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Abstract  ULA is the most common geometry exp lo ited in array signal processing. In the beamforming operation, em-
ploying the ULA leads to obtaining narrower beamwidth with respect to other geometries in similar element numbers. Re-
cently, Shirvani and Akbari proposed a new array by adding two elements to the ULA in top and bottom of the array axis, 
named as SAA. This new array offers a considerable improvement in DOA estimation performance in detection and resolu-
tion of signal sources placed at angles close to the array endfires. In this article, the performance of the proposed SAA is 
investigated especially in  beamforming and compared  with ULA. LMS and NLMS algorithms that are popular adaptive 
beamforming methods are used for evaluation and comparing the performance of SAA and ULA. Considering array factor, 
mean square erro r and bit error rate metrics, simulation results show improved convergence speed and higher data trans-
mission accuracy in different signal source locations, boresight angles as well as endfire ones, for SAA with respect to 
ULA. 
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1. Introduction 
Beamforming using an antenna array is a  promising and  

necessary task in the next generation wireless and mobile 
systems. Sensor arrays are extensively used in signal proc-
essing and their capability has made numerous applications 
in different fields such as radar, sonar, radio astronomy, 
medical diagnosis, acoustics and mobile o r wireless com-
municat ions. Combination of the signals collected from 
array sensors provides temporal and spatial analysis of 
wave-fields and yields directional sensitivity for the system. 
The important tasks considered in array signal processing 
are beamforming, Angle Of Arrival (AOA) or Direction Of 
Arrival (DOA) estimation and source tracking. Variant 
techniques and algorithms are available with different char-
acteristics in efficiency, accuracy and computational costs 
and also numerous studies are attempt ing to improve these 
techniques or proposing new efficient methods[1, 2]. In  
addition to different algorithms, structure of array p lays a 
key ro le in array signal processing. Various arrangements 
are studied and have demonstrated significant effects on the 
performance of the system. 

Unifo rm Linear Array (ULA) is the most common 
configurat ion used for array p rocessing investigations. This
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geometry is simple in analysis and implementation and pro-
vides a good accuracy via formation of narrow beams dur-
ing beamforming. However, ULA can analyse the surround-
ing wave-fields in a particular dimension and provides one-
Dimensional (1-D) coverage. Furthermore, ULA cannot 
give a uniform performance in all directions. DOA estima-
tion and beamforming with ULA  leads to weak results at 
the angles close to the array  endfires. Therefore, other array  
geometries are investigated to obtain a uniform performance.  
Unifo rm Circu lar Array (UCA) is another common geome-
try used for array processing. This structure has further 
complexity in implementation as well as analysis with re-
spect to ULA. Instead, UCA can provide 2-D coverage and 
present uniform performance in  all directions. Beams  in  
UCA are wider than ULA and this affects resolution of the 
array[3, 4]. Concentric Circu lar Array (CCA) or multi-ring 
arrays are other configurations that provide more flexib ility 
in size and width of the obtained beams[5]. However, the 
required computational complexity for analysing the array 
structure increases in CCAs. Planar arrays are also used for 
2-D and more precise beam-pattern generation. 3-D arrays 
and conformal arrays may  be used in  particular applications 
to provide M-D performance and conformity with the vehi-
cle or system they are integrated with it[3]. However, these 
structures are complicated in calculat ions as well as imple-
mentation and research works are attending to find and de-
velop simple arrangements which present better efficiency 
and perform unifo rm in all directions. Combination of linear 
arrays is considered in literature and has shown improve-
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ments in array performance specially the accuracy of DOA 
estimation algorithms. Some of these structures are parallel 
linear arrays and Displaced Sensor Arrays (DSAs), L-
shaped and two L-shaped arrays, V-shaped, Y-shaped, Uni-
form Rectangular Arrays (URA), hexagonal arrays and so 
on[6-11]. Each configuration has particular properties and 
capabilit ies. These geometries are often used for DOA esti-
mat ion and they can provide at least 2-D DOA estimat ion 
capability. In Ref.[11] different types of array structures 
(ULA, UCA and URA) for s mart antennas, DOA estimat ion 
and beamforming have been examined.  

This paper is following the authors’ earlier papers[12-14], 
in which a simple ULA-based geometry was introduced that 
could provide a significant improvement in DOA estimat ion 
capability and resolution threshold in border angles of the 
array endfire. In this article, by focusing on antenna beam-
forming, the capability of Shirvani-Akbari Array (SAA) 
which adds two elements to the ULA in top and bottom of 
the array axis  is investigated. Two well-known adaptive 
beamforming techniques, Least Mean Squares (LMS) and 
Normalized Least Mean Squares (NLMS) are explo ited for 
evaluation of SAA performance. Simulation results are 
compared with the results of beamforming using conven-
tional ULA. Numerical results show higher accuracy and 
also uniform performance through this new proposed array 
with respect to conventional ULA. 

The rest of paper is organized as follows. Section 2 de-
scribes signal model for array processing through ULA as 
well as SAA. A  brief overview of adaptive beamforming 
techniques and description of LMS and NLMS algorithms 
are stated in sections 3, 4, respectively. In section 5, simula-
tion results using MATLAB software are presented and the 
performance of both arrays is compared together. Finally, 
conclusion remarks are given in section 6.  

2. Signal Model for Array Processing 
Fig. 1 depicts the block diagram of an adaptive array sys-

tem. System is composed of an array of sensors, complex 
weights, summer and a signal processing unit.  

 
Figure 1.  Block diagram of an adaptive array system 

In this article, antenna elements are configured as ULA 
and SAA, demonstrated in Fig. 2, 3, respectively.  

 
Figure 2.  ULA geometry 

 
Figure 3.  SAA geometry 

The adaptation takes place in the signal processing unit to 
fulfil the beamforming and adjust the complex weights in 
order to obtain optimized performance fo r the system. The 
weighted received signals are combined together to form 
the array output. In some of the beamforming  techniques an 
iterative procedure may be required to adjust the weights. 
For statement of the signal model, ULA with N and SAA 
with N + 2  antenna elements are assumed that receive  
𝑀𝑀  uncorrelated narrowband signals.  

Received signals, can be expressed as a linear combina-
tion of incident signals and zero mean Gaussian noise with 
variance σn

2 . The incident signals are assumed to be direct 
Line Of Sight (LOS) and uncorrelated with the noise. The 
input signal vector denoted by  𝐱𝐱(t) can be written as (1). 
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𝐬𝐬𝐦𝐦(t)  is M × 1 vector concerning to the m-th source located 
at direction θm  from the array boresight. 𝐚𝐚(θm )is the N ×
1 steering vector or response vector of the array for direc-
tion of θm . For ULA, the steering vector is as: 
𝐚𝐚(θm ) =
          �1,e−jk .d sin θm ,e−j2k .d sin θm , … , e−j(N−1)k .d sin θm �

T
   (2)  

whered is the inter-element spacing and k = 2π/λ.  
For SAA, the steering vector has (N + 2) element as (3).  

The first 𝑁𝑁  rows of 𝐚𝐚(θm )  for SAA are equivalent with  
steering vector of ULA. By addition of two remained rows 
with respect to ULA, 𝐚𝐚SAA is expressed as: 
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For ULA, 𝐀𝐀 is a N × M matrix of steering vectors, written  
as: 

( ) ( ) ( )1 2 Mθ θ θ= …  A a a a
                          (4) 

For SAA, 𝐀𝐀SAA  with (N + 2) × M dimensions is defined 
as: 
𝐀𝐀SAA = [𝐚𝐚SAA (θ1) 𝐚𝐚SAA (θ2)   … 𝐚𝐚SAA (θM )]        (5) 
The array output signal is given by: 

( ) ( )n n= Hy w x
                                             

(6) 

where 𝐰𝐰  is the 1 × N, 1×(N+2) weight vector for ULA and 
SAA. H denotes the Hermit ian, conjugate transpose, opera-
tor and 𝐱𝐱 is the received signal vector defined in (1).  

3. Adaptive Array Beamforming 
Beamforming that is also referred as spatial filtering is  

the process of adjusting the antenna radiation pattern so that 
the antenna focuses energy towards Signal Of Interest (SOI) 
and nulls directed to Signals Not Of Interest (SNOIs). Th is 
task can be fu lfilled  through different approaches. Although 
some earlier techniques such as classical beamforming or 
fixed-beam methods carry out this process with lower com-
plexity, adaptive beamforming techniques are more capable. 
These methods adjust array weights dynamically  with re-
spect to signal environment and perform interference mit i-
gation as well as desired signal tracking. Therefore, adap-
tive beamforming methods have been more considerable in  
recent years.  

In an overview, adaptive algorithms are classified in two  
categories: non-blind and blind algorithms. Adaptive beam-
forming techniques generally need some in itial informat ion 
about the signal characteristics to obtain an appropriate per-
formance. Th is init ial in formation is provided via a refer-
ence signal, DOA estimation methods or some particu lar 
properties of the desired signal. The beamforming methods 
that utilize a reference signal, known as train ing sequence, 
are called training-based or non-blind algorithms. LMS and 
its variants, Recursive Least Squares (RLS) and Sample 
Matrix Inversion (SMI) are train ing-based algorithms. Blind 
algorithms use the desired signal properties and their DOA 
instead of training sequences to determine the weight vector. 
Constant Modulus Algorithm (CMA), Decision Directed 
(DD), Conjugate Gradient (CG), Least Squares (LS) and 
Spectral self-Coherence REstoral (SCORE) are some ex-
amples of blind algorithms[2]. In this research, two popular 
and reliab le non blind methods, LMS and NLMS are dis-
cussed and simulated in both ULA and SAA. 

4. LMS and NLMS Description 
LMS is an adaptation technique based on the steepest-

descent method. The algorithm updates the weights recur-
sively by estimating grad ient of the erro r surface and chang-
ing the weights in the direct ion opposite to the gradient to 
minimize the Mean Square Error (MSE)[2,15]. Error signal 

is the difference between desired signal, 𝐝𝐝(n) , and array 
output, 𝐲𝐲(n), computed by the expression: 

( ) ( )n n (n)= −e d y
                                    

(7) 

According to the LMS algorithm, the final recursive 
equation for updating the weight vector is: 

( ) ( ) *n 1 n μ (n) (n)+ = +w w x e
                       

(8) 

μ is the step size parameter which controls the convergence 
speed of the algorithm. The s mall step size causes slow 
convergence but high stability around the optimum value. 
On the other hand, large step size results in rapid conver-
gence and lower stability. Hence, step size is a major pa-
rameter that makes a trade-off between the convergence 
speed and the LMS stability. The convergence rate of LMS 
also depends on the Eigen-value variance of the input corre-
lation matrix. Variable step size algorithms are used to 
overcome the slow rate of convergence[16, 17]. LMS has a 
simple iterat ive equation which does not require correlat ion 
matrix calculat ion nor does require matrix inversions. This 
makes LMS a common widely-used adaptation algorithm. 

According to equation (8), the correction term 
μ. 𝐱𝐱(n) 𝐞𝐞∗(n) applied to the weight vector during LMS al-
gorithm, is proportional to the input vector 𝐱𝐱(n). Therefore,  
a gradient noise amplification problem occurs in the stan-
dard LMS algorithm. Th is problem can be solved by nor-
malized LMS, in which a data dependent step size is used 
for adaptation. NLMS normalizes the weight vector correc-
tion term with respect to the squared Euclidean norm of the 
input vector 𝐱𝐱(n)  at time n. So its equation can be written 
as: 

𝐰𝐰(n + 1) = 𝐰𝐰(n) + μ
‖𝐱𝐱(n)‖2 𝐱𝐱(n)𝐞𝐞∗(n)            (9) 

NLMS can present better behaviour in convergence and 
stability than LMS[15, 18]. To prevent the convergence 
problem due to division by a small number, a positive con-
stant ε may  be added to the Euclidean norm of the input 
vector in (9) and the weight vector is computed through: 

𝐰𝐰(n + 1) = 𝐰𝐰(n) + μ
ε+‖𝐱𝐱(n)‖2𝐱𝐱(n)𝐞𝐞∗(n)       (10) 

The algorithm is known as ε-NLMS and results in more 
reliable implementation[18]. In  addition to NLMS, other 
versions of LMS such as sign-LMS, Constrained LMS 
(CLMS), Block-LMS, Partial Update LMS (PULMS) and 
Variable Step Size LMS (VSSLMS) have been proposed 
with different properties in convergence speed and effi-
ciency. In this research, standard LMS and ε-NLMS algo-
rithms are employed but new proposed SAA configuration 
can be applied for all above mentioned versions of LMS. 

5. Numerical Results 
For simulation of LMS and NLMS in ULA and SAA, 

two arrays with 7 and 9 elements and half wavelength inter-
element spacing are assumed. The performance of beam-
forming algorithms is evaluated in both arrays and in differ-
ent signal source locations using MATLAB. Beamforming 
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performance may be evaluated with d ifferent criteria. In this 
investigation, absolute value of Array Factor (AF), MSE, 
and Bit Erro r Rate (BER) are considered as performance 
metrics. 

Fig. 4 depicts the radiation pattern when the desired sig-
nal is located at 15°  and two interference signals are as-
sumed to be located at −45°, 75° and the Signal to Noise 
Ratio (SNR) and Signal to Interference Ratio (SIR) are as-
sumed to be 10 dB and 3 dB, respectively. Both arrays have 
tracked desired signal successfully and placed appropriate 
nulls in the interferers' directions. Beamwidth in SAA is a 
litt le wider than ULA in middle angles. 

 
Figure 4.  Array factor for the middle DOAs 

Mean square error diagram during training process for 
both arrays is demonstrated in Fig. 5. Beamformers con-
verge more rap idly in SAA than ULA. Fig. 6 shows the 
simulation results in the sense of BER for middle DOAs. 
According to that, exploitation of SAA in beamforming 
purposes leads to better results in convergence rate of beam-
former and accuracy of system. 

 
Figurea 5.  MSE of training sequence for the middle DOAs 

To investigate beamforming performance at the angles 
close to the array  endfire the desired signal source is as-
sumed at 80°  and two interference signals are assumed at 
−45°, 45°. Radiation pattern of both ULA and SAA arrays 

is shown in Fig. 7. Main lobes that are formed at border 
angles have better tracking accuracy at  desired DOA and 
their widths are less than main beams formed in these direc-
tions by ULA.  

 
Figure 6.  BER versus SNR for the middle DOAs 

 
Figure 7.  Array factor for the border DOAs 

 
Figure 8.  MSE of training sequence for the border DOAs 

BER diagram in this situation for both LMS and NLMS 
is demonstrated in Fig. 9. The level of BER is lower in SAA 
than ULA.  
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Figure 9.  BER versus SNR for the border DOAs 

As shown in above mentioned numerical results, the level 
of AF and MSE during data transmission in SAA and ULA 
is equivalent. Besides, exp loitation  of SAA in beamforming 
purposes leads to better results in convergence rate of beam-
former and accuracy of system in the sense of BER. In  addi-
tion, the performance of beamformer at  boresight as well as 
endfire directions is better than ULA, especially in low 
SNRs. For h igher SNRs, greater than 5dB, performance of 
both beamforming algorithms, LMS and NLMS, are the 
same for ULA as well as SAA.   

6. Conclusions 
In this paper, the performance of a new proposed array, 

SAA, for adaptive beamforming task was investigated. The 
new array is based on ULA configuration with two extra 
elements at the top and bottom of the array axis. Two popu-
lar training-based beamforming algorithms, LMS and 
NLMS were considered for this purpose.  

Nevertheless, the performance o f SAA and ULA is the 
same fo r the antenna beamforming in the case of source and 
interferers located at midd le angles, SAA offers a well per-
formance in detecting and resolving sources located at array 
endfires. Simulat ion results show improved convergence 
speed and accuracy in data transmission considering AF, 
MSE and BER performance metrics for the new array, es-
pecially for low SNRs. This research focused on LMS and 
NLMS algorithms for both ULA and SAA, but the similar 
procedure can be applied for other beamforming algorithms. 
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