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1. Introduction

Let X 6= ∅. A function p : X → [0, 1] is said to be a
simple probability distribution (or a lottery) on X pro-
vided the set supp(p) := {x ∈ X|p(x) > 0} is �nite and∑
x∈supp(p) p(x) = 1. A family of all lotteries on X will

be denoted by ∆(X). According to the classical result
of von Neumann and Morgenstern, every preference rela-
tion � on ∆(X) satisfying some additional assumptions
can be represented by a utility function, that is there
exists a function U : ∆(X) → R such that, for every
p, q ∈ ∆(R), we have

p � q ⇐⇒ U(p) ≥ U(q).

Furthermore, every such a function possesses the so-
-called Bernoulli utility function, that is a function u :
X → R such that

U(p) =
∑

x∈supp(p)

p(x)u(x) for p ∈ ∆(X).

We will also use the fact that two utility functions U
and V having the Bernoulli utility functions u and v,
respectively, represent the same preference relation over
lotteries if and only if there exist a ∈ (0,∞) and b ∈ R
such that

v(x) = au(x) + b for x ∈ X.

An important problem in a decision analysis under risk
is to determine a form of a utility function representing a
decision maker's preference relation over lotteries. One of
the approaches to this problem is based on a notion of in-
variance studied for the �rst time by Pfanzagl [1]. Given
a nonempty set T , a utility function U : ∆(X) → R is
said to be invariant with respect to a family of trans-
formations Γ = {γt : X → X|t ∈ T} provided, for every
t ∈ T , U and U ◦γt represent the same preference relation
over lotteries.
Let us illustrate this notion by the following example.

Consider a family of bonds on some market. Suppose
that the pro�ts from the bonds are related to the in�a-
tion rate. Furthermore, assume that there are some pre-
dictions concerning the in�ation rate and so the possible

levels of pro�ts from every bond in a �xed period (e.g.
a year). More precisely, suppose that for every bond B
there exist a �nite set of positive outcomes {x1, . . . , xn}
and a �nite set of nonzero probabilities {p1, . . . , pn}
(p1, . . . , pn ∈ (0, 1],

∑n
i=1 pi = 1) such that at the end of

the period a pro�t from the bond will be equal to xi with
a probability pi, i ∈ {1, . . . , n}. In this way every bond
B can be treated as a lottery which pays xi with prob-
ability pi, i.e. B = 〈x1, p1; . . . , xn, pn〉. Assume that the
investor's preference relation over the bonds (lotteries) is
represented by a von Neumann�Morgenstern utility func-
tion and consider two situations.

1. A discount is o�ered to the investor, that is he can
pay less, say t euro less, for every bond. This means that
he can consider a bond B = 〈x1, p1; . . . , xn, pn〉 as the
following one B+t = 〈x1+t, p1; . . . , xn+t, pn〉. If this o�er
does not change the investor's preference relation then his
utility function is said to be invariant with respect to the
shift by t.

2. A new capital gains tax, say β%, is announced.
In such a case every bond B = 〈x1, p1; . . . , xn, pn〉 can
be considered as Bδ = 〈δx1, p1; . . . , δxn, pn〉, where δ :=
1−β. If this fact does not change the investor's preference
relation, then his utility function is said to be invariant
with respect to the scale transformation by δ.

Recently, Abbas [2] noted that an invariance with re-
spect to a wide class of transformations can be reduced to
an invariance with respect to the shift transformations.
More precisely (see Theorem 1), if I ⊆ R is an open in-
terval, T 6= ∅, G : I → R is a continuous bijection and
H : T → R, then an invariance with respect to a family
of transformations Γ = {γt : I → I|t ∈ T}, where

γt(x) = G−1[G(x) +H(t)] for x ∈ I, t ∈ T (1)

can be reduced to an invariance with respect to the family
of shifts by every element of H(T ). Let us note that (1)
de�nes a wide family of transformations including, as
the particular cases, the shift transformations (I = R,
G(x) = x for x ∈ R, H(t) = t for t ∈ T ) and the scale
transformations (I = (0,∞), G(x) = lnx for x ∈ (0,∞),
T ⊆ (0,∞), H(t) = ln t for t ∈ T ).

(508)
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Furthermore, every two members of Γ commute, that
is γt ◦ γs = γs ◦ γt for s, t ∈ T . It is remarkable that
under some additional natural assumptions, every family
of commuting mappings γt : I → I consists of maps of the
form (10) with some bijection G : I → R and H : T → R.
More details concerning this problem can be found in [3]
and [4].
Invariant multiattribute utility functions have been

studied in [2 and 5�7]. As we already mentioned, Abbas
[2] proved that a crucial role in an invariance problem is
played by utility functions invariant with respect to the
shift transformations. Furthermore, in [5] and [8] it is
has been shown that the utility functions invariant with
respect to a single shift transformations (or even with
respect to the shift transformations by in�nitely many
parameters) may depend on an arbitrary periodic func-
tion. Since such functions are not useful for applications,
it is natural to ask when such �strage� utility functions
can be eliminated.
In this paper we give a complete answer to the fol-

lowing question: given a nonempty set T of shifts de-
termines all utility functions invariant with respect to
the shift transformations by every element of T . As a
consequence of our results we obtain the forms of utility
functions invariant with respect to the families of com-
muting transformations. In this way we generalize the
results in [8].
In the next section we present the main results of the

paper and two examples, which show the possible appli-
cations of the results. The proofs are included in the
third section.

2. Results

The �rst result of this section concerns the connec-
tions between an invariance property and a behavior of a
Bernoulli utility function. The second one is a reduction
theorem (it is closely related to [8, Proposition 1, p. 19],
but for a convienience of the reader we include its short
proof).
Proposition 1. Assume that X 6= ∅ and U : ∆(X)→

R is a utility function representing a decision maker's
preference relation over ∆(X). Let u : X → R be a
Bernoulli utility function related to U . Then U is in-
variant with respect to a family of transformations {γt :
X → X|t ∈ T}, where T 6= ∅, if and only if there exist
functions k : T → (0,∞) and l : T → R such that

u(γt(x)) = k(t)u(x) + l(t) for x ∈ R, t ∈ T. (2)

Theorem 1. Let I ⊆ R be an open interval and let T
be a nonempty subset of R. A utility function U : ∆(I)→
R having a Bernoulli utility function u : I → R is invari-
ant with respect to a family Γ = {γt : I → I|t ∈ T} of
transformations of the form (1) with some continuous bi-
jection G : I → R and H : T → R if and only if a utility
function Ũ : ∆(R)→ R with a Bernoulli utility function
ũ := u ◦ G−1 : R → R is invariant with respect to the
shift transformations by every element of H(T ).
The next theorem is the main result of the paper.

Theorem 2. Let T be a nonempty subset of R \ {0}
and let [T ] denote a subgroup of the additive group of real
numbers generated by T . A utility function U : ∆(R) →
R having a continuous Bernoulli utility function u : R→
R is invariant with respect to the shift transformations
by every element of T if and only if one of the following
conditions holds:
(i) [T ] = dZ := {dn|n ∈ Z} for some d ∈ R \ {0} and

there exists a continuous d-periodic function p : R → R
such that either

u(x) = cx+ p(x) for x ∈ R (3)

with some c ∈ R, or
u(x) = axp(x) + b for x ∈ R (4)

with some a ∈ (0,∞) \ {1} and b ∈ R;
(ii) [T ] is a dense subset of R and either

u(x) = cx+ b for x ∈ R (5)

with some b, c ∈ R, or
u(x) = cax + b for x ∈ R (6)

with some a ∈ (0,∞) \ {1} and b, c ∈ R.
From Theorems 1 and 2 it follows the result concerning

utility functions invariant with respect to the family Γ
of transformations of the form (1).
Theorem 3. Let I ⊆ R be an open interval and T 6= ∅.

Assume that G : I → R is a continuous bijection and
H : T → R. Utility function U : ∆(I) → R having a
continuous Bernoulli utility function u : I → R is invari-
ant with respect to the family Γ = {γt : I → I|t ∈ T} of
transformations of the form (1) if and only if one of the
following conditions holds:
(i) [H(T )] = dZ for some d ∈ R \ {0} and there exists

a d-periodic continuous function p : R → R such that
either

u(x) = cG(x) + p(G(x)) for x ∈ I

with some c ∈ R, or
u(x) = aG(x)p(G(x)) + b for x ∈ I

with some a ∈ (0,∞) \ {1} and b ∈ R;
(ii)[H(T )] is a dense subset of R and either

u(x) = cG(x) + b for x ∈ I,

with some b, c ∈ R, or
u(x) = caG(x) + b for x ∈ I

with some a ∈ (0,∞) \ {1} and b, c ∈ R.
We conclude this section with two examples presenting

the possible applications of Theorems 2 and 3 (cf. [2,
Example 2, p. 79] and [8, pp. 20-22 and 28-29])
Example 1. Consider the example described in Intro-

duction. If the investor gets a discount t euro (t > 0) for
every bond and this o�er does not change his preference
relation over bonds then his utility function is invariant
with respect to a shift transformation by t. Thus T = {t}
and so [T ] = tZ. Therefore, if the investor's Bernoulli
utility function u : R → R is continuous, then according
to Theorem 2 there exists a continuous t-periodic func-
tion p : R→ R such that u is either of the form (3) with
some c ∈ R, or (4) with some a ∈ (0,∞) \ {1} and b ∈ R.
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However, if any discount from some interval T does not
change the investor's preference relation then [T ] = R
and so, applying Theorem 2, we obtain that u is either
of the form (5) with some b, c ∈ R, or (6) with some
a ∈ (0,∞) \ {1} and b, c ∈ R.
Example 2. Let us continue the previous example,

but now assume that the second possibility described in
Introduction occurs. If a new capital gains tax β% does
not change the investor's preference relation over bonds,
then his utility function is invariant with respect to a
scale transformation γδ : (0,∞) → (0,∞), γδ(x) = δx
for x ∈ (0,∞), where δ := 1 − β. Let us note that γδ
is of the form (1) with I = (0,∞), T = {δ}, G(x) =
lnx for x ∈ (0,∞) and H(δ) = ln δ. Since [H(T )] =
(ln δ)Z and aln x = xln a for a, x ∈ (0,∞), if the investor's
Bernoulli utility function u : (0,∞) → R is continuous,
then according to Theorem 3 there exists a continuous
(ln δ)-periodic function p : R→ R such that either

u(x) = c lnx+ p(lnx) for x ∈ (0,∞)

with some c ∈ R, or
u(x) = xsp(lnx) + b for x ∈ (0,∞)

with some s ∈ R \ {0} and b ∈ R.
If any capital gains tax from some interval T does not

change the investor's preference relation, then [H(T )] =
R, so applying Theorem 3, we obtain that either

u(x) = c lnx+ b for x ∈ (0,∞)

with some b, c ∈ R, or
u(x) = cxs + b for x ∈ (0,∞)

with some s ∈ R \ {0} and b, c ∈ R.

3. Proofs

Proof of Proposition 1: Assume that U is invariant
with respect to the family of transformations {γt : X →
X|t ∈ T}. Then, for every t ∈ T , a utility function
Ut : ∆(X)→ R given by

Ut(p) = U(pγt) for p = 〈x1, p1; . . . , xn, pn〉 ∈ ∆(X),

where pγt = 〈γt(x1), p1; . . . , γt(xn), pn〉, represents the
same preference relation as U . Therefore if, for every
t ∈ T , ut denotes a Bernoulli utility function related
to Ut, then we have

ut(x) = k(t)u(x) + l(t) for x ∈ X, t ∈ T (7)

with some k(t) ∈ (0,∞) and l(t) ∈ R. Moreover, let us
note that

ut(x) = u(γt(x)) for x ∈ X, t ∈ T. (8)

Then (2) follows from (7) and (8).
Conversely, if (2) holds then, for every t ∈ T , a util-

ity function Ut with a Bernoulli utility function ut given
by (8) represents the same preference relation as U . Thus
U is invariant with respect to the family {γt : X → X|
t ∈ T}.
Proof of Theorem 1: Assume that a utility function

U : I → R is invariant with respect to the family Γ . The
case where u is constant is trivial. So, assume that u

is nonconstant. Then ũ is also nonconstant. Moreover,
according to Proposition 1, there exist functions k : T →
(0,∞) and l : T → R such that

u(G−1(G(x) +H(t))) = k(t)u(x) + l(t)

for x ∈ I, t ∈ T.

Hence

ũ(G(x) +H(t)) = k(t)ũ(G(x)) + l(t)

for x ∈ I, t ∈ T.

Since G maps I onto R this implies that

ũ(x+H(t)) = k(t)ũ(x) + l(t) for x ∈ R, t ∈ T.
(9)

Since ũ is nonconstant, taking x1, x2 ∈ R with ũ(x1) 6=
ũ(x2), from (9) we derive that ũ(xi+H(t)) = k(t)ũ(xi)+
l(t) for t ∈ T and i ∈ {1, 2}. Hence, after straightforward
calculations, we get k(t) = K(H(t)) for t ∈ T and l(t) =
L(H(t)) for t ∈ T , where K : H(T ) → (0,∞) and L :
H(T )→ R are given by

K(s) =
ũ(x1 + s)− ũ(x2 + s)

ũ(x1)− ũ(x2)
for s ∈ H(T )

and

L(s) =
ũ(x1)ũ(x2 + s)− ũ(x2)ũ(x1 + s)

ũ(x1)− ũ(x2)
for s ∈ H(T ),

respectively. Thus, taking into account (9), we get

ũ(x+H(t)) = K(H(t))ũ(x) + L(H(t))

for x ∈ R, t ∈ T.

Hence

ũ(x+ s) = K(s)ũ(x) + L(s) for x ∈ R, s ∈ H(T ).

Therefore, applying Proposition 1, we conclude that Ũ
is invariant with respect to the shifts transformations by
every element of H(T ).

Now, assume that Ũ is invariant with respect to the
shifts transformations by every element of H(T ). Then,

according to Proposition 1, there exist functions k̃ :
H(T )→ (0,∞) and l̃ : H(T )→ R such that

ũ(x+ s) = k̃(s)ũ(x) + l̃(s) for x ∈ R, s ∈ H(T ).

Hence

ũ(G(x) +H(t)) = k̃(H(t))ũ(G(x)) + l̃(H(t))

for x ∈ I, t ∈ T

and so

u(G−1(G(x) +H(t))) = (k̃ ◦H)(t)u(x) + (l̃ ◦H)(t)

for x ∈ I, t ∈ T.

Thus, applying Proposition 1 again, we obtain that a util-
ity function U is invariant with respect to the family Γ .

Proof of Theorem 2: Assume that (i) holds and �x
x ∈ R and t ∈ T . Then t = dn with some n ∈ Z. So, in
the case where u is of the form (3), we have

u(x+ t) = u(x+ dn) = c(x+ dn) + p(x+ dn)
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= cx+ p(x) + cdn = u(x) + ct.

In the case where u is of the form (4), we obtain

u(x+ t) = u(x+ dn) = ax+dnp(x+ dn) + b

= adnaxp(x) + b = atu(x) + b(1− at).

Now, assume that (ii) holds. Then, in the case where u
is of the form (5), we get

u(x+ t) = c(x+ t) + b = cx+ b+ ct = u(x) + ct

for x ∈ R, t ∈ T

and, in the case of (6), we have

u(x+ t) = cax+t + b = at(cax + b) + b(1− at)
= atu(x) + b(1− at) for x ∈ R, t ∈ T.

Therefore, applying Proposition 1, we obtain that U is
invariant with respect to the shift transformations by ev-
ery element of T .

Now, assume that U is invariant with respect to the
shift transformations by every element of T . Then, ac-
cording to Proposition 1, there exist functions k : T →
(0,∞) and l : T → R such that

u(x+ t) = k(t)u(x) + l(t) for x ∈ R, t ∈ T. (10)

The case where u is constant is trivial. So, assume that
u is nonconstant. The remaining part of the proof is
divided into three steps.

Step 1. We show that for every t ∈ T one of the fol-
lowing two possibilities holds:

(a) k(1) = 1 and there is a t-periodic function pt : R→
R such that

u(x) =
l(t)

t
x+ pt(x) for x ∈ R; (11)

(b) k(t) 6= 1 and there is a t-periodic function pt : R→
R such that

u(x) = k(t)
x
t pt(x) +

l(t)

1− k(t)
for x ∈ R. (12)

To this end, �x a t ∈ T . If k(t) = 1 then, in view of (10),
a function F := eu satis�es the equation F (x + t) =
el(t)F (x) for x ∈ R. Therefore, a function p̃t : R → R of

the form p̃t(x) = exp
(
− l(t)xt

)
F (x) for x ∈ R, satis�es

p̃t(x+ t) = exp

(
− l(t)(x+ t)

t

)
F (x+ t)

= exp

(
− l(t)x

t

)
e−l(t) el(t)F (x) = p̃t(x)

for x ∈ R.

Thus, p̃t is a t-periodic function and F (x) =

exp
(
l(t)x
t

)
p̃t(x) for x ∈ R. Hence u is of the form (11)

with pt := ln p̃t. So, (a) holds.

Now, assume that k(t) 6= 1. Then taking a function

ũ := u − l(t)
1−k(t) , in view of (10), for every x ∈ R, we

obtain

ũ(x+ t) = u(x+ t)− l(t)

1− k(t)
= k(t)u(x) + l(t)

− l(t)

1− k(t)
= k(t)

(
u− l(t)

1− k(t)

)
= k(t)ũ(x).

Hence, a function pt : R → R of the form pt(x) =
k(t)−

x
t ũ(x) for x ∈ R, satis�es

pt(x+ t) = k(t)−
x+t
t ũ(x+ t) = k(t)−

x
t−1k(t)ũ(x)

= pt(x) for x ∈ R.

Therefore, pt is t-periodic. Furthermore, we have ũ(x) =
k(t)

x
t pt(x) for x ∈ R, which implies (12). Thus, (b) holds.

Step 2. We show that either (a) holds for every t ∈ T ,
or (b) holds for every t ∈ T . For the proof by contra-
diction, suppose that (a) holds for some t1 ∈ T and (b)
holds for some t2 ∈ T . Then, according to Step 1, there
exist ti-periodic functions pi : R → R for i ∈ {1, 2} such
that

u(x) =
l(t1)

t1
x+ p1(x) for x ∈ R (13)

and

u(x) = k(t2)
x
t2 p2(x) +

l(t2)

1− k(t2)
for x ∈ R. (14)

Since u is continuous, from (13) and (14) it follows that
so are p1 and p2. Thus p1 and p2, being periodic, are
bounded. Furthermore, as u is nonconstant, p2 is not
identically 0. Therefore (13) implies that

lim
x→−∞

u(x)

x
= lim
x→∞

u(x)

x
=
l(t1)

t1
.

So, in view of (14), we get

lim
x→−∞

k(t2)
x
t2

x
p2(x) = lim

x→∞

k(t2)
x
t2

x
p2(x) =

l(t1)

t1
.

On the other hand, taking x0 ∈ R with p2(x0) 6= 0 and
using the fact that p2 is t2-periodic, we have

lim
n→∞

∣∣∣∣∣k(t2)
x0+nt2

t2

x0 + nt2
p2(x0 + nt2)

∣∣∣∣∣
=
∣∣∣p2(x0)k(t2) x0

t2

∣∣∣ lim
n→∞

∣∣∣∣ k(t2)nx0 + nt2

∣∣∣∣ =∞
in the case where k(t2) > 1; and

lim
n→∞

∣∣∣∣∣k(t2)
x0−nt2

t2

x0 − nt2
p2(x0 − nt2)

∣∣∣∣∣
=
∣∣∣p2(x0)k(t2) x0

t2

∣∣∣ lim
n→∞

∣∣∣∣ k(t2)−nx0 − nt2

∣∣∣∣ =∞
in the case where k(t2) < 1. This yields a contradiction.

Step 3. First consider the case where (a) holds for ev-
ery t ∈ T . Clearly, we have k = 1. Fix a t0 ∈ T . Then
there exists a t0-periodic function pt0 : R→ R such that

u(x) =
l(t0)

t0
x+ pt0(x) for x ∈ R. (15)

Moreover, for every t ∈ T , there exists a t-periodic func-
tion pt : R → R such that (11) holds. Hence, in view
of (15), we obtain
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l(t0)

t0
− l(t)

t

)
x = pt(x)− pt0(x) for x ∈ R. (16)

Since pt and pt0 are continuous periodic functions, they
are bounded. Therefore, a right hand side of (16) is
bounded. Hence, the left hand side of (16) is bounded

as well. Thus l(t0)
t0

= l(t)
t and so pt = pt0 . Consequently,

taking c := l(t0)
t0

and p := pt0 , in view of (15), we get that

p is continuous, (3) holds and

p(x+ t) = p(x) for x ∈ R, t ∈ T. (17)

Next, consider the case where (b) holds for every t ∈ T .
Then, taking a t0 ∈ T , we get that there exists a t0-
-periodic function pt0 : R→ R such that

u(x) = axpt0(x) + b for x ∈ R, (18)

where a := k(t0)
1
t0 ∈ (0,∞)\{1} and b := l(t0)

1−k(t0) . More-

over, putting into (10) u of the form (18), we obtain

ax[atpt0(x+ t)− k(t)pt0(x)] = l(t)− b[1− k(t)]
for x ∈ R, t ∈ T.

Hence

at0 [l(t)− b(1− k(t))]
= ax+t0 [atpt0(x+ t)− k(t)pt0(x)]
= ax+t0 [atpt0(x+ t0 + t)− k(t)pt0(x+ t0)]

= l(t)− b(1− k(t)) for x ∈ R, t ∈ T.

Since a 6= 1 and t0 ∈ T ⊂ R\{0}, this implies that l(t) =
b(1−k(t)) for t ∈ T . Therefore, taking into account (12),
we obtain that for every t ∈ T there exists a t-periodic
function pt : R → R such that u(x) = k(t)

x
t pt(x) + b for

x ∈ R. As u is nonconstant, we have pt(x0) 6= 0 for some
x0 ∈ R. Moreover, taking into account (18), we get

axpt0(x) = k(t)
x
t pt(x) for x ∈ R, t ∈ T

and so(
k(t)

1
t

a

)x
pt(x) = pt0(x) for x ∈ R, t ∈ T. (19)

Hence(
k(t)

1
t

a

)x0+nt

=
pt0(x0 + nt)

pt(x0 + nt)
=
pt0(x0 + nt)

pt(x0)

for n ∈ Z, t ∈ T.

Since pt0 , being a continuous periodic function, is

bounded, this implies that k(t)
1
t

a = 1 for t ∈ T and so,
by (19), we get pt0 = pt for t ∈ T . Therefore, taking
p := pt0 , in view of (18), we obtain that p is continuous,
u is of the form (4) and (17) holds.
Finally, from (17) it follows that p(x + t) = p(x) for

x ∈ R, t ∈ [T ]. Moreover [T ], being a subgroup of the
additive group of real numbers, either is cyclic or dense.
In the �rst case we get (i). In the latter one p is constant,
so in view of (3) and (4), we obtain (ii).
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