach was taken to calculate the heat current time-dependent autocorrelation function and deter-
mine the lattice thermal conductivity of the sample. The inverse temperature dependence of the lattice thermal conductivity was shown to
fail at low temperatures when the atomic diameters of the two species differ. Instead, the thermal conductivity was nearly a constant
across temperatures for species with different atomic diameters. Overall, it is shown that there is a dramatic decrease of the lattice thermal
conductivity with increasing atomic radii ratio between species and a moderate decrease due to mass disorder.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that heat is transported better through solid
materials that are pure and crystalline. Any type of impu-
rity, defect, doping or internal boundary within the mate-
rial nominally increases the resistance to heat transport,
and thus reduces the ability to conduct thermal energy.
With the growing interest in nanotechnology, the study
of thermal conduction properties of systems with reduced
dimensions, thin films, nanotubes and superlattices has
increased. In nanomaterials and nanostructures, phenom-
ena are highly dependent on the length scale where vibra-
tions between nearest-neighbor atoms occur. The use of
molecular dynamics (MD) and the Green–Kubo (GK)
methods for calculating the thermal conductivity have
shown promise as atomistic approaches for understanding
nanosystems at the nanometer scale. For example, there
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are several recent calculations on pure noble gases with
Lennard-Jones interactions and face-centered cubic (fcc)
structures in which MD was the method of choice [1–5].
For binary crystals the literature is not so abundant; worth
noting is the MD calculation for crystalline b-SiC with
point defects [6].

In a crystal the thermal conductivity is composed of two
additive contributions: lattice and electronic. The lattice
contribution jph captures phenomena associated with lat-
tice vibrations and phonon scattering and is dominated by
the structural characteristics of the crystal. The electronic
contribution je is proportional to the electric conductivity
re through the Wiedemann–Franz law [7,8]. The composi-
tion of a crystal affects the lattice symmetry characteristics
and consequently the lattice vibrations. Therefore, jph, the
lattice contribution to the thermal conductivity in a crystal,
should reflect changes according to its composition. In con-
trast, since je is a function of re, the conduction properties
are expected to remain almost constant for families of solids
with similar compositional components. A phenomenon
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that reduces jph produces an overall reduction of the ther-
mal conductivity if the electric conductivity is not affected.
In dielectrics, and the noble gases specifically, changes in
jph do not simultaneously affect the electronic conductivity.

This work focuses on simulating the lattice thermal con-
ductivity due to atomic vibrations for binary crystals with
compositional disorder. The goal of this work is to identify
ranges of combinations of materials and disorder condi-
tions which reduce the lattice thermal conductivity of the
simulated binary solid mixtures and may warrant further
experimental work. Throughout the remainder of this
paper, j is used to identify the lattice contribution to the
overall thermal conductivity.

The effect of compositional disorder on thermal conduc-
tivity was investigated using several simple models of bin-
ary Lennard-Jones (L-J) solids. Compositional disorder
was investigated due to differences in the van der Waal
radii (r), interatomic bond strength (e) and mass (m) of
the two types of atoms. Several relative concentrations of
simulated crystalline binary mixtures were studied as a
function of selected potential parameters and analyzed
across various temperatures. The computational approach
taken was to perform atomic-level computer simulations
employing a combination of isoenergy MD and NPT
Monte Carlo (MC) with a constant number of atoms
(N), pressure (P) and temperature (T) to calculate the j
within linear response theory of many-body systems. To
validate the work, results were compared to other reported
results and experimental data available for monatomic
crystals.

This paper is organized as follows. Section 2 describes
the methodology used to prepare the binary sample, deter-
mine its equilibrium density and allow the sample to reach
mechanical equilibrium. Section 3 describes the lattice ther-
mal conductivity results obtained as a function of the
parameters used, the lattice disorder models and the vari-
ous concentrations of the two atomic species. Section 4
concludes the work with a summary.

2. Methodology

A crystalline binary mixture of 500 atoms was simulated
in a cubic computational box with periodic boundary con-
ditions in each direction. In the calculations, rc is the cutoff
radius taken as 49% of the width of the computational box.
The composition of the binary crystal uses atoms of type
‘‘A’’ as the host and atoms of type ‘‘B’’ as the guest. All
parameters were compared relative to the host A atoms.
The L-J potential with parameters r and e was used as a
prototype interaction between atoms. The compositional
disorder introduced in the host lattice due to the guest
atoms is modeled parameterically by changes of r, e and
mass. Quantities are expressed in reduced units with respect
to the host atoms’ L-J parameters rA, eA and mA. For
example, the mass of Ar is 39.95 a.u. and that of Xe is
131.30 a.u. In reduced units, using Ar as the host atom,
the mass of Ar would be 1.0, whereas the mass of Xe would
be 3.3. Reduced units of length, energy, temperature, time
and thermal conductivity are r, e, e/kB, to ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m=e

p
and

kB/tos, respectively, where kB is Boltzmann’s constant.
Four compositional mixture cases in the computational

box were considered with the following characteristics:
100% of pure A atoms, 75% of A atoms and 25% B atoms,
50% of each type, and 25% of A atoms and 75% of B
atoms. The L-J parameters for the binary interactions
(A–B) are obtained from the combination rules:

rAB ¼
rA þ rB

2
; eAB ¼

ffiffiffiffiffiffiffiffiffi
eAeB

p
: ð1Þ

Simulations started at a reduced temperature of 0.5 from a
configuration with atoms placed in a perfect fcc lattice.
Next, an initial configuration was constructed such that
atoms were randomly assigned as type A or B consistent
with the relative concentration of the two types of atoms.
Throughout this study, to indicate the ratio of parameters,
the symbols Rr, Re, Rm are used for rB/rA, eB/eA and
mB/mA, respectively. The system was equilibrated by
NPT-MC, which allowed for moves of the N atoms in
random directions and changes of the entire computational
box volume (V). The acceptance criterion between old (Vo)
and new (Vn) configurations is given by [9]

accðo! nÞ ¼ minð1; expf�b½UðrN ; V nÞ � UðrN ; V oÞ
þ P ðV n � V oÞ � ðN þ 1Þb�1 lnðV n=V oÞ�gÞ:

ð2Þ

Here, b is 1/T, rN is the vector of the coordinates of all
atoms and the potential energy is

UðrN ; V Þ ¼ 1

2

XN

i

XN

i6¼j

4eij½ðrij=rijÞ12 � ðrij=rijÞ6�; ð3Þ

where rij is the core radius, eij is the bond strength and rij is
the interatomic distance of an atomic pair using Eq. (1).

The NPT-MC simulations were run between 1 and 3
million steps with a step being N single atom movements
and one volume adjustment. The average density and other
calculated quantities were determined as an average over
the final one-fourth of the NPT-MC trajectory. Therefore,
the position of the atoms within the box is consistent with
this average density. The density is defined as N/V irrespec-
tive of the two types of atoms, which could have different
masses, r, or e values. Because the computational box is
finite, the value of the pressure was adjusted by subtracting
the pressure that would be exerted by a structureless
infinite-sized sample outside of the computational box [9].

For the monatomic system, the equilibrium structure
was an fcc structure for all temperatures. At low tempera-
tures, no stable amorphous phase was found as obtained in
Ref. [3]. Because the NPT-MC calculation does not include
the mass in the simulation, the equilibrium q for binary
samples with A and B atoms having only different e is
the same as the density of the monatomic system. There-
fore, the NPT-MC calculations were carried out to deter-
mine q at different temperatures when Rr 6¼ 1. Fig. 1
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shows the temperature behavior of the average q for equil-
ibrated systems at zero pressure for samples with a 50:50
relative concentration. The curves correspond to different
Rr. The value of q of pure Ar reported in Ref. [3] compares
well with our results. As expected, when Rr increases, the
volume must also increase, decreasing q. The standard
deviation (SD) of the average density is very low, of the
order of the symbol size used in Fig. 1. These small fluctu-
ations certainly ensure that the smooth decrease of q with
temperature illustrated in Fig. 1 is indeed realistic.

The next step was to initiate the isoenergy MD study
using the output of the NPT-MC runs. Each MD trial
was run 350,000 time steps of Dt = 0.005 to allow the sys-
tem first to equilibrate at the desired temperature. Next the
MD trial continued to run for half a million time steps to
calculate the desired heat current operator values from [10]

~J ¼
XN

i¼1

Ei v
*

i þ 1=2
XN

i¼1

XN

j 6¼i

ðv*i � F
*

ijÞ r
*

ij; ð4Þ

where Ei is the total energy of each atom,~vi is the velocity
of each atom and ~F ij and~rij are the force and interatomic
vectors for each atomic pair.

The next step was to calculate the autocorrelation func-
tion C(s) of the heat current operator, which is defined as

CðsÞ ¼ h~Jðsþ tÞ~JðtÞi ð5Þ
where Æ æ is the time average, ~J is the heat current operator
and s is the time lag from an origin t chosen from the time
trajectory. Each autocorrelation run typically used between
216 and 218 time lags. It was found that for Rr, Re, and Rm

near a value of one required longer times to compute the
autocorrelation function than when disorder sets in.

The lattice thermal conductivity j was obtained by inte-
grating C(s) over the range [0, ttraj], where ttraj is the total
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Fig. 1. Density as a function of temperature for radii ratios Rr of 1.0, 1.1
and 1.25 for the 50:50 mixture of atoms. Crosses are q for pure Ar at zero
pressure and circles represent results from Ref. [3].
time for which the autocorrelation function was calculated.
This is the GK approach [11,12]:

j ¼ 1

3VkBT 2

Z 1

0

CðsÞds: ð6Þ

The GK approach works well for both amorphous and
crystalline models as long as the system is homogeneous.
GK takes full account of anharmonic properties but is clas-
sical in nature. Ladd et al. [13] were the first to use the GK
formalism to calculate thermal conductivity for solids with
interactions following an inverse-twelfth power law poten-
tial. Later, Gillan extended this method for the study of j
in palladium doped with hydrogen [14]. More recently,
Chen et al. used this same approach to study the thermal
conductivity of pure Ar doped with Xe [15].

Optimally, it would be best to calculate C(s) out to infin-
ity instead of just the finite trajectory length, but this is not
possible numerically. We observed that C(s) could be
approximated by an exponentially decaying cosine func-
tion e�ftcos(xt) as shown in Fig. 2 and fit the parameters
to the numerical MD results. Then the integration in Eq.
(6) was done from the actual simulation data for 0 6 s 6 tfit

and used the decaying cosine function for tfit 6 s 61. The
value of tfit was set to be 1.25 times the period of the fitted
cosine function. This time tfit defines the system relaxation
time.

The NPT-MC samples prepared in the manner
described in previous paragraphs represent different types
of compositional disorder. For all values of Re or Rm sim-
ulated, the structure of the equilibrated sample is the fcc
lattice. Thus the system disorder is based on a random mix-
ture of atoms A and B, which are positioned on a perfect
lattice. In contrast, when size disorder was introduced with
Rr beyond 1.1, the fcc lattice collapses. This is shown in
Fig. 3 which depicts the pair correlation function g(r) in
which the gAA(r), gAB(r) and gBB(r) values have been
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Fig. 2. MD-calculated C(s) as a function of time. The dotted lines show
the envelope of the exponentially decaying cosine function obtained from
the fit of the MD data.
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Fig. 4. Thermal conductivity j as a function of temperature for pure Ar at
zero pressure. The results of this work (black stars) are compared to those
of other works: Ref. [3] (diamonds), Ref. [15] (circles), Ref. [17] (triangles),
Ref. [18] (crosses), Ref. [19] (squares).
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number of fcc unit cells along each side of the cubic computational box.
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crystal.
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summed together. Fig. 3 shows the case of a 50:50 mixture
sample at T = 0.167 with Re = 1, Rm = 1 and three different
Rr values (1.0, 1.1 and 1.25). To compare directly between
these functions, a scaling of q1/3 was applied to the radial
dependence. It is very clear that for Rr = 1.25, the compo-
sitional disorder of the 50:50 sample affects the structure
very significantly and the crystal collapses into a homoge-
neous amorphous solid. The structure of this solid amor-
phous mixture is very different from the structure found
in atomic clusters [16], where the atoms with smaller r seg-
regated and formed a subcluster surrounded by the large r
atoms.

3. Determination of the lattice thermal conductivity

A sample with N = 500 at P = 0 with only one type of
atom was prepared, and j was obtained for several temper-
atures using the steps described in Section 2. These results
allowed a validation of our method by comparison with
several calculations done recently [3,15,17,18] as well as
with experimental results [19]. Fig. 4 shows this compari-
son, indicating that our results (black stars) are in full
agreement with previous calculations and with the experi-
mental results.

In the GK approach, Eq. (6), there is an explicit depen-
dence of j on the volume of the sample. Sample size effects
were studied in Ref. [17] where the authors considered
computational box sizes containing between 108 and
4000 atoms. Those authors concluded that in the tempera-
ture domain of 20–70 K, the size effects are irrelevant for
all practical purposes when calculating j for a pure Ar sys-
tem. This is consistent with our findings for computational
cells containing 108–2048 atoms. It was found that compu-
tational boxes smaller than 108 atoms were too small for
meaningful results. Fig. 5(a) and (b) illustrates the depen-
dence of the equilibrium density and potential energy aver-
ages as a function of the number of fcc cells (n) on each
computational box edge (N = 4n3). Fig. 5(c) shows j and
its SD as a function of computational box size.

Based on the continued good agreement with both the
previously discussed comparisons offset against run times,
a system size of N = 500 at P = 0 was selected for all results
reported in this work. The following compositional mix-
tures were considered: Rr of 1.0, 1.1, 1.25, 1.5 and 2.0; Re

of 1.0, 1.25 and 1.5; and Rm of 1.0, 1.6, 2.1 and 3.3. Addi-
tionally, we studied different relative concentrations of A
and B atoms ranging from 100% A atoms, 75% A with
25% B, 50% A with 50% B, and 25% A with 75% B.

For samples with relative concentrations of 50:50, at a
temperature of T = 0.167, Fig. 6 illustrates the lattice j
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as a function of one parameter ratio (Rr, Re or Rm) while
the other two parameter ratios are kept constant.
Fig. 6(a) and (b) shows a dramatic decrease of j with
increasing Rr. In fact, Fig. 6(a) shows that j decreases by
a factor of over 6 between Rr = 1 and Rr = 1.1 for a con-
stant mass ratio and various values of Re. Likewise,
Fig. 6(b) shows a dramatic decrease in j between Rr = 1
and Rr = 1.1 using different mass ratios. In this case again,
j decreases by factors up to 6 depending upon Rm. While
Fig. 6(b) shows a substantial decrease in j between
Rr = 1 and Rr = 1.1, the two atom types would have to
be the same to have Rr = 1 and Rm = 1, which is a very
unrealistic case. On the contrary, Fig. 6(c) shows that, for
Re = 1 and Rm = 1, j increases slightly as a function of
Rr and increasing Re. This increase lies within the SDs of
the j results and might not be a real effect.

The conclusion of the parameter analysis is that at
T = 0.167, both radii disorder and mass disorder impose
a strong depletion of j. Even a slight difference in atomic
radii of only 10% has a major effect on decreasing j while
the mass ratio has a more gradual depleting effect on j. The
mass disorder leaves the crystalline symmetry intact. In
comparison, the radii disorder allows the solid to acquire
incipient amorphous characteristics as evidenced by the
pair correlation function signature illustrated in Fig. 3. In
fact for the large difference in atomic radii of 25%, Fig. 3
indicates that the fcc symmetry is already lost and the solid
is no longer a crystal.

For monatomic crystalline materials, the expected theo-
retical dependence of the thermal conductivity with tem-
perature follows an inverse temperature law [7,8]. While
previous MD simulations [15] reported j exhibiting this
expected behavior, our results show a departure for any
of the proposed samples with disorder. Fig. 7 shows the
j behavior for various values of Re of 1.0, 1.25 and 1.5
and Rm = 1 for a 50:50 concentration. In Fig. 7 the inverse
temperature dependence is plotted with a dotted line to
guide the eye. Fig. 7(a) depicts the temperature dependence
for Rr = 1 with the square, circle and triangle symbols
identifying the three values of Re (1.0, 1.25 and 1.5), respec-
tively. SDs are shown for the Re = 1.25 case and are repre-
sentative of the other cases. Fig. 7(b) gives results for
systems with Rr = 1.1 as solid lines corresponding to
Re = 1.0, 1.25, and 1.5 (top, middle and bottom) and
dashed lines for Rr = 1.25. SDs are about 1–2 units of j
for all results. It is apparent from these plots that the
ordered crystal with no core radius disorder follows
the 1/T relationship very closely (Fig. 7(a)) while any of
the compositionally disordered systems (Fig. 7(b)) present
a nearly constant j as a function of temperature. This
degrading of the thermal conduction is similar to that
predicted for covalent binary crystals with defects [6] where
j was found to be essentially temperature independent. In
our study it should be remembered that compositional dis-
order in which the atomic radii differ by only 10% produces
a dramatic reduction of j to a minimum value, which keeps
fairly constant for the temperatures investigated. In sum-
mary, we emphasize that the radii disorder has an extre-
mely strong effect to reduce j, bringing its value to be a
minimum for all calculations with widely varying material
parameters.

The last part of this study pertains to changes in the rel-
ative concentrations of the A and B atoms. Relative con-
centrations of A:B atoms of 25:75 and 75:25 were
analyzed in addition to the 100% type A and the 50:50 mix-
ture cases discussed above. As the concentration changes,
the number of smaller atoms increases relative to the larger
atoms having a significant effect on q as shown in Fig. 8.

In analyzing mixtures with the 25:75, 50:50 and 75:25
relative concentrations over the range of T, Rr, Re and
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Rm, the behavior of j was very similar to that of the 50:50
case. Table 1 summarizes all results of j for the various dis-
order cases at five temperatures. Once again, for these rel-
ative concentrations studied, the maximum decrease in j is
through Rr.

Additionally, as is shown in Fig. 6(c) for the 50:50 rela-
tive concentrations, the effect of increasing Re while Rr and
Rm remain constant, produced an apparent slight increase
in j. This effect is also present for the other relative concen-
trations as reported in Table 1.
Table 1
Lattice thermal conductivity for solid mixtures with various relative concentrat
table entry)

Relative concentration Rr = 1, Rm = 1, Re = 1 Rr

1.1

100% A 476.6
200.1
79.5
31.9
14.5

75% A, 25% B 8.8
9.5

10.4
10.6
6.8

50% A, 50% B 8.3
8.5
8.4

10.0
7.6

25% A, 75% B 7.5
9.0

16.9
11.2
8.5

For any parameter ratio 6¼ 1, the other two parameter ratios = 1. Values are i
To compute the lattice thermal conductivity from Eq.
(6), the autocorrelation function C(s) was approximated
by an exponentially decaying cosine function. In Fig. 9,
the vertical axis on both plots depicts the system relaxation
time and is plotted as a function of Rr in Fig. 9(a) and Rm

in Fig. 9(b). The relaxation time appears to be directly
related to the amount of core radii and mass disorder pres-
ent in the sample. The change in relaxation time due to the
e disorder is small as evidenced by the three curves in
Fig. 9(a) and (b).
ions and at T = 0.042, 0.083, 0.167, 0.333 and 0.500 (top to bottom in each

Re Rm

1.25 1.25 1.5 1.6 2.1 3.3

5.8 331.5 184.2 – – –
7.1 201.1 138.8 – – –
6.6 98.9 75.4 22.9 12.4 7.2
6.0 37.4 35.8 – – –
3.2 16.8 18.1 – – –

9.1 329.4 230.1 – – –
6.3 193.2 164.7 – – –
6.0 98.4 113.1 18.9 9.4 4.8
6.1 41.8 49.9 – – –
5.5 23.5 26.2 – – –

9.4 231.2 275.1 – – –
6.2 331.8 199.6 – – –
6.3 107.9 141.3 22.8 14.7 3.6
5.8 55.3 79.1 – – –
5.4 24.6 39.8 – – –

n reduced units.
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4. Summary and conclusions

Throughout this work, it has been shown that studying
the effects of radii, mass, interatomic interaction disorder
and temperature can be demonstrated in a computer-simu-
lated environment. Our work was performed on a PC with
a single Pentium 4 processor (3.2 GHz) and each NPT-MC
and MD run consumed about 9 and 4 h of processing time,
respectively, per data point, making the work reasonable to
accomplish.

The results of this work show that compositional disor-
der at the nanoscale in crystalline binary mixtures decrease
the lattice thermal conductivity in a dramatic fashion.
Findings in this work are important for tailoring the syn-
thesis of new materials with poor heat conduction charac-
teristics. The relative properties of L-J solid mixtures are
summarized below in order of importance for degrading
the lattice thermal conductivity:

(1) van der Waal radii. Atoms should have different radii.
Even a 10% difference brings the lattice thermal con-
ductivity to a minimum constant value and sup-
presses the inverse temperature depletion. The
reason for the dramatic degradation of the heat con-
duction is the additional phonon scattering imposed
at the nanoscale by atoms that are at the threshold
of collapsing the crystal structure of the solid.

(2) Mass. Atoms should have different masses. Differ-
ences of 60% in mass decrease the thermal conductiv-
ity by about half at any temperature below the
melting point.

(3) Interatomic interaction strength. Atoms should have
almost equal values. With a 50% difference in
strength, thermal conductivity can be increased by
about 25%, which is not a desired outcome.

(4) Temperature. Temperature is a key factor for any
application searching to deplete heat conduction
due to atomic vibrations. This work was done for
reduced temperatures of up to 0.5, which are below
the meting points of the L-J compositionally disor-
dered crystals studied. In this temperature range,
when radii disorder exists, the lattice thermal conduc-
tivity is essentially temperature independent and
markedly degraded due to the enhanced phonon scat-
tering induced by atoms with different radii placed
randomly on an fcc crystal.

(5) Composition relative concentration. Relative concen-
tration of the two components in the crystal appears
to have only a minor effect on the thermal
conductivity.
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