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Abstract 

It has been demonstrated that the absolute nodal 
coordinate formulation (ANCF) proposed recently in 
literature can be used to exactly describe the flexible 
multibody system unlike traditional methods such as the 
floating coordinate method and assumed mode method. 
Therefore, in this paper a new dynamic modeling 
technique for a two-link flexible manipulator based on 
absolute nodal coordinate method is proposed. The link 
shear effect was taken into account by using the 2D ANCF 
shear beam element. The resulting state equation can be 
explicitly described by generalized coordinate since the 
system mass matrix is constant in the ANCF framework. 
The proposed method is validated through the two-link 
flexible manipulator tip circle and square trajectory 
tracking control simulations by using a simple PD 
controller. To improve computational efficiency, the 
invariant matrix method and the Broyden quasi-Newton 
method are introduced. To improve the tracking accuracy, 
different PD parameters in different simulation periods are 
used. The simulation results indicate that modeling and 
controlling the flexible manipulator based on the ANCF is 
effective. 

Keywords: flexible manipulator, ANCF, shear beam 
element, Broyden quasi-Newton method and PD 
controller 

1 Introduction 

Research on flexible manipulators has being carried out 
for the last two decades, because Flexible robot 
manipulators exhibit many advantages over rigid robots: 
they require less material, are lighter in weight, consume 
less power, require smaller actuators, are more 
maneuverable and transportable, have less overall cost and 
higher payload to robot weight ratio. Despite these 
advantages, modeling and control of flexible manipulators 
is difficult, especially for those with large deformation and  

 
 
rotation subsystems. The main reason is that the 
conventional modeling method can not lead to exact 
results for those subsystems [1]. Furthermore, the number 
of control inputs is less than the number of variables to be 
controlled since the actuators are located at the joints. This 
means that the link deflections can be suppressed only 
indirectly, which make the control for flexible manipulator 
much more difficult than the rigid manipulator. Hence, to 
achieve greater tip trajectory tracking accuracy, one has to 
start with very accurate mathematical models for the 
flexible link system. 

In the past, many kinds of flexible manipulator 
modeling schemes have been proposed. The dynamics 
model for flexible manipulators was generally derived by 
using Lagrangian formulation, the Newton-Euler 
formulation, Hamilton’s principle or Kane’s method [2]. 
The robotic systems with flexible links are continuous 
dynamical systems which are usually discretized by using 
assumed mode method (AMM), finite elements method 
(FEM) or lumped parameter methods. These methods 
have been widely used by many researchers. Buffinton 
and Kane [2] developed equations of motion for flexible 
robots containing translational motion of elastic members. 
The specific system investigated is a two-degree of 
freedom manipulator. The assumed mode method and an 
alternative form of Kane’s method are used in the 
formulation of equation of motion. The assumed mode 
expansion method is also used by Green and Sasiadek [3] 
for two-link manipulators. Morris and Madani [4] 
developed the equation of motion for a large single-link 
manipulator including shear deformation. Lee [5] showed 
that the conventional Lagrangian modeling of flexible link 
robots does not fully incorporate the bending mechanism 
of flexible link as it allows free link elongation in addition 
to link deflection. This elongation causes modeling 
inaccuracy for links with rotation. To correct this he 
proposed a new dynamic model. Kalra and Sharan [6] 
extended the work of model the flexible manipulator using 
the finite element method, where a lumped parameter 
FEM model was developed. Meghdari and Fahimi [7] 
used Kane’s method of multibody systems to decouple the 
dynamic equation of motion of the two-link flexible 
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manipulator. Han and Mao [8] used Hamilton’s principles, 
finite element method and symplectic integration to 
develop equation of motion for two-link manipulator. 
Zhang et al [9] derived a partial differential equation 
model for a flexible two-link manipulator using 
Hamilton’s principle and then transform this to a form 
suitable for the development of stable controllers.  

In AMM, the link flexibility is usually represented by a 
truncated finite modal series in terms of spatial mode 
functions and time-varying mode amplitudes. The main 
drawback of this method is the difficulty in finding modes 
for links with non-regular cross sections and multi-link 
manipulators. While traditional FEM are based on small 
deformation and small rotation assumption, the beam 
elements are not isoparametric elements and will lead to a 
nonzero strain energy when the flexible multibody system 
have a rigid motion. Hence, the traditional FEM will lead 
to inexact dynamics model for the flexible manipulator, 
especially for those with large deformation and rotation 
systems [10]. In the lumped parameter method, which is 
the simplest one for analysis purpose, the manipulator is 
modeled as spring and mass system, which does not often 
yield sufficiently accurate results [2]. Furthermore by 
using all methods mentioned above, the resulting state 
equations for two-link flexible manipulator can not be 
described by generalized coordinate explicitly because of 
the inertial coupling effects. 

The coupling of the large deformation, large rotation 
and system’s rigid motion brings us new challenges for 
modeling and control these systems. In 1996, Shabana 
[11] proposed an absolute nodal coordinate method for 
exactly describing the flexible multibody systems, which 
can overcome the drawbacks of traditional FEM、AMM 
and lumped parameter method. In the absolute nodal 
coordinate formulation, no infinitesimal or finite rotations 
parameters are used as nodal coordinates, instead absolute 
displacements and global slopes are used as the element 
nodal coordinates [12]. As the locations and the 
deformations of the material points on the finite element 
are defined in the global coordinate system, using the 
element shape function and the nodal coordinates, the 
system governing equations’ mass matrix remains 
constant and the centrifugal and Coriolis forces are 
identically equal to zero. Using the absolute nodal 
coordinate formulation, the beam, plate and shell elements 
are all isoparametric elements, can also be used to obtain 
exact modeling of the rigid body dynamics. The ANCF 
has been used in many multibody dynamics research field 
especially for large deformation flexible multibody 
systems, such as Pantograph/Catenary system [13], Belt-
Drives system [14] etc. The work in this paper is the 
pioneer work on modeling the flexible manipulators by 
using the ANCF. 

This paper is organized as follows. In Section 2, the 2D 
shear beam element based on ANCF is introduced. In 
Sections 3, the explicit state equations of flexible 
manipulators are deduced. In Section 4, the proposed 
trajectory planning method and a PD control scheme are 
explained. Section 5 illustrates simulation results. Finally, 
Section 6 gives conclusions. 

2 Two Dimensional Shear Beam 
Element Based on Absolute Nodal 
Coordinate Formulation 

In this paper, in order to take the shear deformation effect 
of the flexible manipulator into account, the ANCF 2D 
shear beam element [15] was adopted to discretize the 
manipulator flexible link, as shown in Figure 1. 
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Figure 1: The beam element with shear deformation 

According to ANCF method, for the two 
dimensional shear beam element, the displacement field 
can be defined in the global coordinate system as: 

2 3
0 1 2 3 4 5

2 3
0 1 2 3 4 5

X a a x a y a xy a x a x
Y b bx b y b xy b x b x

⎡ ⎤+ + + + +⎡ ⎤
= =⎢ ⎥⎢ ⎥ + + + + +⎣ ⎦ ⎣ ⎦

Ser ＝   (1) 

Where X and Y denote the nodal coordinate in global 
coordinate system, x and denote the coordinate in 
element local coordinate system, S is the shape function, 
a matrix with 2 rows and 12 columns. The absolute nodal 
coordinates for nodal i and nodal j can be expressed as: 

y
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The vector, 1 2[ , ]Tr r
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, does not remain 

perpendicular to the beam section, The angleθ  indicates 
the beam section orientation, which can be expressed by 
vector, 1 2[ , ]Tr r

y y y
∂ ∂∂

=
∂ ∂ ∂

r . denotes the beam section 

normal vector. The angle

n

γ  indicates the element shear 
deformation. Therefore, this new beam element model 
relaxes the assumptions of Euler-Bernoulli beam models. 
According to the conventional finite element method, the 
element shape function can be obtained. By using 
Newton-Euler formulation, the element equations of 
motion can be obtained:               

               (3) e e
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Where  denotes the element constant mass 

matrix,  denotes the element elastic force vector, which 
can be deducted by continuum mechanics approach 
[15].  denotes the element generalized force vector. 
Suppose a constant torque τ was acted on the nodal i, then 
generalized moment vector can be expressed as:  
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Where 2 2
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3 State Equation Derivation and 
Numerical Solution Method  
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Figure 2: Two-Link Flexible Manipulator Defined in the 
Global Coordinate System 

In order to control the tip point Pj trajectory, two sets 
of local coordinate systems, t1-n1 and t2-n2, are defined. 
The coordinate system, t1-n1, is decided by the position 
vector of point Ai, rAi. The unit vector n1 can be 
expressed as: 

                           1
Ai

Ai

=n r
r                               (6) 

While the coordinate system, t2-n2, is decided by the 
position vector of point Aj and point Pj, they are rAj and rPj 
respectively. Then the unit vector n2 can be expressed as: 

2
Pj Aj

Pj Aj

−
=

−
n

r r
r r

                      (7) 

Where ⋅  indicates the mold of a vector. The vectors t1, 

t2 can be obtained by rotating n1 and n2 counter 
clockwisely. The 2D shear beam element described in 
above section is used to discretize the flexible manipulator 
shoulder link and elbow link and the constraint equations 
at the revolve joints can be simply expressed as:  

Ai Aj=r r                                  (8) 
In the absolute nodal coordinate framework, the 

assembly of the element mass matrix and stiff matrix can 
be carried out by conventional finite element method. By 
using Lagrangian method, the equations of motion for 
two-link flexible manipulator were obtained. 

T

d

τ••⎡ ⎤⎡ ⎤ −⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢

⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

qq

q

FM C q
QC 0 λ

⎥        (9) 

Where denotes the system constant mass matrix,  

is system generalized coordinate, 

M q

qC  is the derivative 
matrix of system constraint equations to generalized 
coordinate. As for the two link flexible manipulator, it is 
also a constant matrix.τ is system generalized external 
control torques, which can be evaluated by using of 
equation (5). λ  is Lagrangian multiplier, qF is elastic 
forces . 
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For numerical integration stability, the Baumgarte’s 
stability method [16] was introduced into the above 
equations. Then the above equations can be expressed as 

           (11) 
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In the absolute nodal coordinate framework, because 
the system mass matrix is constant and the qC  is also 
constant for the manipulator, so 
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Then we obtain the Lagrangian multiplier and the 
generalized acceleration expression: 

            (12) λq q λλ dλ = H ( - F ) + H Qτ
••

= qq qq q qλq H - H F + H γτ        (13) 
So the state equations for flexible manipulators can be 

expressed explicitly by the generalized coordinate as: 

 ( )
( ) ( )

d
dt τ
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For the numerical solution of the above state equation, 
the explicit algorithm will converge conditionally, so the 
integration time step can not change arbitrarily and then it 
is not suit to long time simulation. While the implicit 
method can converge unconditionally, but the Jacobian 

 3 

Root
Text Box
                                NaCoMM-2007-034

Root
Text Box
253



13th National Conference on Mechanisms and Machines (NaCoMM07), 
IISc, Bangalore, India, December 12-13, 2007  NaCoMM-2007-34 

matrix should be calculated. Evaluation of the Jacobian 
matrix is the most cumbersome task when solving 
equation (14). As can be seen from equation (14), to 
evaluate the Jacobian matrix, the most complex 
computation is to calculate the partial derivative matrix of 
the elastic forces. To improve computation efficiency, 
García-Vallejo[17] proposed an invariant matrix method.. 
According to this method, the tangent matrix of elastic 
forces can be expressed as: 

21 , ,
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Where , indicates the kth collolum and kth row  ,
ij
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of  the invariant matrix 
2

ij
KC , respectively. To solve the  

state equation (14), set: 
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According to the trapezoidal method: 

                1 1(
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Where h is the integration step time, m denotes the mth 
iteration. ，1 ( , )mt=G f Y 2 ( , )mt +=G f Y .So, to 

obtain , the following nonlinear equations should be 
solved. 
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Where  is unknown. To improve computational 
efficiency further, the Broyden qusi-Newton method [18] 
was used to solve the above nonlinear equations, which 
can avoid calculating the Jacobian Matrix in each 
numerical iteration of traditional method. 
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Where 1 1 1 2 )

4    Tip PD Tracking Control Scheme 

We have chosen a PD controller, since it is the simplest 
type of controller, and it is used most often in practice and 
also in industry. For a PD controller, only the errors in 
joint angle and joint angular velocity are needed to 
calculate the controller outputs, Figure 3. shows the 
simple control scheme for the two-link manipulator tip 
trajectory tracking simulation. 
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•
q(q)

•
er(er)
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θ θ

 
Figure 3: The PD control scheme 

In Figure 3,  denotes the desired trajectory for the 
tip of the manipulator in the operational 

space, and  is calculated from using inverse 
kinematic equations of a two-link, planar rigid robot. The 

joint angle θ  and angular velocity θ  are calculated from 
ANCF based simulation results by using inverse 

kinematics. er and

desq

refθ refθ
•

•

desq

•

er represent the tracking errors and 
can be expressed as: 

      er = - θ        = -refθ
•

er ref

•

θ
•

θ        (18) 
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represents the (n+1)th iteration for calculating 1m+Y .  is 

the jacobian matrix of F .The partial derivative of 

J

1m+Y  

to generalized coordinate and generalized velocity 

 is a constant unit matrix, the partial derivative of 

 to generalized coordinate and generalized velocity 
can be easily calculated by using invariant matrix method, 
so the computational efficiency improved again by using 
the Broyden qusi-Newton method.  
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As shown in Figure 2., all the element nodal 
coordinates are defined in global coordinate system, 
Although the direct position can be easily used as the 
control feed back based on the ANCF, but in practice, it is 
very difficult to measure the manipulator tip poison. 
While the shoulder angle 1θ  and elbow angle 2θ  can be 
easily measured by angle sensor, so some transformation 
of global position results into joint angles was needed to 
realize to trajectory tracking control. The shoulder angle 

1θ  and elbow angle 2θ  can be expressed as: 

1cos( )θ = 1

1
0

T ⎡ ⎤
× ⎢ ⎥
⎣ ⎦

n             (19) 2 2cos( ) Tθ = ×n n1

The feedback shoulder angular velocity 1θ
•

 and elbow 

angular velocity 2θ
•

can be obtained through some simple 
mathematic operation: 
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The shoulder link length(li) is equal to 0.4m and the 
elbow link length(lj) is 1.6m, the shoulder link was 
discretized by two elements, while the elbow link is 
disretized by four elements. The beam element section is 
square with 0.05m side-edge length. For the circle 
tracking example, the material Young's modulus for the 
two-link flexible manipulator is 3e10Pa, the Poisson’s 
ratio is 0.25 and the material density is 6000Kg/m3. While 
for the square tracking example, the material Young's 
modulus for the two-link flexible manipulator is 8e10Pa, 
the Poisson’s ratio is 0.3 and the material density is 3500 
Kg/m3. 

 1
1

T
Ai

OAiD
θ
• ×
=

V t
           2

2

T
PAj

PAjD
θ
• ×
=

V t
            (20) 

Where  is the absolute nodal velocity of the point Ai . 
 indicates the distance between the point O and 

point Ai, 

AiV

OAiD

PAjD  indicate the distance point Pj and point Aj, 
respectively.  is the relative velocity and can be 
expressed as: 

PAjV

PA pj Aj= −V V V                           (21) 
Different proportional gain and derivative gain value 

was used in different simulation period and are obtained 
through numerous simulations. For example, the whole 
simulation period is 25s for circle tracking, to improve 
tracking accuracy, using two groups of PD parameters, 
when the time is less than 12.5s, one group of  parameters 
is determined by numerous simulations, after that, another 
group of PD parameters is determined when the 
simulation time is over 12.5s , also by numerous 
simulations. Using different PD parameters according to 
trajectory characteristics is very useful to improve the 
tracking accuracy, especially for enhancing the tracking 
accuracy on the square trajectory corners, as for the 
velocity change is discontinuous on the square trajectory 
corners. 

The absolute velocity vectors AjV ,  can be directly 
obtained based on the ANCF. So, the control torque can 
be expressed as: 

pjV

p v

•

= +τ K er K er                         (22) 

Where is the proportional gain, is the derivative 
gain. and can be tuned easily, even by trial and 
error. In order to improve tracking accuracy, in this paper  

pK vK

pK vK

In order to improve tracking accuracy, different value 
for and  was used in different simulation period.  pK vK

Figures 6 to Figure 9, illustrate the results of the 
simulations of circle trajectory tracking and Figures 10 to 
Figure 13, illustrate the results of the simulations of square 
trajectory tracking. As can be seen from Figure 9 and 
Figure 13, the shoulder tip transverse deflection is much 
smaller than the elbow tip transverse deflection, that’s 
mainly because the shoulder is much shorter than the 
elbow. Furthermore, as for the material for the square 
trajectory tracking simulation is more rigid than the one 
for the circle trajectory tracking simulation ( the material 
Young's modulus is different), so the transverse 
deflections in the square trajectory tracking simulation are 
smaller than the transverse deflections in the other 
example. Except for some initial big errors, the actual 
trajectory matches the desired trajectory well. The 
comparison the simulation results, Figure 11a, to Figure 
11b, the results of [19], show that the tracking accuracy is 
improved greatly, especially on the square corners. All the 
simulation results demonstrate that the simple PD 
controller with variable PD parameters in different 
simulation period can also obtain high accurate results 
based on the ANCF manipulator model. The tracking error 
was also obtained in two examples, see Figure 8 and 
Figure 12, respectively. As we can seen from the two 
Figures, the elbow tip trajectory tracking error in Y-
direction is much larger than the errors in X-direction.  

5   Numerical example and Simulation 
Results 

Simulations are performed on the two-link, planar, 
flexible manipulator. The elbow tip of the manipulator is 
required to track a circle trajectory, see Figure 4 and an 
square trajectory, see Figure 5, respectively. 

( )i jA A
jP

0.4il m= 1.6jl m=

 
Figure 4: Manipulator Initial configuration for circle 
trajectory tracking 
 

X

Y

0

( )i jA A
jP

L=0.2 m0.4il m= 1.6jl m=

 
Figure 5: Manipulator Initial configuration for square 
trajectory tracking 
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Figure 6: Reference (dotted lines) and actual (solid lines) angles for the shoulder and elbow angles 

Figure 7: The Actual trajectory(solid lines) and the desired trajectory(dotted lines) of the manipulator tip 

Figure 8: The tracking error in X- and Y-direction of the elbow tip of the manipulator 

Figure 9: Transverse deflection of the shoulder and the elbow tip 
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Figure 10: Reference (dotted lines) and actual (solid lines) angles for the shoulder and elbow angles 

 
                                                     Figure 11a                                                               Figure 11b 

Figure 11a: The Actual trajectory(solid lines) and the desired trajectory(dotted lines) of the manipulator tip 
Figure 11b: Simulation results of  [19] 

 
Figure 12: The tracking error in X- and Y-direction of the elbow tip of the manipulator 

 

 
Figure 13: Transverse deflection of the shoulder and the elbow tip 

6 Conclusions 

For flexible manipulator systems, conventional 
modeling method can not exactly describe the system. In 
this paper, based on the absolute nodal coordinate 
modeling method , by using a simple PD controller with 

variable PD parameters in the simulation period, a 
dynamic modeling method was proposed for the planar 
two-link flexible robot manipulator and tip circle and 
square trajectories were tracked. Based on the absolute 
nodal coordinate method, the manipulator state equations 
can be explicitly expressed by generalized absolute nodal 
coordinate. The two dimensional shear beam element was 
used to discrete the flexible links, therefore the shear 
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deformation for the manipulator can be considered. By 
using the invariant matrix method [17] and the Broyden 
qusi-Newton method [18], the computational efficiency 
was significantly improved. The two-link rigid robot 
inverse kinematic equations are utilized to solve for the 
reference values of joint angle trajectories. Based on the 
absolute nodal coordinate method, the joint angle and 
angular velocity are directly calculated by the simulation 
results as control feedback. The different PD parameters 
were used to enhance to tracking accuracy in the 
simulation period. The accuracy was improved greatly, 
especially on the square trajectory corners. Although this 
paper only demonstrated the effectiveness and accuracy of 
the flexible manipulator control based on the ANCF 
method. This method can be easily extended to other 
flexible multibody systems such as space systems, 
undersea cable mining systems etc. 
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