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Abstract
We present a technique, based on the use of first-class control oper-
ators, enabling programs to maintain and invoke rollback logs for
sequences of reversible effects. Our technique is modular, in that
it provides complete separation between some library of effectful
operations, and a client, “driver” program which invokes and rolls
back sequences of these operations. In particular, the checkpoint
mechanism, which is entirely encapsulated within the effect library,
logs not only the library’s effects, but also the client’s control state.
Thus, logging and rollback can be almost completely transparent to
the client code.

This separation of concerns manifests itself nicely when we
must implement software with sophisticated error handling. We
illustrate with two examples that exploit the architecture to dis-
entangle some core parsing task from its error management. The
parser code is completely separate from the error-correction code,
although the two components are deeply intertwined at run time.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]

General Terms Algorithms, Design, Languages

Keywords checkpoint, delimited control, error repair

Prologue
We all make mistakes. What counts is how we handle them.

There’s little less pleasant in programming than watching beautiful
code turn ugly. And nothing causes more contortion than catching
and correcting input errors.

The problem is that error handling is not naturally modular:
it is context-dependent, often relying on the details and current
state of input processing. Extricating error checking into a sepa-
rate prepass often entails duplicating some of the processing in-
tended for correct input. For complicated artifacts like typecheck-
ers, which are hard enough to get right in the first place, code to
produce friendly error messages can obscure or even dwarf the code
to check types [9]. When input is provided and processed interac-
tively, checking and processing must be interleaved.

We tell a story in two parts, the moral of which is: error handling
can be separable, even beautiful. The hero of our tale is call/cc,
for to err is human, but to forgive requires first-class control.
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Part one takes place in an “eager” Scheme REPL, which parses
complete s-expressions as the user types a closing parenthesis, long
before a carriage return. Yet, despite advancing the state of the
parser, the user can interactively alter erroneous text by “backing
up” with the delete key and re-entering corrected text. So here the
error-handling is done, in part, by the user, but done in a way that’s
invisible to the input-processing code.

Part two retells the tale in ML, using a similar technique to
automatically discover and repair the “true” source of a syntax
error, perhaps far removed from the location where the parser got
stuck. It’s the functional programming equivalent to Burke-Fisher
error repair [2]. Again, the key benefit is the complete separation
between the parsing algorithm and the repair algorithm: you write
a parser in any style you like, and send it through our BurkeFisher
functor to get a new parser that intelligently repairs errors.

We use first-class control in two crucial ways:

• First, to provide rollback logging. We layer an interface on top
of call/cc, constructed so that the very performance of a re-
versible side-effect has an additional effect: it logs the appro-
priate reversal. Control effects and other effects smoothly inter-
leave, whether going forward or backward.

• Second, to provide modularity: we sneak checkpointing through
an unsuspecting parser. Although parsing and error correction
functionality is interleaved, the code is not. Parsing is done via
standard recursive descent, with no concern for error correction;
likewise, error correction needs only understand the structure
of the input to the parser.

We hope that, while savoring the stories below, you will see that
these two techniques transcend them.

1. Prompt reading and effect logging in Scheme
In our first example, we show how to recreate, with modern tools,
a bit of “lost art” from classic LISP input systems: how to inter-
twine input parsing with terminal-entry text editing without having
to intertwine the code that carries out these separate tasks. As we
do this, we’ll discover a general technique for constructing “com-
mand” systems that allows us to transparently log effects in a way
that permits them to be rolled back on demand, without having to
compromise the simplicity of client code that issues sequences of
these commands.

That’s the big picture; let’s begin by diving into the specifics
of our example. S-expressions, the standard syntactic form for pro-
grams and data in LISP and Scheme, have an interesting property:
they are frequently self-delimiting. For example, we do not need to
look past the terminating right parenthesis in the string “(+ x y)”
to know that we have reached the end of the form. By way of con-
trast, this is not true of numerals: if an s-expression reader sees the
string “387”, it must look ahead one character to know if this string



comprises an entire term, or if it is simply a prefix of a larger term.
If the following character is a left parenthesis, then the string rep-
resents the integer three hundred eighty-seven (which happens to
be followed by some list to be read at a later date); if the following
character is another digit, then our string is simply the first three
digits of some longer numeral.

Here is the breakdown for standard Scheme s-expressions,
showing which kinds are self-terminating, and which aren’t:

Self-terminating Lists: (), (+ x 3), . . .
Vectors: #(), #(-2 7), . . .
Strings: "fred", "dog", . . .
Booleans: #f, #t
Characters: #\z, #\q, . . .

Not self-terminating Symbols: fred, dog, . . .
Numerals: 387, 0, . . .

The details vary across dialects of LISP and Scheme, but the general
property remains.

Interactive systems that read commands or other structured in-
put from a user frequently take their inputs in the form of an s-
expression—the classic example is the LISP read-eval-print loop.
In such a system, the human user enters some command, expres-
sion or definition at the terminal; the operating system passes this
text to the LISP process, which parses it into an s-expression, and
then computes the command, expression, definition, etc. that it de-
scribes.

It turns out that old, 1970’s- and 1980’s-era LISP systems
(e.g., Maclisp and Lisp Machine Lisp) took advantage of the self-
delimiting property enjoyed by their s-expression-based interac-
tion languages. When reading s-expressions, these interactive sys-
tems would read characters from the terminal eagerly—that is, they
turned off the operating system’s buffering machinery, so that each
character was presented to the reader as soon as the user hit the
key on the keyboard. Thus, the parse would complete the instant
the terminating close-parenthesis was entered, without requiring
the user to enter a redundant newline. It’s a small but pleasant con-
venience that, in the post-Lisp-Machine age, has become lost from
the text-interaction modality.

What makes providing this capability tricky is the task of er-
ror handling. Human typists make mistakes, which they’d like to
correct as they enter their text. This is usually handled by the so-
called “line discipline” code in the operating system’s terminal de-
vice driver. This code buffers terminal input and provides a simple
text editor for operating upon this buffered text: most characters
are taken as input from the user, and echoed back to the terminal
device, to make them visible on entry. A few keys, however, are
reserved for this editing task. On a Unix system, for example:

• The delete key “backs up” one character: the OS removes the
last character from the input buffer and outputs a backspace-
space-backspace sequence to the terminal to erase it from the
screen.

• The control-U character typically erases the entire line of text,
erasing the entire buffer’s worth of input.

• The characters control-C and control-Z direct the OS to send an
asynchronous control signal to the reading process.

• Control-V turns off any special treatment of the following char-
acter.

• Control-D represents end-of-file.

The operating system does not release the buffered input to a
process attempting to read from the terminal device until the user
enters a newline character: this commits the input sequence.

Now, in order to provide eager reading, we have to turn this OS-
provided machinery off: the user process must now be responsible

for echoing input and implementing the interactive editing that hu-
mans use to back up through mistaken input and make corrections.
This is not so terrible; we can encapsulate the editing code in a
small library and be done with it.

What’s tricky is that the parsing computation is now interleaved
with the text-editing computation. Formerly, these things were split
into distinct phases. First, we enter a string, with no parsing going
on at all; during this phase, we can perform editing on each line as
we enter it. Once we strike the newline key, the final version of that
line is shipped off to the parser phase (i.e., the interpreter), which
consumes the text, produces a parse tree (that is, an s-expression),
and proceeds with the requested task.

In our new (well, 1970’s) world, the application is carrying out
the parse as text is entered by the user. If we change our minds
and wish to erase some of the text we’ve entered, as we back
up through the input text, we also have to rewind the parse com-
putation. For example, an s-expression reader is typically a lit-
tle recursive-descent parser. When it is reading the elements of a
nested list and it encounters a close-parenthesis character, it returns
the accumulated list to its recursive caller. If we were to subse-
quently decide to delete that close parenthesis, we’d have to back
the parse computation back down into that formerly completed call.

What we need is the ability to take “snapshots” of the com-
putation at various points as we parse. Roughly speaking, every
time the parser calls out to the “read character” routine, that routine
should first checkpoint the parse computation and save the check-
point away on a list. If the user tries to delete some previously en-
tered characters, the input routine can pull the appropriate check-
point from its saved history and reset the parse computation to that
previous character-reading state.

By this point, it should be clear that the right tool for this job
is the Scheme call-with-current-continuation (or, call/cc)
procedure: creating computational checkpoints is its raison d’être.

The rubout port and the reset protocol
In Scheme, we do I/O on ports; our task is to construct a new kind
of “rubout port” for reading from a terminal. We’ll construct our
rubout port using a low-level mechanism in Scheme48 [7]/scsh [12]
that permits programmers to define their own input ports, which can
be passed to the system input procedures like any other input port.
To define one of our custom rubout ports, we provide the extended-
port constructor two things. The first is a fixed suite of “port meth-
ods,” described by a record whose fields are procedures the input
system will use to read a character, “peek” at a character, close the
port, and a few other less-important operations. We also provide
a data value which encapsulates the port state; this value will be
passed to the method procedures when operations are performed
on the port. Here is the definition of the rubout port’s data record:

(define-record rubout-port-data
ttyin ; input tty port
ttyout ; output tty port, for echoing
(prev-tty-info #f) ; tty’s original echo state
(peek-char #f) ; "lookahead" peek cache
(checkpoint #f)); most recent checkpoint

This piece of Scheme code defines a procedure
(make-rubout-port-data ttyin ttyout)

which constructs a record from a pair of ports connected to the
terminal device; the other three fields of the record are initialised to
false, #f. We also get field-accessor procedures, such as

(rubout-port-data:ttyin rpd)
(rubout-port-data:ttyout rpd)

and so forth, and some analogous field-assignment procedures with
names like (set-rubout-port-data:peek-char! rpd char).



Note the checkpoint field. Our intention is that every time ap-
plication code does a (read-char rp) operation that causes the
rubout-port to actually get a character from the terminal, before re-
turning the character to the caller, the code will also grab a continu-
ation with call/cc and stow it away in the port’s checkpoint field.
If, during a later attempt to read, the rubout-port code reads, say, a
“delete” character and decides to undo the previous read, it will
be able to do so by fetching this saved value from the checkpoint
field of the rubout-port’s data record and invoking it—this will reset
the entire computation back to the previous read point.

The key piece of design we must pin down is the protocol used
to invoke the checkpointed continuation. Specifically, a checkpoint
is a Scheme continuation that must be applied to a single boolean
argument: (checkpoint just-1?). If the just-1? argument is
true, we wish to rewind the computation back just one step—that
is, to the immediately prior read operation. If the argument is false,
then we wish to rewind all the way back to the beginning of the
entire read session.

The core effects: reading and echoing
We can now define the pair of low-level procedures that perform
our system’s two primitive side-effects: reading a character from
the keyboard, and echoing an input character to the display. Since
each of these procedures carries out an effect, it must log the effect
as it performs it—that is, we must update the port’s checkpoint to
add a rollback handler that will undo the effect if we rewind back
through this point in the computation. Here is the code for echoing:
(define (echo c pd)
(let* ((oport (rubout-port-data:ttyout pd))

(reset (rubout-port-data:checkpoint pd)))
(write-char c oport) ; 1: Echo the character.

;; 2: Set a checkpoint to undo the echo.
(set-rubout-port-data:checkpoint pd

(call/cc (λ (ret)
(let ((just-1? (call/cc ret)))

(print-rubout-sequence oport)
(reset just-1?)))))))

;;; Output backspace/space/backspace to the port.
(define (print-rubout-sequence oport)
(write-string "\b \b" oport))

The rubout-port machinery calls echo whenever it needs to
echo a character just read to the terminal. The procedure writes
the character out on line 4, and then logs the effect in the last
half of the procedure by updating the port’s checkpoint. This is the
first piece of serious continuation manipulation we’ve performed,
so we will trace through its execution carefully. The first, outer
call/cc creates a return point ret; applying ret to some value
cp will cause cp to be installed as the port’s new checkpoint. The
second, inner call/cc creates the actual checkpoint continuation;
call/cc passes this continuation to ret, so, just as we described,
this continuation gets installed as the current checkpoint.

Now, consider what happens when this checkpoint is invoked at
some later time, by fetching it from the rubout port’s data record
and applying it to some boolean argument. We’ll reset the com-
putation back to now: the inner call/cc will return the boolean
value, so it will be bound by the let form to the variable just-1?.
Then we’ll proceed into the body of the let, which contains the
rollback action: we write out a backspace/space/backspace char-
acter sequence to the terminal, which will erase the character we
previously echoed back on line 4 of the code, then we’ll pass the
just-1? boolean on to our checkpoint. We do this because we are
in the process of rewinding back to some prior input—the echo ac-

tion is an output effect, not an input effect, so we need to continue
rewinding the computation.

Our next procedure (which appears in Figure 1) is the primitive
character-input procedure. When the rubout-port machinery needs
to actually read a character, it applies %read-char to the port’s data
record. This code is, essentially, our “line discipline” driver code,
written in Scheme. The procedure sits in a loop (the named-let
function lp), which does an input operation on the actual terminal,
binding the variable c to the character entered by the user. Then we
perform a variety of actions, depending on the character. Inducing
rollback is easy: if the character is the delete character, we apply
the port’s current checkpoint continuation rubout to true, which
will abort what we’re doing, and reset to the previous read (and
also undo any echoing we might have logged in-between). That
previous read will then be able to get a new character from the user
and return it to the parser in place of the original character it had
input back when it first ran. (We’ll see the code that does this—the
code at the target end of our reset-continuation’s non-local jump—
in just a moment.)

If the character is the line-kill character, control-U, then we ap-
ply the checkpoint to false; by the rules of the checkpoint invo-
cation protocol, this will induce a rewind all the way back to the
beginning of the entire parse session, clearing previously echoed
characters from the display as we rewind.

If the user entered control-C or control-Z, the code sends the
current process the appropriate OS signal, and then loops by tail-
calling (lp), to continue trying to read a character. (The process
signals itself in a context that resets the terminal’s echoing and
buffering state to its original settings, but this is a fine point we
can skip.)

These first few cases describe the text-editing functionality of
our “device driver,” where characters input by the user are not in-
tended as data to be passed on to the process, but are rather inter-
preted directly by the input-port system as requesting various ac-
tions. The final case (the else clause of the cond) is the actual-input
case: we’ve read an ordinary character c (or we’ve encountered the
end of file, or we’ve read the “knockdown” character, control-V,
followed by any character at all). Since we can now be considered
to have successfully accomplished an input side-effect, before we
return c to our caller, we must first log the operation by updating
the port’s checkpoint. Just as with echo, this is done with a nested,
double call/cc pattern. The first, outer call/cc simply captures
the context we’ll use to return c and proceed with the parse by re-
turning from %read-char. The second, inner call/cc creates the
checkpoint continuation, naming it ckpt. We then install ckpt into
the port’s data record, and apply ret to the character c, which will
lead us to produce c as the return value of %read-char. What hap-
pens when, at some later time, the checkpoint continuation is in-
voked? What we want to accomplish, if this happens, is to rewind
the computation back to now, then get a new character c′ from the
terminal and return that instead of the character c we just now pro-
duced.

That’s exactly what happens. Suppose some future call to
%read-char gets a delete character and so fetches the checkpoint
continuation we just now created from the port’s data record and
applies it to true (i.e., executes line 7 of the procedure). When the
checkpoint continuation is applied to true, we’ll rewind to “now,”
and the second, inner call/cc will return the true value—so it
will be let-bound to the variable just-1?, and we’ll proceed into
the body of the let form, whose if conditional will jump back to
the top of our original loop, lp, continuing our current read. Any
character c′ we get will be returned to our caller, so the net effect
is that, after rewinding the computation to here, we’ll proceed with
c′ instead of our originally-read character. In short, we undid the
input effect and replaced it with a new one.



(define (%read-char port-data)
(let ((rubout (rubout-port-data:checkpoint port-data))

(iport (rubout-port-data:ttyin port-data)))
(let lp ()

;; Assert: (rubout-port-data:peek-data port-data) = #F.
(let ((c (read-char iport))) ; real input!

(cond ((rubout-char? c) (rubout #t)) ; DEL => rubout a char
((linekill-char? c) (rubout #f)) ; ^U => kill the whole sexp.

((interrupt-char? c) ; ^C => interrupt
;; Undo the tty’s raw/no-echo modes before raising the signal.
(with-rubout-port-restored port-data
(signal-process 0 signal/int))

(lp)) ; The process survived the signal => keep reading.

((suspend-char? c) ; ^Z => suspend
;; Undo the tty’s raw/no-echo modes before raising the signal.
(with-rubout-port-restored port-data

(signal-process 0 signal/tstp))
(lp))

(else (let ((c (cond ((knockdown-char? c) ; ^V => turn off special handling.
(read-char iport))
((eof-char? c) *eof-object*) ; ^D => EOF
(else c)))) ; Normal char

;; Outstanding! We have read an actual character, C.
;; Before returning it to the parser, set a new
;; checkpoint, so that if we later wish to rub C out,
;; we can come back here, get a new character, and resume.
(call/cc ; Therein lies the rubout.
(λ (ret)

(let ((just-1? (call/cc (λ (ckpt) ; Set the checkpoint & return C:
(set-rubout-port-data:checkpoint port-data ckpt)
(ret c)))))

;; On rewind, we’ll bind JUST-1? & come here.
(if just-1? (lp) ; Either re-do the current read,

(rubout #f)))))))))))) ; or keep rewinding.

Figure 1. The checkpointing character reader

On the other hand, suppose at some point in the future the user
enters the “line-kill” character, Control-U. Then the checkpoint
continuation will be applied to false (by line 8 of that future in-
vocation of %read-char). The computation will be reset to “now,”
and the inner call/cc will produce the false value, which will be
let-bound to just-1?. So, instead of looping in our current read,
we’ll keep rewinding by applying our checkpoint to false, in the
very last line of the procedure: (rubout #f).

In other words, we don’t have to keep an explicit stack of
checkpoints. The “stack” is implicit in the environment structure of
the various checkpoints: each checkpoint continuation has access to
the next checkpoint back in the timeline: it is bound to the variable
rubout in the current checkpoint’s lexical scope. (Similarly, it is
bound to the variable reset, in the checkpoint created by the echo
procedure.)

Peeking and reading
All the heavy lifting in our system is accomplished by the echo and
%read-char primitives. The rubout-port system calls them from
its peek-character and read-character “method” procedures. Note
a policy decision encoded in these procedures: a character is not
echoed as soon as we get it from the keyboard: peeks don’t count.
This code doesn’t echo a character to the display until the parser
actually consumes it with a read-char operation.

(define (rubout-peek-char port-data)
;; A "subsequent" peek: don’t checkpoint
(or (rubout-port-data:peek-char port-data)

;; A "first" peek -- checkpoint it
(let ((c (%read-char port-data)))

;; then set the peek cache:
(set-rubout-port-data:peek-char port-data c)
c))) ; then return the character.

(define (rubout-read-char port-data)
;; If the peek does input, it will be logged:
(let ((c (rubout-peek-char port-data)))

;; If we echo, it will be logged:
(if (not (eof-object? c)) (echo c port-data))

;; Clear the peek cache.
(set-rubout-port-data:peek-char port-data #f)
c))

Note also that these two higher-level procedures do not concern
themselves with setting checkpoints or logging effects. One of the
nice properties of our design is that the effect-logging code is
tightly bound to the code that commits the effects. Thus, doing a
side effect and logging its rollback handler are welded together.



Client code, like the two procedures above, or the application’s
parser, just commit side-effects at will; it’s impossible for them to
break the pairing of effects and rollbacks. (This nice property is
only extended to the side-effects that we included in our design, of
course. Parser clients must be aware that they cannot perform other
side-effects and expect them to be undone during rollback.)

Failure is not an option
All that remains is to define with-rubout-session*, the proce-
dure used to delimit a single parse session; it appears in Figure 2.
We can perform a rubout-enabled parse with something like:

(with-rubout-session* rubout-port
(λ () (read rubout-port)))

The central body of this procedure executes in a dynamic con-
text, established by the R5RS Scheme dynamic-wind procedure,
that saves and restores the rubout port’s checkpoint if we should
throw out and then back into the session’s dynamic extent by in-
voking saved continuations. It also serves another purpose: the
dynamic-wind’s exit thunk clears the checkpoint from the rubout
port, which permits the checkpoint to be garbage collected even if
the rubout port itself continues to remain alive.

Note that the rubout-session’s thunk executes in an exception-
handler context that treats parser-syntax errors in a clever way:
we refuse to accept input from the terminal that triggers a syntax-
error exception. If the user should enter a character that causes the
parser to raise this error, the exception handler “rings the bell” (in
a visual manner), then discards the bad character by invoking the
rubout port’s current checkpoint, passing it true for its just-1?
parameter. This rewinds the parse computation back to the read
operation where the user entered the offending character (erasing
the character as we rewind, if it had been echoed); we then resume
the parse by reading an alternate character from the user.

For example, if the user tries to type in an ill-formed dotted-pair
that has two dots, e.g., (a . b . c), the parser will stubbornly
refuse to accept the second dot, ringing the bell every time the user
attempts to enter it to signal that we have departed from the syntac-
tic straight and narrow. Note that this facility is completely inde-
pendent of the grammar we are parsing, or the details of the parser:
the parser is just a piece of code that raises an error exception as
soon as it encounters an illegal character.

The final task the rubout-session procedure must perform before
invoking the client’s parser computation thunk is to set the rubout
port’s initial checkpoint. Again, we see the nested, double call/cc
pattern. Tracing through the restart loop shows that each time we
rewind back to the initial checkpoint, we recreate and reinstall it
into the port, then begin the parse (that is, call thunk) all over again.
Thus, invoking the initial checkpoint has the effect of restarting the
whole parse.

Discussion
The big idea The first thing to note about this rubout-handler
system is that the technique is not at all limited to interactive text
entry. The general idea here is that we have a library of effectful
(but reversible) operations. Some client performs a series of effects
by issuing a sequence of these operations; as the client computes,
the application may decide to rewind the driving computation to
some previous operation and do something different—perhaps (as
in our rubout-handler scenario) in response to error conditions.

The design pattern we propose here is to instrument the effectful
operation library to construct a rollback log for the operations
it performs. More specifically, by constructing this rollback log
from continuations, we capture not only the library’s effects, but
also the client’s control state at each operation-invocation point.
This is what permits completely transparent rollback of the client

computation: it’s all due to the power of call/cc to package up a
general control state.

Delimiting our checkpoints Let’s motivate our next point by con-
sidering an extension to our rubout-handler system. Many text-
input systems have some kind of “history” mechanism: they save
previous lines of input, which the user can recall by entering some
special control key that cycles through previous entries. Suppose
we wished to provide this kind of functionality—and, of course,
keep our rubout-handling capability. Unfortunately, the saved con-
tinuations that make up our checkpoints capture too much control
state: they capture not only the parse computation, but also the
computational state of the client that called the parser. If we were
to reset to one of the checkpoints from a previous read in, e.g., a
Scheme interpreter’s read-eval-print loop, we’d reset the entire in-
terpreter back to that earlier state!

This is a problem that is exactly handled by delimited-control
operators such as Felleisen’s prompt [4, 13] or Danvy and Filinski’s
shift [3]. We need only delimit the parse computation carried
out by the thunk passed to with-rubout-session* and we’re set.
We leave this modification to our code as a (fun) exercise for the
interested reader.

The dark side of Church encodings Scheme provides continua-
tions encoded as procedures: we perform a non-local control trans-
fer to a captured continuation by applying it to some argument. This
has been a long-standing source of subtle problems using Scheme’s
continuations. The central issue is that, if we want to call procedure
p, with argument a and continuation k, we cannot do the following:
(k (p a)). This goes wrong because k’s underlying continuation
does not actually become the current continuation until p returns;
the whole time p is executing, the continuation is an extension of
the one extant when we began evaluating the entire (k (p a)) ex-
pression. So if p raises an exception, we will resolve it using the ex-
ception handlers of that continuation, not k’s handlers. If we were
hoping to reclaim the original continuation’s stack by installing k as
the current continuation, this won’t happen while p is executing—if
it happens to be some long-running thread (such as a web server),
then the original continuation’s stack will never become free, lead-
ing to a subtle space leak. These kinds of space leaks aren’t just
theoretical oddities; they actually occur when programmers build
thread schedulers based on continuations [1].

The real problem here is that when we Church-encode a kind
of data, we can only do one thing with the data: apply it to an
argument—that is the only operation permitted on procedures. In
the case of continuations, we need to do two things: perform a func-
tion call with the given continuation for the call, and compose an
α→ β function onto the “end” of a β-accepting continuation, pro-
ducing an α-accepting continuation. These two procedures provide
the necessary interface:

(with-continuation cont thunk)
(compose-continuation β-cont α->β)

Scheme doesn’t have this kind of continuation mechanism, so we
have to code in awkward ways to work around the limitations of
call/cc.

This problem rears its head in our rubout-handler system. Con-
sider the subtle, double-call/cc code that creates the new check-
point when we read a character in %read-char. Couldn’t we elim-
inate the inner call/cc and just use a simple procedure, instead of
an exotic continuation, with the following?



(define (with-rubout-session* rubout-port thunk)
(let ((pd (extensible-input-port-local-data rubout-port))

(suspended-checkpoint #f))

(with-raw-mode-rubout-port pd ; Turn off tty buffering & echoing.
(dynamic-wind

;; Dynamic-wind pre:
;; If we are throwing back into the parse, restore the checkpoint
;; we saved away when we threw out.
(λ () (set-rubout-port-data:checkpoint pd suspended-checkpoint))

;; Dynamic-wind body:
(λ () (with-syntax-error-handler

;; Here’s the error handler. If the parser raises a syntax error,
;; ring the bell, clear the peek-char cache, then trigger a 1-step
;; rewind to rubout the last char, which triggered the error.
(λ (c) (visible-bell (rubout-port-data:ttyout pd))

(set-rubout-port-data:peek-char pd #f)
((rubout-port-data:checkpoint pd) #t))

;; Set the initial checkpoint, which comes back here and
;; restarts the whole parse.
(call/cc (λ (go-start-parse)

(let restart ()
(call/cc (λ (icp)

(set-rubout-port-data:checkpoint pd icp)
(go-start-parse)))

;; Come here when initial checkpoint ICP is invoked:
(restart))))

(thunk))) ; Do the parse.

;; Dynamic-wind post:
;; When we’re done, clear out the port’s checkpoint, so the port
;; won’t keep the checkpoint from being gc’d. But... we might not be
;; done. We might be throwing out and later throwing back in. So
;; save away the current checkpoint in case we later throw back in.
(λ () (set! suspended-checkpoint (rubout-port-data:checkpoint pd))

(set-rubout-port-data:checkpoint pd #f))))))

(define (visible-bell oport) ; A simple "visible bell:"
(write-char #\! oport) ; print out a !,
(sleep 1) ; pause one second, then
(print-rubout-sequence oport)); erase it.

Figure 2. Delimiting a rubout-handler session.

(call/cc (λ (ret)
(set-rubout-port-data:checkpoint port-data

(λ (just-1?) (if just-1?
(ret (lp))
(rubout #f))))

c))

Unfortunately, no. If some future delete command applies this
checkpoint to true, we will perform the (lp) retry in that future
context; we won’t throw back to the previous control state un-
til the lp call returns to the Scheme-style Church-encoded con-
tinuation ret. All the time that (lp) is running, it is running
with the wrong exception-handler context, the wrong dynamic-
wind undo/redo handlers, and so forth. Furthermore, the run-time
system can’t reclaim the triggering read’s stack and other control
context until lp returns; we want to reclaim it when lp starts.

The double-call/cc pattern establishes the proper context, then
captures it with the inner call/cc, so things work out properly.

It would have been easier and simpler to write this code if we’d
had the alternate continuation functionality described above. Our
checkpoint-setting code would then look like this:

(call/cc
(λ (ret)

(let ((ckpt (compose-continuation ret
(λ (just-1?)

(if just-1? (lp) (rubout #f))))))
(set-rubout-port-data:checkpoint port-data ckpt))

c))

An observant reader might similarly have wondered why we
didn’t use a simple procedure as the checkpoint for the echo proce-
dure. This is why. As a matter of style, checkpoints in our rubout-
handler system—that is, things stored in the checkpoint field of a
rubout port’s data record—are always and only continuations—that
is, things created by call/cc.



This issue matters less in the case of echo’s checkpoints. If we’d
written the checkpoint code for echo with the simpler

(set-rubout-port-data:checkpoint pd
(λ (just-1?)
(print-rubout-sequence oport)
(reset just-1?)))

then the only code that would run in the wrong context would
be the (print-rubout-sequence oport) call, which is short and
presumably terminates with no other control effects such as raising
an exception. Still, we preferred to work with the discipline of only
using continuations for checkpoints.

Backwards and forwards An observant reader might also be
wondering: old LISP systems didn’t have call/cc or general con-
tinuations. So how did these systems provide prompt reading with
rubout handling?

The answer is rather ingenious [10]. These systems couldn’t
back up to prior checkpoints by invoking saved continuations. In-
stead, the port machinery would log all the characters read during
a session. If the user requested a single-character delete, the rubout
handler would raise an exception, which would be caught by an ex-
ception handler established at the beginning of the rubout-handling
session. The exception handler would delete the last character from
the log, and then completely restart the entire parse. During the
new parse attempt, the port would be in a special “replay” mode:
whenever the parser requested a character from the port, the port
would get the next item from the log, instead of going to the termi-
nal to read a new character. When the log was exhausted, the port
would revert to doing actual input from the terminal. So, to delete a
character, the rubout handler would simply reread and reparse ev-
erything but the deleted character. Instead of going one step back,
the system would do a complete restart and then go n − 1 steps
forward.

Monads and dependent types The technique of using continua-
tions to construct rollback logs for command sequences, where we
wish to capture client control state as well, seems nicely suited for
expressing in a Haskell monad that uses both continuations and
state.

We should mention that Conor McBride was able to code up
a functional equivalent to our rubout handler in a dependently-
typed extension to Haskell. Although McBride was, of course,
able to capture many system invariants by means of a rich static
type system, we should point out that his implementation required
almost sixty lines of code to achieve this feat.

Why call/cc? Our final point is the following. Many program-
mers think of call/cc and delimited control operators as being
the province of effete language theorists. To which we really must
reply1: “Au contraire!” Continuations are rather tools for hearty,
robust systems programmers: we’ve used them to write a line-
discipline driver to replace the one provided by the Unix kernel,
and we only needed about 200 lines of code. . . and our version pro-
vides more functionality.

2. The Burke-Fisher functor in SML
Enough s-expressions. Let’s look at some real syntax:

〈exp〉 ::= 〈exp〉 + 〈exp〉
| 〈num〉
| 〈id〉
| · · ·

〈decl〉 ::= val 〈id〉 = 〈exp〉 ;
| fun 〈id〉 ( 〈id〉 ) = 〈exp〉 ;

This is just enough grammar to get us into some interesting trouble.

1 In a hearty, robust manner, that is.

Imagine for a moment being a novice programmer sitting at the
REPL. You type

> val f(x) = x + 1;

expecting to define your first function. But, of course, you are
instead greeted by

SYNTAX ERROR: at (1:6), got ‘(’, expected ‘=’

Being a novice, you probably haven’t seen the grammar above,
which anyway would be much larger in practice. From the error,
you only know that the first five characters drove the parser into a
state from which ‘=’ is the only way out. If you also believe that
val declarations are the sole way of creating bindings—or have
forgotten whether it’s fun, fn, proc or function—you’re in for a
long and frustrating REPL session.

A more helpful parser might instead respond with

> val f(x) = x + 1;
SYNTAX ERROR: at (1:1), did you mean ‘fun’?

Startlingly, the location of the syntax error has changed in this in-
teraction. The parser is recommending that val be replaced by fun,
even though val is permitted by the grammar. This recommenda-
tion seems more helpful than replacing ( with =, but why?

There is a general principle at work, one elucidated in a classic
paper by Burke and Fisher [2]. The principle, loosely stated, is that

Syntax errors are usefully explained by finding minimal,
nearby edits that allow the parser to substantially progress.

Looking at our novice REPL session, we see

• If we replace ( with =, the parser will encounter another syntax
error almost immediately: the now-unbalanced closing paren-
thesis. To recover from that error, we would probably delete
several tokens—the initial replacement leads us straight into a
syntactic quagmire.

• If instead we replace val by fun, which requires backing up
from the location where the error was detected, that single-
token change results in a grammatically-correct input.

In short, the fun replacement is better because it explains more of
the programmer’s original input.

Burke and Fisher outline two requirements for “practicality”:

1. Error handling should not substantially increase the space or
time needed to parse correct input.

2. Error analysis and recovery should take constant time.

The technique outlined in their paper relies on the details of
explicit-stack LL and LR parsing, and works by maintaining two
parser states. The first parser state represents the “real” parser, and
is used to detect syntax errors. The second parser state lags some
fixed number k of tokens behind. When the real parser encounters
an error, it can be repeatedly reverted to the state of the lagging
parser as different modifications to the input are tried. The win-
ning modification is, roughly, the smallest one yielding the greatest
amount of progress beyond the original error.2

While ingenious, Burke-Fisher error repair is also a vivid exam-
ple of too-tight coupling between error handling and core logic: the
error-handling code relies on complete knowledge of the represen-
tation and algorithm of the underlying parser.

Using similar techniques to the eager REPL, we can liber-
ate Burke-Fisher error repair from its assumptions about parsing,
achieving clean separation between processing valid input and han-
dling erroneous input.

2 To work in constant time, a test of a repair should only venture some fixed
number of tokens beyond the original error.



Plot summary
The basic trick is to slide in error correction between a parser and
its source of input, a lexer. As with the eager REPL, we do this by
feeding the parser an instrumented, checkpointing lexer. To keep
things interesting, we switch to SML, where we can use the module
system to be very clear about the separation of concerns. In the end,
we write a single functor, BurkeFisher, that can add error repair
to any module of signature PARSER.

We use two extensions to the language: delimited control and
higher-order functors, both of which can be had in SML/NJ [5, 8].
Why? Read on.

Setting the scene: the signature of a parser
We start with the lexer:

signature LEXER =
sig
type tok
type tok_stream
val lex : tok_stream -> (tok * tok_stream) option

end

The LEXER signature characterizes the source of input to a parser: a
stream of tokens (type tok). We know nothing about the internal
structure of token streams, but can observe the next token and
remaining stream, if any, using lex.

A PARSER is parameterized by its LEXER:

signature PARSER =
sig
type tok
type result
functor ForLexer(L : LEXER where type tok = tok):
sig

exception ParseError of L.tok_stream list
val parse : L.tok_stream -> result

end
end

Here is our first use of SML/NJ’s higher-order module system: a
module implementing PARSER must include a functor, ForLexer,
which can be applied to token-compatible lexers. ForLexer in turn
provides a parse function specialized to the token stream of the
given lexer. Of course, all this could be replaced by an appropriate
use of polymorphism, but then, so can SML’s module system [11].
Explicit structuring via signatures, modules and functors allows us
to name the separate concepts with which we wish to work.

Because result is defined outside the ForLexer functor, the
result type of a parser cannot depend on its lexer.

On the other hand, the ParseError it raises on detecting a
syntax error is parameterized by the token stream—in fact, it takes a
list of token streams. This is the one concession a parser must make
to error repair: it must signal the detection of an error by throwing
an exception holding the stream just after the error was detected. If
the parser performs backtracking choice, but every choice fails, it
should throw the exception with a list containing each failure point.

A simple parser
The module DeclRecognizer in Figure 3 implements a recognizer
for the 〈decl〉 grammar, providing an example realization of the
PARSER signature. Being a recognizer, there are only two possible
outcomes of parse: a unit value if successful, and an exception if
not. The implementation of DeclParser uses a few parser combi-
nators [6], which provide interaction with both the lexer and, ulti-
mately, error repair.

The combinator want simply checks that the given token is the
next one on the stream, returning an advanced stream if so and
raising an exception if not:

fun want t = fn s =>
case L.lex s
of NONE => raise ParseError [s]
| SOME (t’, s’) =>

if t=t’ then s’
else raise ParseError [s’]

(* stream /after/ the error *)

Usually we compose recognizers sequentially, letting errors propa-
gate:

infix >>
fun p >> q = fn s => q (p s)

To handle nonterminals like 〈decl〉, which have multiple produc-
tions, we use backtracking choice:

infix <|>
fun p <|> q = fn s =>

p s handle ParseError ss =>
q s handle ParseError ss’ =>
raise ParseError (ss @ ss’)

With choice we see concretely the concession the parser must make
to error repair: it must do a bit of work to bundle together the
possible error locations.

Checkpointing a lexer
Parsers are conveniently parameterized over lexers, leaving the per-
fect loophole through which to checkpoint parser state. Unlike the
eager REPL, we will employ delimited continuations for check-
pointing. A delimited continuation captures the evaluation context
only up to the most recent delimiter. Delimitation will allow us to
tentatively run the rest of a parse with various repairs, searching for
the best one, without going on to execute the rest of the program.

We use an implementation of delimited control [3], due to David
Herman in an ICFP pearl [5], that is parameterized by a single
answer type:

signature CONTROL =
sig

type ans
val shift : ((’a -> ans) -> ans) -> ’a
val reset : (unit -> ans) -> ans

end

Delimiters are inserted using reset, which expects an answer-
producing thunk. On the other hand, shift aborts to the nearest
delimiter, but reifies the evaluation context up to the delimiter as a
reusable function. Thus,

> (reset (fn () => shift (fn k => 1) + 1)) * 2;
2
> (reset (fn () => shift (fn k => k (k 1)) + 1)) * 2;
6

In the first case, the captured context [ ] + 1 is simply discarded;
the reset is replaced by the answer 1, which is then doubled. In the
second case, the captured context [ ] + 1 is applied, as a function,
twice; the reset is replaced by the answer 3, which is then doubled.

For our purposes, a single delimiter surrounding a parse will
suffice. The checkpoints captured by the lexer will correspond to
the remaining execution of the parser, starting from its request for
a token at some point in the stream, and continuing to the point



structure DeclRecognizer =
struct
datatype tok = VAL | FUN | LPAREN | RPAREN | ID | EQ | NUM | PLUS | SEMI
type result = unit

functor ForLexer (L : LEXER where type tok = tok) =
struct

exception ParseError of L.tok_stream list

(* ... definition of combinators want, >> and <|> as given in text ... *)

val wantExp = (* ... *)
val wantDecl =

(want FUN >> want ID >> want LPAREN >> want ID >> want RPAREN >> want EQ >> wantExp >> want SEMI)
<|> (want VAL >> want ID >> want EQ >> wantExp >> want SEMI)
fun parse s = let val _ = wantDecl s in () end

end
end

Figure 3. A combinator-style recognizer for 〈decl〉

fun lex (s, PASSTHRU) =
(case L.lex s

of NONE => NONE
| SOME (t, s’) => SOME (t, (s’, PASSTHRU)))

| lex (s, CHECKPOINT w) =
(case L.lex s
of NONE => NONE
| SOME (t, s’) => SOME (C.shift (fn k =>

k (t, (s’, CHECKPOINT (Window.push w (* first time through, yield t *)
(fn t’ => k (t’, (s’, PASSTHRU))))))))) (* on checkpoint invocation, yield t’ *)

Figure 4. The checkpointing lexer

where it produces a final answer. The type ans will be P.result
for a parser P.

The checkpointing instrumentation is performed by a LEXER-
transforming functor. Using SML/NJ’s funsig form, we can give
it the following signature:

funsig LEXER_WRAPPER (C : CONTROL) (L : LEXER) =
LEXER where type tok = L.tok

As the signature indicates, the instrumented lexer produces the
same type of tokens as the original one, so it will be compatible
with the same parsers. What changes is the internal representation
of token streams, which includes a wrapper component:

functor WrappedLexer (C : CONTROL) (L : LEXER) =
struct
type tok = L.tok
type checkpoint = L.tok -> C.ans
datatype wrapper

= CHECKPOINT of checkpoint Window.window
| PASSTHRU

type tok_stream = L.tok_stream * wrapper

fun lex (* ... see figure ... *)
end

An instrumented lexer can operate in one of two modes: check-
pointing or passthrough. Checkpointing is used during initial pars-
ing, until a syntax error is found. The last k checkpoints are main-

tained using a window, so that instrumentation imposes only a
constant-bounded space overhead:

signature WINDOW =
sig

type ’a window
val empty : ’a window
(* keeps only last k pushes *)
val push : ’a window -> ’a -> ’a window
val list : ’a window -> ’a list

end

Figure 4 shows the implementation of instrumented lexing. In
passthrough mode, instrumentation has no effect. In checkpointing
mode, the lexer uses shift to abort while capturing the continua-
tion up to the end of parsing. The delimited continuation k is imme-
diately invoked—effectively undoing the abort—yielding the same
token t that the underlying lexer would. However, a checkpoint
is pushed that, when invoked, re-runs the parser from the point
of the shift, providing an alternative token t’ and switching to
passthrough mode.

An instrumented lexer provides wrap to inject an underlying
lexer, unwrap to project the underlying lexer, and checkpoints to
extract the last k checkpoints:

fun wrap s = (s, CHECKPOINT Window.empty)
fun unwrap (s, _) = s
fun checkpoints (_, CHECKPOINT w) = Window.list w

| checkpoints (_, PASSTHRU) = []



Putting it together: the Burke-Fisher functor
Nearly all the ingredients are now in place. However, to search for
repairs, we’ll need to know something about the available tokens:

signature TOK =
sig
type tok
val toks : tok list
val toString : tok -> string

end

The list toks provides an instance of each token that should be used
for replacement or insertion during error repair.

With that, we can specify the shape of functional Burke-Fisher
error repair:

funsig BURKE_FISHER
(T : TOK)
(P : PARSER where type tok = T.tok) =

PARSER where type tok = T.tok

Figure 5 gives an implementation—the BurkeFisher functor. To
keep the presentation short, the functor is not quite true to the
original algorithm:

• It only performs a single repair.
• It requires the repair to make the entire input valid, rather than

choosing a repair that makes maximal (but bounded) progress.
This means, in particular, that repair is not constant-time.

• It only attempts repairs of Hamming distance 1, that is, single-
token replacements.

These limitations can be easily addressed by modifying the functor,
without any change to the underlying parser.

When applied to a parser P, BurkeFisher produces a parser
with result type P.result * string option. The string compo-
nent is a description of the single repair (if any) performed.

Internally, the functor uses Herman’s GreatEscape functor [5],
which provides delimited control by using SML/NJ’s call/cc fa-
cility. Crucially, this implementation of delimited control inter-
acts properly with exceptions: delimited continuations captured
by shift also capture exception handlers up to the delimiter—no
more, no less. Thus, as Herman writes,

reset
(fn _ =>

(shift (fn k => (k 0)
handle Fail _ => 1))

+ (raise Fail "uncaught"))
handle Fail _ => 2

returns 1 rather than 2. Since we use exceptions to communicate
parse failures, and thus exception handlers to institute repair, we
rely on this behavior.

Once BurkeFisher is applied to a particular parser and lexer,
it instantiates the parser with an instrumented version of the lexer,
yielding a module UP (for “underlying parser”). To parse an under-
lying stream us, it wraps the stream and feeds it to the underly-
ing parser—within a reset, which sets the delimiter for the check-
pointing lexer. The result of the parse is paired with NONE, meaning
no repair was necessary, which is returned if all goes well. But out-
side this pair (in particular, outside the reset), there is an exception
handler that kicks off the repair process. Placing the handler outside
the reset guarantees it won’t be captured in the checkpoints.

AT LAST—when the underlying parser throws a syntax error,
BurkeFisher catches it and its list of wrapped streams wss. Each
wrapped stream represents a possible syntax error within a choice.
Concatenating the checkpoints from each stream, the repairing

parse uses tryCPs to attempt a repair at each checkpoint in turn. If
successful, tryCPs returns a pair of the result from the underlying
parser and the replacement token it used to get that successful parse.
Otherwise tryCPs returns NONE, and parse re-raises the parse error
using the underlying lexer streams.

Supposing we’ve written modules Tok and SimpleLexer (which
represents streams as lists of tokens), we can sit down at the REPL
and see

> structure RP = BurkeFisher(Tok)(DeclRecognizer);
> structure RPP = RP.ForLexer(SimpleLexer);
> RPP.parse [VAL,ID,LPAREN,ID,RPAREN,EQ,

NUM,PLUS,NUM,SEMI];
((), SOME "Did you mean ’fun’?")

A caveat: choice points are commit points
There’s a subtlety regarding choice: if we factor out “ = 〈exp〉 ; ”,
which is common to both forms of 〈decl〉, the repair no longer
works.

The problem is this: once a choice has been successfully parsed,
only the checkpoints of the taken branch are retained. The effective
result is that repair checkpoints do not always have access to all
possible branches.

We used exceptions carrying a list of streams to join together
the checkpoints of an unsuccessful choice. To deal with suc-
cessful choices, we need to maintain all checkpoints even when
backtracking—we need the backtracking control structure to play
nicely with the checkpointing control structure. An easy and fairly
pleasing way to do this is to parameterize the underlying parser by
an implementation of backtracking choice—which BurkeFisher
can then provide—which also allows ParseError exceptions to
carry just a single stream:

fun choose p q = fn (us, w) =>
p s handle ParseError (us’, w’) =>
q (us, w’)

Discussion
The big idea As with the eager REPL, the key benefit of control
operators is the ability to hook into—even manipulate—the com-
putation of a parser, without any understanding of how that compu-
tation is structured.

There are also two significant differences from the eager REPL.
First, we assume that parsing and lexing are free from observable
side effects, so we do not use effect logging (and, in fact, avoid
state—see below). Thus, we are only logging control state. Second,
by having a modicum of knowledge about the structure of input
to the parser (via the Tok signature), we are able to intelligently
explore the space of input repairs, while keeping the computational
structure of the parser abstract.

Look Ma, no refs! Contra the eager Scheme REPL, we haven’t
used mutable state in implementing Burke-Fisher repair. We were
able to avoid it because the PARSER signature requires parsers to use
their lexers functionally—in particular, to thread the token stream
through the parsing processes. The downside to this approach is
that checkpointing is sensitive to the way the parser threads the
token stream, which as we noted can cause problems when the
parser itself backtracks.

But, of course, an imperative interface is also workable, and it
has the benefit that every use of the lexer is checkpointed, regard-
less of how the token stream is threaded. What’s more, the token
streams can be dropped from the ParseError exception, further
shrinking the interface between the parser and the repair functor.



functor BurkeFisher (T : TOK)
(P : PARSER where

type tok = T.tok) =
struct
type tok = T.tok
type repair = string
type result = P.result * string option

(* Herman’s delimited control from call/cc *)
structure C = GreatEscape(type ans = P.result)

functor ForLexer (L : LEXER
where type tok = tok) =

struct
exception ParseError of L.tok_stream list
structure WL = WrappedLexer (C) (L)
structure UP = P.ForLexer (WL)

fun tryReps k [] = NONE
| tryReps k (t::ts) = SOME (k t, t)

handle UP.ParseError _ => tryReps k ts

fun tryCPs [] = NONE
| tryCPs (k::ks) = case tryReps k T.toks

of NONE => tryCPs ks
| SOME rt => SOME rt

fun parse us =
(C.reset (fn () =>

UP.parse (WL.wrap us)), NONE)
handle UP.ParseError wss =>

case tryCPs (List.concat
(map WL.checkpoints wss))

of NONE =>
raise ParseError (map WL.unwrap wss)

| SOME (r, t) =>
(r, SOME (concat ["Did you mean ",

T.toString t,
"?\n"]))

end
end

Figure 5. The Burke-Fisher functor

To type-checking, and beyond Having generalized Burke-Fisher
repair to arbitrary parsers, it’s natural to wonder if we can go
even farther. By encapsulating the notion of input streams and lo-
cal repairs in a separate module taken as an extra parameter, the
BurkeFisher functor could be pared down to handling just the
checkpointing and error-catching process. We suspect, for exam-
ple, that Lerner et al.’s SEMINAL tool [9], which attempts to ex-
plain type errors by searching for repairs, could be restructured to
use Burke-Fisher-style local search—becoming just one more in-
stantiation of the functor.

The real deal The BurkeFisher functor came out of work done
building new lexing and parsing infrastructure for SML/NJ; it is
in use in production code, and available with recent versions of
the compiler.3 The implementation includes the full suite of Burke-
Fisher repairs, allows for multiple repairs, and judges goodness of
repairs using a sophisticated metric.

3 See http://smlnj.org/
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