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ABSTRACT 
The Frequency Response Function (FRF) method using an 

experimental analysis such as free vibration with shock 
excitation or forced vibration with step or chirp excitation has 
proven to be a most efficient way to identify the modal 
parameters of mechanical structures. However, there is a 
limitation that only linear dynamic systems can be tested 
through these methods. The problem becomes more complex 
when nonlinear systems have to be identified. If the nonlinear 
system is ‘well-behaved’, i.e. if it shows periodic response to a 
periodic excitation, ‘skeleton’ identification techniques may be 
used to estimate the modal parameters, in function of the 
amplitude and frequency of excitation. However, under certain 
excitation conditions, chaotic behaviour might occur so that the 
response is aperiodic. In that case, chaos quantification 
techniques, such as Lyapunov exponent, are proposed in the 
literature. This paper deals with the application of the 
aforementioned nonlinear identification techniques to an 
experimental mechanical system with backlash. It compares 
and contrasts Hilbert transforms with Wavelet analysis in case 
of skeleton identification showing their possibilities and 
limitations. Chaotic response, which appears under certain 
excitation conditions and could be used as backlash signature, 
is dealt with both by a simulation study and by experimental 
signal analysis after application of appropriate filtration 
techniques. 

 

INTRODUCTION 
Frequency Response Function (FRF) method utilizing a 

free vibration response after a shock excitation (or forced 
vibration response using a variety of excitation signals) is 
found to be a very practical way for modal parameters 
estimation of many mechanical systems. This method is 
however limited only to linear systems. The problem becomes 
more complex when nonlinear systems have to be identified. In 
 From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
order to overcome this difficulty, some researchers often 
characterize nonlinear systems using Volterra and Wiener series 
[1], while other techniques taken as an extension of linear 
theory ARMA, namely NARMA and NARMAX have also 
been developed and proposed for different systems for the 
purpose of identification [1,2]. Another simple but elegant way 
to characterize the system is by utilizing the Hilbert transform 
technique [3]. 

The Hilbert transform is an integral transform of the same 
family as the Fourier transform. The difference is in the kernel 
function and instead of transforming a time-domain function to 
its frequency-domain, it transforms the signal to the imaginary 
part of the analytical function. By definition [4]: Hilbert 
transform is a mathematical transform that shifts each 
frequency component of the instantaneous spectrum by p/2 
without affecting the magnitude. Tomlinson [5] shows that the 
Hilbert transform is an effective mathematical tool, which 
allows one to investigate the causality, stability and linearity of 
systems. The Hilbert transform of the FRF of a linear structure 
reproduces the original FRF, and any departure from this can be 
attributed to non-linear effects. Feldman [6] has proposed 
methods of FreeVib, which identifies the modal parameters of 
the system by free vibration analysis. The analysis of the 
transient response of the system, which is obtained after short 
duration of excitation, commonly appears for linear system 
identification, since it contains direct information of the 
damping (from the decay of the response) and the stiffness 
characteristic (from the frequency content of the response). 
However, this technique is not immediately applicable for 
nonlinear system identification where the natural frequencies 
are amplitude dependent. The function relating the natural 
frequencies to the amplitude, namely the so-called skeleton 
curve, of a nonlinear system shows a deviation from the 
horizontal straight line of the linear system case. Every typical 
geometric nonlinearity in mechanical structures, which 
manifests itself as a change in the modal parameters of a 
1 Copyright © 2005 by ASME 

e: http://www.asme.org/about-asme/terms-of-use

https://core.ac.uk/display/357620377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dow
structure with changes in the structure deformations during 
motion, has a unique form of the skeleton curve. The analysis 
of the topography of the skeleton curve for different nonlinear 
modal parameters is summarized in reference [7]. Therefore, 
extraction of the instantaneous properties plays an important 
role in the completion of the skeleton curve as the result, and 
Hilbert transform offers one of the most successful approach to 
extracting the envelope and instantaneous frequency. If we 
make the complex sum of the original signal with the Hilbert 
transform of it in imaginary form, we will obtain the complex 
form of the original signal, namely the analytic signal. The 
modulus of this signal will give us the instantaneous amplitude, 
whilst the derivative of its argument represents the 
instantaneous frequency of the original signal. Extensive 
studies on the effectiveness of extracting the instantaneous 
amplitude and frequency can be found in [8,9], while Davies 
and Hammond [10] compared and contrasted the application of 
Hilbert transform with another analysis technique known as 
‘method of slowly varying amplitude and phase’ for this 
extraction purpose. Practical application of this technique for 
damage diagnosis purpose of rotors was presented by Feldman 
and Seibold [11]. While Wang et al. [12] proposed a relatively 
new approach similar to the skeleton curve, namely the 
skeleton linear model (SLM). They related the (slowly time-
varying) modal parameters of a system by using quadratic time-
frequency distribution of its instantaneous response. This 
indicates the skeleton curve in an almost distinct way. Based on 
the obtained skeleton curve, after some mathematical 
manipulations, the estimated characteristics of the restoring and 
damping forces can be provided. 

However, for a great number of real engineering systems, 
in particular those with high damping, free vibration analysis is 
not possible due to the fact that the transient response occurs in 
a very short time duration so that the observation sample is not 
adequate for FreeVib identification. In order to overcome this 
problem, Feldman proposed the ForceVib method [13]. In this 
method, the system under investigation is excited using a 
suitable excitation input and after some mathematical 
manipulation, the skeleton curve can be obtained as a function 
of the envelope and the instantaneous frequencies of the output 
response as well as the excitation input. 

Despite of its effectiveness and simplicity, Hilbert 
transform based of instantaneous properties extraction has 
some limitations. Extraction of the envelope signal and its 
instantaneous frequency using Hilbert transform is strictly 
exact only if the real-value signal is asymptotic, where the 
signal has slowly varying amplitudes compared with the phase 
variations. In particular Ruzzene et al. [14] demonstrate that 
this technique introduces more errors when high damping is 
present in the system. Even if asymptotic signals are used, the 
Hilbert transform method requires a signal filtration. In order to 
resolve this problem, Feldman and Braun [15] offered the use 
of the Wigner-Ville Distribution to complement the Hilbert 
transform analysis in refining the extraction results. 
Nevertheless, this concept does not offer direct extraction result 
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of the instantaneous properties of the signal under observation. 
Moreover, the instantaneous amplitude of the corresponding 
signal cannot be estimated very well. This can be understood, 
since the Wigner-Ville Distribution does not offer an accurate 
modulus of time-frequency components. 

Meanwhile, the Wavelet transform technique has gained 
popularity in the area of time-frequency representation (TFR) 
study and system identification field. This technique is actually 
developed as an alternative approach to the Short Time Fourier 
Transform to overcome the resolution problem in the latter 
transformation technique. Compared to Wigner-Ville 
Distribution, as another alternative to TFR, the Wavelet 
transform has more accurate modulus time-frequency 
component. Ghanem and Romeo [16] presented an 
identification technique of linear time-varying dynamical 
system contaminated with noise using the Wavelet transform, 
while Lenaerts et al. [17] validated the Wavelet transform and 
the Restoring Force Surface method for identification purpose 
using an experimental testbed. Staszewski [18] extensively 
demonstrated the application of identification of geometrical 
nonlinearity in the mechanical structures. He extracted the 
instantaneous properties of the transient response using the 
ridges of its Wavelet transform and reconstructed the skeleton 
curve to identify the modal parameters in the system. He also 
extended his analysis to the identification of a two-degree-of-
freedom system. In a subsequent paper, Staszewski and Chance 
[19] verified the corresponding theoretical study on a real 
experimental setup. They implemented the identification 
technique on a test rig comprising a mass suspended on a 
nonlinear spring. The test setup was designed and built in such 
a way as to minimize the damping in the system. Therefore, the 
transient response of the system after shock excitation can be 
observed sufficiently. However, there are hardly any instances 
in the literature of the application of those types of system 
identification to systems comprising high damping. 

Up to this point, we have assumed that the system is ‘well-
behaved’ in the sense that its response is periodic for a periodic 
excitation. However, under certain conditions in dynamical 
systems (specifically nonlinear mechanical systems) chaotic 
behavior might occur, rendering the above mentioned 
techniques inapplicable. Lin [20] found that a simple mass-
spring-damper system comprising backlash element might give 
chaotic response under certain excitation condition. He also 
demonstrated this behaviour in a supported beam with a mass 
at its midpoint. A backlash stiffness nonlinearity was 
introduced by providing motion constraints on both sides of the 
mass. However, he did not present the chaos quantifiers and 
correlate the quantication to the model parameters of his 
system. Theodossiades et al. [21] showed the chaotic responses 
in a more complex system, namely a gear pair system with 
backlash and periodic stiffness, under different condition. Feng 
et al. [22] studied the chaotic response on a model of a rattling 
system and presented the bifurcation diagram of the chaotic 
behaviour as a function of excitation frequency and amplitude. 
Trendafilova et al. [23] tried to exploit the chaos quantifiers for 
2 Copyright © 2005 by ASME 
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fault detection in a real robot joint. They used the high-
frequency component of the response besides the excitation 
frequency to quantify the chaoticity, and correlate it with the 
backlash size in the robot joint. However, the route of chaos in 
this high-frequency component signal was not exploited. 

In the first place, this paper presents such a practical 
application to a single degree of freedom mechanical system 
with a backlash component by observing a forced response of 
the system under certain excitation, when the free vibration 
response is almost impossible to be observed. Subsequently, 
this paper attempts to correlate the chaos quantifiers (e.g. 
Lyapunov exponent (λ) and Correlation Dimension), with the 
modal parameters of a chaotic system, in particular, for our 
case, the backlash size. Such correlation methodology could be 
further developed so as to deal with other nonlinear systems 
such as defect qualification and quantification. Early damage 
detection in a mechanical system is another possibility to 
exploit the model. At the end, this paper confirms 
experimentally the possible presence of chaotic response in a 
real mechanical system and characterises it. 

In the following, section 1 describes the theoretical basis 
of the methods including some simulations. Section 2 describes 
the experimental setup, formulates a detailed mechanical model 
of the system, analyzes the obtained data and discusses the 
results, respectively. Finally, appropriate conclusions are drawn 
in Section 3. 

NOMENCLATURE 
A(t) : amplitude envelope of a signal 
y(t) : instantaneous phase of a certain signal 

)t(x~  : Hilbert transformed of a certain signal x(t) 
x0 : backlash degree 
α : dimensionless form of backlash, which is inversely 

proportional to x0 and linearly proportional to 
amplitude of excitation 

λ : Lyapunov exponent 
 

1 THEORETICAL BASIS AND SIMULATION 
1.1 Skeleton Identification 

The skeleton technique enables us to identify the 
‘instantaneous’ modal parameters, including restoring force and 
damping force, for a certain class of nonlinear systems, through 
analysing their free or forced response by methods such as the 
ones described in the following. 
1.1.1 Hilbert Transform 

A large number of signals, including vibration of nonlinear 
system can be converted to an analytic signal in complex-time 
and represented in the form of the combination of envelope and 
instantaneous phase [3,7]: 

)t(je)t(A)t(y~j)t(y)t(Y ϕ⋅=+=  (1) 
where )t(y~ is the Hilbert Transform of the real-valued signal 
y(t), Y(t) is an analytic signal in complex-time function, A(t) 
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and ϕ(t) are an envelope (amplitude) signal and an 
instantaneous phase respectively. 

We now consider that the forced vibration equation of a 
single-degree-of-freedom system could be written as: 

m/Fy)A(y)A(hy =ω++ 2
002 ���  (2) 

where y is the response signal, F is the forced excitation signal, 
m is the mass of the system, h0 and ω0 are symmetrical viscous 
damping and stiffness characteristic of the system, respectively, 
which depend on the amplitude, A. According to the main 
properties of non-overlapping spectra of Hilbert Transform, 
Feldman [13] shows that equation (2) can be converted by 
Hilbert Transform to the complex form: 

m/FY)A(Y)A(hY =ω++ 2
002 ���  (3) 

where )t(je)t(A)t(Y ϕ⋅=  is an analytic signal of a solution of 
the system and F(t) is the analytic signal of the forced 
excitation in complex-time form. 

Substituting the analytic signal forms of Y(t) and F(t) 
together with the two derivatives of Y(t) in equation (3), the 
representation of the corresponding modal parameters can be 
derived: 
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m
)t(

)t(h  (4b) 

where ω is time derivative of the instantaneous phase ϕ, while 
α and β are the real and imaginary parts of the ratio 

)t(j)t(
)t(Y
)t(F β+α= , respectively. 

 
1.1.2 Wavelet Transform 

Wavelet analysis is done in a similar way to the Short Time 
Fourier Transform (STFT), in the sense that the signal is 
multiplied by a function (i.e. mother wavelet, similar to the 
window function in STFT), and the transform is computed 
separately for different segments of the time-domain signal. 
The main difference between Wavelet Transform and STFT is 
the width of the ‘window’ in Wavelet Transform, which 
changes as the transform is computed for every single spectral 
component. Therefore, Wavelet analysis allows the use of long 
time intervals where we want more precise low-frequency 
information, and shorter regions where we want high-
frequency information. The Wavelet Transform of real-value 
signal y(t) is defined as follows: 

 �
+∞

∞−

∗ �
�

�
�
�

� −ψ=τ dt
s
�t

)t(y
s

),s(W
1  

As seen in the equation above, the transformed signal is a 
function of translation, τ , which corresponds directly to time, 
scale/dilation (s), which relates to frequency information 
indirectly, and ψ(t) as a mother wavelet. Different researchers 
have proposed several families of mother wavelet functions. 
3 Copyright © 2005 by ASME 
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The mother wavelet function, which will be used in this paper, 
is the popular function of Complex Morlet Wavelet [24]: 

bc f/ttj
b eef)t(

2−ω ⋅⋅π=ψ  (5) 

where fb is the bandwidth parameter and ωc = 2πfc is the centre 
frequency. 
Envelope and Instantaneous Frequency Extraction  

Energy density distribution over the (s,τ) scale-translation 
plane can be represented by the square of the modulus of 
Wavelet transform. The energy of a signal is mainly 
concentrated on that plane around the so-called ridge of the 
wavelet transform. This ridge is directly related to the 
instantaneous frequency of the signal. Tchamitchian et al. [25] 
formulated the relation of the instantaneous frequency and the 
ridge as follows: 

)�(
)(

s c

ϕ
ϕ

=
�

� 0
 (6) 

While assuming that the envelope A(t) of equation (1) is 
slowly varying, Carmona et al. [26] approximate the modulus 
of Morlet-Wavelet transform for any given signal with slow 
varying envelope as: 

))�(s()(A
s

),s(W * ϕΨτ≈τ �
1

 (7) 

Thus, from equation (6), the instantaneous frequency of 
the analytical solution can be obtained from the ridge extraction 
of Wavelet transform. Once the ridge and instantaneous 
frequencies are known, the envelope of the signal y(t) can be 
recovered following equation (7), and some modal parameters 
can be reconstructed following the same concept as in the 
Hilbert technique. 
1.2 Detecting and Quantifying Chaos 

Lin [20] shows theoretically that under certain excitations, 
a simple nonlinear mechanical system with backlash might 
manifest chaotic vibration. He demonstrates that a simple 
system comprising a backlash spring, as shown in Figure 1, and 
having a dynamic equation of: 

tcosA)x(xcxm ω=+++ Fxk1���  
where F(x) is the restoring force of the nonlinear backlash 
component: 

�	

�


�

<
≥⋅−

=
0

00

0 xx,
xx,))x(signxx(

)x( 0k
F  

is found to behave chaotically under certain excitation 
conditions. Table 1 gives three sets of system’s parameters 
pertaining to chaotic behaviour, for certain excitation force 
specifications, where m is the mass of the system, k1 and k0 are 
stiffnesses, c is a damping coefficient, and x0 the backlash (or 
play) size.  

It can be shown that there exist certain sinusoidal 
excitation forces for CASE 1, with A =|F| = 100 N and for 
CASE 2 with A = 240 N, both at ω =40 rad/s, which cause the 
response to behave chaotically as the phase plots are shown in 
Figure 2. The bottom left figure shows the phase plot of CASE 
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3 under excitation of sinusoidal signal with A = 0.048 N at 1.57 
Hz, while the right panel represents the phase plot in the space 
of displacement with different time delay. 

In order to examine the influence of each parameter on the 
nature of resulting response, we use dimensional analysis to 
normalise the variables and reduce the number of parameters. 
By combining variables in dimensionless groups, one may gain 
more insight in the problem. 

 
Figure 1. Schematic of a nonlinear mechanical system with 

backlash component. 

Table 1. Parameter sets of vibration system 

 m 
(kg) 

k1 

(N/m) 
k0 

(N/m) 
c 

(Ns/m) 
x0 

(m) 
CASE 1 1 0 40000 8 0.005 
CASE 2 1 1000 31000 8 0.005 
CASE 2 3 0 2250 8 0.02 
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Figure 2. Phase plots of the chaotic response of two different 

mechanical systems with backlash component. 

 
Introducing new variables of time and displacement 

t0ω=τ  and 0x/xp = , where m/k0
2

0 =ω , we may rewrite 
the dynamics equation for CASE 1 (k1 = 0) as follows: 

tcosA)p(xk'pxc"pxm 000 ω=+ω+ω F00
2

0  (8) 

where the primes indicate differentiation with respect to τ and 
F is the backlash spring function.  This equation reduces to: 

tcos)p(p'"p ωα=+ζ+ F2  (9) 
4 Copyright © 2005 by ASME 
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where mk/c 02 =ζ  and )xk/(A 00=α  and )p(F  is 

backlash stiffness characteristic in normalized form:  
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p,))p(signp(

)p(F  

That is to say that the problem is characterized by two 
parameters, α and ζ. 

As for the chaos measure, we calculate the maximum 
Lyapunov exponent of the resulting response. This is based on 
a unique property of chaotic behavior that two trajectories 
starting very close together will rapidly diverge from each 
other. The divergence (or convergence) of two neighboring 
trajectories can be used as a chaos quantification measure, 
which is the Lyapunov Exponent (λ). 
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Figure 3. The Largest Lyapunov Exponent vs 1/αααα for a simple 

mechanical system with backlash for CASE #1. The regions where 
the Lyapunov exponents are positive mark the presence of the 

chaotic response. 

Let us consider two initial conditions in a space 
x0 and x0+δ0, each of which will generate an orbit in the space 
using system equations. These orbits can be thought of as 
parametric functions of a variable (in general considered to be 
time). If we use one of the orbits as a reference orbit, then the 
separation between the two orbits will also be a function of 
time (δt).  

In a system with attracting fixed points, δt diminishes 
asymptotically with time. But for chaotic system, the separation 
between two trajectories will diverge exponentially fast; hence 
δt will be an exponential function of time: 

t
t eλδ=δ 0  (10) 

In order to see how a chaotic motion evolves when the 
forcing amplitude decreases (or equivalently the backlash size 
decreases), we generate the relationship between the largest 
Lyapunov Exponential and the parameter 1/α for CASE 1; and 
Figure 3 presents the results.   

2 EXPERIMENTAL STUDY 
An experimental investigation was carried out on the outer 

(second) link of a two-link mechanism as schematically shown 
in Figure 4. 
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Figure 4. Schematic drawing of a two-link mechanism. 

The aim of this experiment is to identify the backlash size of 
the second link joint. For this purpose, certain degree of 
backlash (approximately 1.5o) was introduced in the joint of 
this link. The first link was kept fix while the second one was 
made to oscillate over a certain range. This link was driven by a 
servomotor through a toothed belt and a harmonic drive. The 
vibration responses were measured with two rotary encoders. 
First encoder measured the angular motion input to the 
harmonic drive, and the second one measured the relative 
oscillation between first link and second link. Therefore, the 
first encoder might be considered to measure excitation input of 
a base motion system in displacement form, while the second 
encoder measured the response of the base motion system. 

2.1 Skeleton Identification 
In the case of considering the experimental setup as a base 

motion system, where the excitation input is taken in the form 
of displacement, we need a little mathematical manipulation to 
reformulate equation (3).  

Figure 5 depicts the schematic force balance of link#2 of 
the two-link system. The link is supported at its joint by a 
nonlinear rotational spring and damper. The support of this link 
has a specified rotational motion, φ, which is the ‘displacement’ 
input, and is measured by first encoder. Angular motion of link 
#2 is represented by θ. 

The nonlinear differential equation of motion of the 
corresponding system can be obtained as follows: 

φ+φ=θ−+θ+θ )A(k)A(c}mgL)A(k{)A(cJ ����  (11) 
Following the notation of equation (1), i.e. replacing y by 

θ and x by φ, we get: 

x)A(x)A(hy}C)A({y)A(hy 2
00

2
00 22 ω+=−ω++ ����  

where J/mgLC = is an additional stiffness due to the link 
weight, m is mass of the link, L is the coordinate of the centre 
of gravity of the link and J equals the link’s moment of inertia 
about its joint. 

Representing equation (11) into a displacement equation of 
a base motion system we obtain: 

Cyxz)A(z)A(hz +−=ω++ �����
2

002 , (z = y-x) (12) 
If we refer to the transformation from displacement equation to 
complex-analytic signal form from reference [18], by analogy 

Link #2 

Joint + 
backlash
5 Copyright © 2005 by ASME 
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we can transform equation (12) into complex-analytic signal 
form: 

CYXZ)A(Z)A(hZ +−=ω++ ����� 2
002  (13) 

 
2.1.1 Signal Analysis 

The experiments were taken by exerting linear chirp signal 
to the motor. Initial frequency of this signal is 0 Hz. The 
frequency continues to change at constant rate, and it reaches 
12 Hz in 30 sec. 

Relative motion measured 
by both encoders, where in 
equation (13) is represented by z, 
can be seen in Figure 6. It is seen 
from that figure, that the relative 
motion is higher than the 
backlash size in the joint. In the 
figure, the dash lines represent 
size of the backlash. At time 
16.25 sec, which corresponds 
approximately to 6.5 Hz of 
excitation frequency, the relative 
motion of the link falls far below 
the size of backlash. This occurs 
due to insufficient energy of 
excitation. Such problem might 
cause unsatisfactory skeleton 

curve reconstruction, which is essential in modal parameter 
identification. 

In order to check the validity of these identification 
techniques, the system has been modally identified at the edge 
of backlash. Figure 7 shows the FRF of the system obtained 
through shock excitation using impact hammer. The link was 
preloaded using a low stiffness spring to eliminate nonlinearity 
due to the backlash; hence the link was resting on one of the 
edges of the backlash. It can be seen from the figure, that the 
natural frequency of the system is approximately 11 Hz, while 
from the mass line we can estimate the moment of inertia of the 
link to be approximately equal to 3.16 kgm2. It is necessary to 
define the inertia of the system, as far as equations (4a) and 
(4b) include modal mass value, which is unknown a priori. 
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Figure 6. Relative motion between both links (z) 

Figure 5. Force balance 
diagram of link #2 
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Figure 7.  Frequency Response Function of two-link mechanism 

 
2.1.2 Modification in nonlinear modal parameters calculation 

Some obvious modifications of nonlinear modal parameter 
estimation procedures in equations (4) have to be made in order 
to conform to the base motion case, since we are dealing with 
displacement input and displacement output in the system [27].  

The displacement input x(t), in complex-analytic form 
appearing in equation (13), can be written as:  

)]t(jexp[)t(B)t(x~j)t(x)t(X xψ⋅=+=  
The two derivatives of X(t) are then: 

[ ])t(j)t(B/)t(B)t(X)t(X xω+= ��  

[ ])t(j)t(B/)t()t(Bj)t()t(B/)t(B)t(X)t(X xxx ω+ω+ω−= ������ 22  
Substituting all of analytic signals and their derivatives in 

equation (13) we can get: 
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Using the same procedures in equations (4) by solving two 
equations from the real and imaginary parts of equation (14), 
we can obtain the expression for instantaneous modal 
parameter as functions of first and second derivatives of signal 
envelopes and instantaneous frequencies of input and output 
displacement signal. 

After identification, the restoring force, which illustrates 
the nonlinear spring characteristic of the system, and the 
damping force can be obtained based on the relations: 

)A(A)A(f s
2
0ω⋅=  (15) 

A)A(h)A(fd
�� ⋅= 02  (16) 

 
2.1.3 Identification Result 

Envelope and instantaneous frequency calculation of both 
input (x) and relative output signal (z) can be seen in Figure 8 
and Figure 9, respectively. In the left side of both figures, we 
can see the envelope estimation of displacement input and 
displacement output. The light-green dashed lines represent the 
envelope estimation based on Hilbert transform technique 
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without any filtration. The filtered HT curves represent the 
results of the envelope signal after low-pass filtration of 1% of 
its half sample rate (100% correspond to half the sample rate), 
while WT curves represent that of Wavelet Transform 
technique. 

 
Figure 8. Envelope and instantaneous frequency of input signal 

 
Figure 9. Envelope and instantaneous frequency of output signal 

From these two figures, we can see that Wavelet analysis 
gives an improvement in estimation envelope and instantaneous 
frequency at several points. The most significant improvement 
is in the envelope and instantaneous frequency estimation of 
displacement output approximately after the first 17 seconds. If 
we refer back to Figure 6, it is clearly seen that the response is 
shifted after 17 seconds. This might have happened because at 
the corresponding time, the level of displacement input has 
fallen below the backlash size in the system. Hilbert Transform 
technique cannot estimate the envelope and also instantaneous 
frequency of a signal with certain offset. This is another 
advantage of Wavelet analysis. 

At approximately time 16-17 seconds; we can see a 
significant estimation error in instantaneous frequency. In this 
instance, the estimation cannot be made in this region, since the 
frequency content of vibration response in this instance 
corresponds to the resonance frequency of the system. 
Restoring Force and Damping Force 

The restoring force as function of displacement can be 
derived utilising equations (4). The plot of this restoring force 
is shown in Figure 10. In the left side of Figure 10, we can see 
the restoring force estimation based on Hilbert transform 
technique with low-pass filtration of 1% of half of its sample 
rate, respectively. In the right side, we see the estimation based 
on Wavelet analysis. The size of backlash obtained from both 
techniques closed to the real backlash size introduced in the 
system. Based on the a priori knowledge of the system, by 
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applying regression on the reconstructed restoring force, we get 
the backlash size of 0.0258 rad (=1.48o with standard deviation 
of error below 1.5%), where the real backlash size is 
approximately 1.5o from manual measurement. 

 

 
Figure 10. Restoring force estimation based on Hilbert and 

Wavelet transform 

 
Figure 11. Damping force estimation based on Hilbert and Wavelet 

transform 

Referring to equation (4a), the slope of the restoring force 
curve in Figure 10 actually represents the modal stiffness of the 
system. After multiplying the slope by moment of inertia of the 
second link, we can obtain the estimated stiffness value of the 
system. The modal stiffness parameter obtained by applying 
regression to the result is approximately 11000 Nm/rad. 

The discontinuity appearing in the figures is due to the 
response at the resonance region as mentioned before. Hence, 
we cannot obtain the restoring force estimation in the 
corresponding region. 

We can also identify the damping as a function of velocity 
by utilising equation (4b). Figure 11 shows the plot of the 
corresponding force, where the left figure shows the estimation 
based on the Hilbert analysis and the right one demonstrates the 
result based on the Wavelet analysis. The Hilbert based result 
shows imperfection reconstruction of the damping force and it 
suffers from more ripples than that of the restoring force. These 
are caused by the derivative form of the ‘noisy’ envelope 
function, A� , obtained from the Hilbert analysis, which is 
required in estimating the damping force as shown in equation 
(16). 

Observing the behaviour, it is clearly seen that the 
damping force appears predominantly to be made up of 
friction, as a discontinuous constant force in zero velocity, as 
we can see in the plot, leads us to the signature of the friction 
force. 
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2.2 Chaotic response case 
Under large amplitude excitation of a periodic force, it is 

found that the link system shows aperiodic behavior as can be 
observed from Figure 12. For this case, the system was excited 
by periodic motion with 1.54 Hz fundamental frequency and 
amplitude of 2.68o. However, we cannot ascertain whether this 
aperiodic response is dominated by the presence of linearly 
correlated noise. 

 
Figure 12. Output response at 1.54 Hz and 2.68o input excitation. 

The solid line represents the output response while the dashed line 
is the input excitation. The left-scale is for the output and the 

right-scale is for the input. 

With the aim of having better understanding on how the 
chaotic motion arises when the modal parameters of the system 
change, in particular the backlash size (as implied by α in 
dimensional analysis), the experiment was also carried out in 
several different excitation levels ranging from 1.34o to 5.73o, 
where it was observed that the aperiodic response persisted. 

 
2.2.1 Quantifying chaos 

The easiest way in obtaining the Lyapunov exponent, for 
instance, can be done by observing the separation of two close 
initial trajectories on the attractor and taking the logarithm of 
the separation. But this method cannot be applied directly to 
experimental data for the reason that we are not always dealing 
with two (or more) sets of experimental data that have close 
initial conditions. 

Experimental data typically consists of single observable 
discrete measurements. Reconstructing the phase space from 
the time series with appropriate time delay and embedding 
dimension makes it possible to obtain an attractor whose 
Lyapunov spectrum is identical to that of the original attractor. 
Mathematically, a reconstructed phase space can be described 
as follows [28,29]: 
y(k)=[S(k), S(k+τ), S(k+2τ), …, S(k+(d-1)τ)] (17) 
where S(k) is the time series from a single observation, τ 
represents appropriate time delay for phase space 
reconstruction and d is a proper embedding dimension for 
phase space reconstruction. 

Now, if we choose two points in the reconstructed phase 
space whose temporal separation in the original time series is at 
least one ‘orbital period’, they may be considered as different 
trajectories on the attractor. Hence, the next step in determining 
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the largest Lyapunov exponent for single observable time series 
is searching the nearest neighbor of certain points, in the sense 
of Euclidean distance, which can be considered as fiducial 
trajectories. 

In a phase space reconstruction procedure, we must ensure 
that the points in each dimension (coordinate) are independent 
of each other. Therefore, time delay τ must be chosen so as to 
result in points that are not correlated to previously generated 
points. The Average Mutual Information (AMI) technique can 
be used for determining appropriate time delay parameter for 
nonlinear time series. Abarbanel [30] suggested that the value 
of τ for which the first local minimum of the AMI occurs 
should be taken as time delay, and this is analogous to the time 
delay when the auto-correlation function attains zero value in 
linear case. Figure 13 shows the mutual information of the 
response shown in Figure 12. The first minimum value of the 
mutual information is approximately 0.174 sec. 

The next step in reconstructing phase space is to recover 
the appropriate number of coordinates d of the phase space. 
The idea of a number of coordinates d is a dimension in which 
the geometrical structure of the phase space is completely 
unfolded. 

The basic method in determining the embedding dimension 
in phase-space reconstruction is the False Nearest Neighbor 
method. Suppose the vector yNN(k) is a false neighbor of y(k), 
having arrived in its neighborhood by projection from a higher 
dimension, because the present dimension d does not unfold the 
attractor, then by going to the next dimension d+1, we may 
move this false neighbor out of the neighborhood of y(k). Thus, 
if the additional distance is large compared to the distance in 
dimension d between nearest neighbors, we have a false 
neighbor. Otherwise, we have a true neighbor. 

 
Figure 13. Average mutual information as a function of the time 

lag for CASE 1 system excited by 2.68o input excitation. 

In order to have a straightforward representation of the 
minimum embedding dimension, Cao [31] defined the mean 
value of E1, which generally represents the relative Euclidean 
distance between yNN(k) and yNN(k) in two consecutive 
dimensions. Cao’s number E1 consequently will stop changing 
when the dimension d is greater than the minimum embedding 
dimension d0. 
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Figure 14 depicts the Cao number as a function of 
embedding dimension. It can be observed that E1 approaches a 
constant value for a dimension higher than four. Thus, we can 
conclude that the minimum dimension that will totally unfold 
the phase space is 5. 

 
Figure 14. Minimum embedding dimension for CASE 1 system 

excited by 2.68o input excitation. 

 
Figure 15. Phase plots of output responses with certain discrete 

unit time delay of corresponding mechanical system with 
excitation frequency of 1.54 Hz and amplitude level respectively 

from left to right and top to bottom: 1.34o; 2.07o; 2.68o; 3.41o; 
3.65o; 3.78o; 4.87o; 5.73o. 

Repeating the above sequences for different excitation levels 
ranging from 1.34o to 5.73 o as mentioned before, we obtain the 
phase-space plots as shown in Figure 15. The figure shows the 
phase plots of output responses with certain time delays, which 
are determined using the Average Mutual Information method. 
Observing the figures, we may suspected that the excitation 
level of 2.68o, 3.41o, 3.65o and 3.78o result in chaotic 
responses. 

2.2.2 Surrogate data testing 
Nevertheless, from the results we have so far, it is not clear 

in any of the cases if noise (linearly stochastic process) is not 
the cause for the observed irregular behavior. Surrogate data 
test is utilized to identify whether the behavior of a signal is 
caused by the nonlinearity in the system or by a random 
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stochastic process. This method first specifies some linear 
process as a null hypothesis, then generates surrogate data sets, 
which are consistent with this null hypothesis, and finally 
computes a discriminating statistics for the original and for 
each of the surrogate data sets. In order to generate the 
surrogate data sets, the original data are transformed in such a 
way that all structures except for the assumed properties are 
destroyed. The generated surrogate data sets are assumed to 
mimic only the linear properties of the original data. Theiler et 
al. [32] state that a Fourier Transform algorithm is very 
consistent with the hypothesis of linearly correlated noise. This 
method is achieved by Fourier transforming the original data 
and substituting the phases with random numbers. After 
transforming back into the time domain, we get a new time 
series without affecting the power spectrum. If the 
discriminating statistic values (namely the maximum Lyapunov 
exponent, the average mutual information and/or the 
correlation dimension) computed for the original data is 
significantly different from the generated surrogate data, then 
the null hypothesis is rejected and we conclude that the data is 
not linearly stochastic noise and the nonlinearity is detected. 

Since we are motivated by the possibility that the 
underlying dynamics may be chaotic, our original choices for 
discriminating statistics are the chaotic quantifications. The 
correlation dimension, D2, is the most frequently used as a 
discriminating statistic in surrogate data test. D2 is computed as 
a limit of the correlation sum or the correlation integral [30]: 

||log
|),(C|log

lim
r r

r
D

2
2

0
2 →

=  

where C(2,r) counts all the points within distance r of each 
other. 

 
Figure 16. The correlation dimension versus embedding dimension 

for the original data (excited at excitation level 2.68o, 3.41o, 3.65o 
and 3.78o) and for the surrogates. The values of the correlation 

dimension for the original data and the surrogates differ 
substantially, and the convergence value of the original data 

suggests that the underlying dynamics is chaotic. 

Generally, if the irregularity in the data is chaotic, going to 
a higher embedding dimension will not change the result of D2. 
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On the contrary, if the data is in fact noise, the correlation 
dimension will not converge to a specific value in going to a 
higher embedding dimension. 

Figure 16 shows the plots of the correlation dimension as 
the discriminating statistics against the embedding dimension, 
m, for four suspected chaotic responses in Figure 15 (excited at 
levels 2.68o, 3.41o, 3.65o and 3.78o). All of the plots in Figure 
16 show that for all the cases, the values of the correlation 
dimension for the original data and the surrogates differ 
substantially. We can also conclude that the figures show the 
convergences of the correlation dimension for the original data, 
while the surrogates show no convergences. The estimated 
dimensions of the original data about d = 2.50, 2.10, 1.55 and 
2.10 in ascending excitation level order, respectively, shows 
that the underlying dynamics is in fact chaotic. 

2.2.3 Noise reduction 
A story of an experimental analysis is never complete 

without discussing the noise reduction step. The noise 
reduction step plays an important role in estimating the largest 
Lyapunov exponent to quantify chaotic behaviour. One of the 
problems in estimating the largest Lyapunov exponent of a 
‘noisy’ signal concerns the minimum embedding dimension 
required to completely unfold the noisy attractor of the signal. 
The Simple Noise Reduction [33] will be utilized in this work, 
since it offers superiority, in the calculation time, and 
simplicity. 

The Simple Noise Reduction techniques are closely related 
to the future prediction theory. For prediction we have no 
information about the quantity to be forecast other than the 
preceding measurement, while for noise reduction we have a 
noisy measurement to start with and we have the future values. 
Hence we aim to replace the noisy measurement with a set of 
‘predicted values’ containing errors, which are on average less 
than the initial amplitude of the noise. 

 

Figure 17. Cleaned signal compared to the noisy one. The left 
figure shows the phase plot of the response of the system under 

excitation frequency of 1.54 Hz and amplitude level of 2.68o before 
noise reduction, while the cleaned signal can be seen in the right 

figure. 

Figure 17 shows the result of simple noise reduction 
method of output response when the system was excited using 
3.41o excitation level, compared to the un-cleaned one. One 
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may see that the trajectory appears smoother after noise 
reduction. Verification and quantification of the noise reduction 
performance can be done on the basis of the correlation 
integral. For our case, since the noise level is not significantly 
high, this verification will not be discussed in this paper. 
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Figure 18. Estimation of minimum embedding dimension of noisy 

and cleaned signals using Cao’s method. The noisy signal needs 
more dimensions to completely unfold the attractor compared to 

the cleaned one. 

In Figure 18, we can see the plot of the Cao’s number E1 
versus its embedding dimension d. The solid line represents E1 
for original noisy signal, while the dashed line represents E1 
for the signal when its noise has been reduced. From the figure, 
we can see that the noisy signal needs a higher dimension to 
unfold its attractor compared to its cleaned counterpart. The 
noisy one takes a minimum of 5 embedding dimensions to 
completely unfold its attractor, while the cleaned one needs 
only 4. 

2.2.4 Maximum Lyapunov exponents 
Having reconstructed phase spaces of the cleaned signals, 

the final step is determining the Lyapunov exponents of the 
corresponding signals. Table 2 shows the chaos quantification 
of Lyapunov exponents for corresponding results in Figure 15, 
starting from the lowest excitation level to the highest 
respectively. The evolution of the Lyapunov exponents as 
shown in the table obviously marks the bifurcation 
phenomenon in the system. The response behaves periodically 
at low excitation levels until it reaches certain level between 
2.07o and 2.68o, then the chaotic response grows. Subsequently, 
after certain excitation level (between 3.78o and 4.87o), the 
chaotic behavior diminishes, and the response, again, behaves 
periodically. 

Table 2. Chaotic quantification results of series excitation 

Exc. Level 1.34o 2.07o 2.68o 3.41o 

λ (bit/time) - - 1.423 1.322 

Exc. Level 3.65o 3.78o 4.87o 5.73o 
λ (bit/time) 1.533 1.802 - - 
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3 CONCLUSION 
Nonlinear modal parameters estimation technique based on 

Hilbert and Wavelet transform are shown to be a good 
approximation of the true modal parameters characteristic.  
Both the backlash size and the stiffness can be estimated 
satisfactorily.  

An improvement of nonlinear modal parameters estimation 
by introducing Wavelet analysis has been achieved owing to 
several advantages offered by Wavelet properties. Wavelet 
transform is capable of analysing envelope and instantaneous 
frequency of a shifted signal and the results have less-wiggles 
compared to those of Hilbert transform. However, there are 
some drawbacks in the Wavelet based technique. It needs not 
only a large amount of computation memory for its calculation 
process, since it deals with time-frequency domain, but also a 
long processing time. 

A major difficulty in utilising the methods introduced in 
this paper concern the level of displacement input applied to 
the system. This displacement input should have an adequate 
level to ensure covering the backlash size. Due to the limitation 
of energy of excitation, this might become a problem, 
especially at high frequency. Limited level of displacement 
input will yield only a partial reconstruction of the restoring 
force characteristics. 

Finally, under certain excitation conditions, there may exist 
some separate regions for which chaotic vibrations could occur. 
The transition to and from those regions is marked by 
bifurcation points. We have shown that, for this case, it would 
be possible to quantify the Lyapunov exponent, for each 
amplitude of excitation. Correlating the Lyapunov exponent 
with α = A/k0x0 could, in principle, yield the backlash size. 
Hence, although quite difficult to perform in practice, chaos 
quantification could be used as a quantitative mechanical 
signature of a backlash component. 
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