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Using the method of Stochastic Gradient Boosting, ten SMO-SVR are constructed into a strong prediction model (SGBS model)
that is efficient in predicting the breakdown field strength. Adopting the method of in situ polymerization, thirty-two samples
of nanocomposite films with different percentage compositions, components, and thicknesses are prepared. Then, the breakdown
field strength is tested by using voltage test equipment. From the test results, the correlation coefficient (CC), the mean absolute
error (MAE), the root mean squared error (RMSE), the relative absolute error (RAE), and the root relative squared error (RRSE)
are 0.9664, 14.2598, 19.684, 22.26%, and 25.01% with SGBS model. The result indicates that the predicted values fit well with the
measured ones. Comparisons between models such as linear regression, BP, GRNN, SVR, and SMO-SVR have also been made
under the same conditions. They show that CC of the SGBS model is higher than those of other models. Nevertheless, the MAE,
RMSE, RAE, and RRSE of the SGBS model are lower than those of other models. This demonstrates that the SGBS model is better

than other models in predicting the breakdown field strength of polyimide nanocomposite films.

1. Introduction

As one of material products that have been developed for a
long time, polyimide film (PI film) has been mainly applied
in high and new technology industries such as aerospace,
machinery, electrical and electronics engineering, optical
communication, LCD, automobile, precision instrument, gas
separation, and microelectronics [1]. With the development
of nanotechnology, nanoparticles of different sizes, percent-
age compositions, and components have been mixed with PI
by more and more researchers to produce high-quality poly-
imide nanocomposite films [2, 3].

Breakdown field strength is an important characteristic
parameter to characterize polyimide nanocomposite films. It
can be calculated by (breakdown voltage)/(film thickness).
Many researchers have already made studies and analysis on
the breakdown field strength of nanocomposite films [4-6].

There are many factors that can impact the breakdown field
strength, including the type of nanoparticle, dielectric con-
stant, electric conductivity, coeflicient of thermal conductiv-
ity, composition, nanoparticles’ size and specific area, and
composite film thickness. In order to establish the knowledge
base for the material property regarding breakdown field
strength of polyimide nanocomposite films, large quantities
of experiments have to be prepared and measure related
characteristics. Nevertheless, it is also well known that getting
properties data is very costly in terms of time and materials. It
is for this reason that developing a fast and efficiency method
to predict the breakdown field strength of polyimide nano-
composite films is very much in demand.

Intelligent computing and neuronal network have been
widely applied in performance prediction, identification, and
optimization of nanocomposite films. Yang et al. used a gen-
eralized regression neural network (GRNN) to predict



the friction coefficient of Cr,_ AL .C film [7]. Cho et al.
optimized the characteristics of ITO/Al/ITO multilayer films
by advantages of neural network and genetic algorithm [8].
Bahramian made use of an artificial neural network to predict
the growth rate of TiO, nanostructured film [9]. Ensemble
learning has now become a new hotspot of intelligent com-
puting [10-13]. By using ensemble, several weak classifiers
can be constructed into a strong classifier. Some common
methods of ensemble learning include boosting, bagging,
and stacking. Boosting [14] keeps upgrading weights during
data extraction and revises the weights of data set that have
been classified wrong. In the end, several weak classifiers
are obtained and can be constructed into a strong classifier.
Bagging [15] is used the reiterative training to get several
classifiers based on a training set. Stacking [16] contains two
layers. In the first layer, different algorithms are employed to
generate several weak classifiers. At the same time, a new data
set with the same size of the original data set is also generated.
Then, the new data set together with a new algorithm can be
used to construct the classifier of the second layer.

The purpose of this paper is to develop a Stochastic Gradi-
ent Boosting + SMO-SVR model (SGBS model) to predict the
breakdown field strength of polyimide nanocomposite films.
In what follows, film preparation and prediction model are
introduced first. The experimental details for sputtering sys-
tems and materials are described next. Then, the experimen-
tal results are described and the establishment of SGBS model
with 10-fold cross validation results is carried out. Com-
parison experiments between linear regression, BP neural
network (BP), general regression neural network (GRNN),
SVR (support vector regression), and SMO-SVR models are
conducted.

2. Nanocomposite Film Preparation and
Prediction Model

2.1. Preparation of Nanocomposite Films. The method of in
situ polymerization is used to prepare the polyimide matrix
inorganic nanocomposite film. Experimental materials inc-
lude 4,4'-diaminodiphenyl ether (ODA), pyromellitic dian-
hydride (PMDA), dimethylacetamide (DMAc), Al,O;, rutile
TiO,, BaTiO;, SiO,, and ethanol. The detailed purchase
information of the above experimental materials is shown
in Table L. Firstly, put PMDA into the solution of ODA in
DMACc to produce an amount of polyamide acid of certain
viscosity. Secondly, add in different nanoparticles. Finally, let
the mixture go through paving membrane heat treatment and
imidization transform.

To verify our SGBS model, we have designed and pre-
pared in this paper nanoparticle samples with different types,
sizes, ratios, and thicknesses. The SEM image of surface
appearance of pure PI is given in Figure 1(a). The surface of
film is smooth and its tightness is well. Figure 1(b) shows the
SEM image of surface appearance of PI/BaTiO; composite
film doped with content of 60 wt%. There are large amounts
of BaTiO; nanoparticles exposing on the surface of film with
the size from 100 nm to 300 nm. Comparing with the other
films, the surface appearance of film has been changed to be
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TABLE 1: The detailed purchase information of experimental mate-
rials.

Material Companies
! . . .
;lt,;lle—rDlammodlphenyl Sinopharm Chemical Reagent Co., Ltd.

Pyromellitic dianhydride Sinopharm Chemical Reagent Co., Ltd.

Dimethylacetamide Tianjin Fuyu Fine Chemical Co., Ltd.
AL O, Beijing DK Nano Technology Co., Ltd.
Rutile TiO, Beijing DK Nano Technology Co., Ltd.
BaTiO, Beijing DK Nano Technology Co., Ltd.
Sio, Beijing DK Nano Technology Co., Ltd.
Ethanol Tianjin Fuyu Fine Chemical Co., Ltd.

rough due to the dopant of BaTiO; nanoparticles. Its density
has also been decreased. Figure 1(c) shows the SEM image
of surface appearance of PI/TiO, composite film doped with
content of 5wt%. TiO, can absorb ultraviolet ray to change
the color of film into brown. The surface appearance of film
is smooth compared with pure PI film. Figure 1(d) shows the
SEM image of surface appearance of PI/Al,O; composite film
doped with content of 20 wt%. There are some nanoparti-
cles appearing in the surface of film, uniformly, where the
diameter of nanoparticles is observed to be 70 nm and some
particles are not cluster. In conclusion, the prepared hybrid
PI particles are evenly distributed.

2.2. Standard SMO-SVR Model. SVM (support vector
machine) [17] is one of the most typical machine learning
methods in field of statistical learning theory. It has a very
good learning ability in a small sampling space. Compared
with BP, GRNN, and other neural networks, it has advantages
such as structural risk minimization, global optimization
solution, high dimensional space, and being linearly separa-
ble. It has been widely used for recognitions and regressions.

The core of support vector regression (SVR) is to find out
a hyperplane, namely, to a minimized linear function with
inequality constraints, giving a training sample

S=(xp 1) (X V) €]

where x means input and y means output. The training
sample needs to be turned into a linearly separable problem
when it is a linear inseparability. Generally, the sample space
can be mapped from a low-dimensional space into a high
dimensional space by using a kernel function. The nonlinear
regression function (estimation) is

f (%) = wp (x) +b, 2)

where b is a threshold, w is a weight, and ¢(x) is the nonlinear
mapping function. The loss function is shown as follows:

c(ey f)=|y-f®l,. (3)
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FIGURE 1: SEM image of the nanocomposite film. (a) The SEM image of pure PI film; (b) the SEM image of surface appearance of PI/BaTiO,
composite film doped with content of 60 wt%; (c) the SEM image of surface appearance of PI/TiO, composite film doped with content of
5 wt%; (d) the SEM image of surface appearance of PI/Al,O, composite film doped with content of 20 wt%.

By importing a Lagrange multiplier, the minimization of the
objective function can be expressed as

1 N
min ol +CY (§+8)
in1
subject to ;- we (x;)-b<e+é; (4)
wp (x;)+b-y; < s+€l{

£,620,i=1,2,...,n

Transform (4) into a dual problem, and we get

n
o [25 -0 -1
i,j

n n
* *
—SZ (a; +ai)+zyi (a;-a) |,
i=1 i=1

where C is a penalty factor and a, and a; are Lagrangians;
then the regression function is

N
fe =) (a-a’) K (x,x;) +b, (©6)
i=1

where N is the number of support vectors in (6) [18]. In this
paper, a normalized polynomial kernel has been taken as the
kernel function.

John Platt, from Microsoft Research, proposed the SMO
(sequential minimal optimization) algorithm in order to
shorten the training time of support vector regression in 1998
[19]. SMO can optimize the « value of two samples at one
time. Through the loop iteration with a given times M, the
« value of all samples can be optimized, as shown in Figure 2.
For the data in Table 2, the method of 10-fold cross validation
is used to make the model training on the standard SVR
and SMO-SVR. The time of modeling SVR and SMO-SVR is
0.26 s and 0.03 s, respectively. SMO can promote the training
efficiency of support vector regression while reducing the
training time of the model.

2.3. Promoting the Model by Stochastic Gradient Boosting.
Boosting [20], as one of the most important ensemble learn-
ing methods, is to obtain a predictive function by construc-
tion and ensemble of a series of predictive functions. The core
idea of gradient boosting, proposed by Friedman [21], is to
construct an ensemble learning machine by calculating a loss
function and letting the function descend along its gradient.
In other words, it is to calculate the loss function of previous
model, so as to build a new model along the descending gra-
dient direction of the loss function. Eventually, a regression
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TABLE 2: Data of breakdown field strengths of nanocomposite films.

Input Output
Samples Type of Dielectric Thickness Therm.al. Ele.ctliric.al Ratio c?f Size of Sp ec1£1fc area ﬁe}fgifi?;}? of
nanoparticles  constant of films conductivity resistivity nanoparticles nanoparticles nanoparticles  the hybrid PI
(pm)  (W/emk)  (Q'm) (Wt%) (nm) (m?/g) (kV/mm)
1 BaTiO, 1400 25 0.50 1x10° 10 100 12 157
2 BaTiO, 1400 25 0.50 1x10° 15 100 12 137
3 BaTiO, 1400 25 0.50 1x10° 20 100 12 125
4 BaTiO, 1400 25 0.50 1x10° 25 100 12 119
5 BaTiO, 1400 25 0.50 1x10° 30 100 12 105
6 BaTiO, 1400 25 0.50 1x10° 50 100 12 72
7 BaTiO, 1400 25 0.50 1x10° 60 100 12 54
8 BaTiO, 1400 25 0.50 1x10° 70 100 12 41
9 Rutile TiO, 100 25 0.40 9 %10 0 35 70 230
10 Rutile TiO, 100 25 0.63 9 %107 1 35 70 240
1 Rutile TiO, 100 25 0.63 9 x 107 3 35 70 210
12 Rutile TiO, 100 25 0.63 9 %107 4 35 70 177
13 Rutile TiO, 100 25 0.63 9 x 10 5 35 70 170
14 Rutile TiO, 100 25 0.63 9 %107 7 35 70 160
15 SiO, 1.56 25 160 1x10' 5 40 300 313
16 Sio, 1.56 25 160 1x10' 10 40 300 307
17 Sio, 1.56 25 160 1x10' 15 40 300 327
18 Sio, 1.56 25 160 1x10" 20 40 300 252
19 Sio, 1.56 25 160 1x10% 25 40 300 240
20 aALO, 10 30 4.10 1x 10" 4 30 25 275
21 aAlL,O, 10 30 4.10 1x10" 8 30 25 263
22 aAlLO, 10 30 410 1x 10" 12 30 25 234
23 aALO, 10 30 410 1 x 10" 16 30 25 212
24 aALO, 10 30 410 1x10" 20 30 25 235
25 aAlL,O, 10 30 410 1x10" 24 30 25 203
26 AlLO, 8 30 29.31 1x10" 15 13 100 190
27 AL O, 8 30 29.31 1x10" 20 13 100 189
28 Al O, 8 30 29.31 1x10" 25 13 100 178
29 Sio, 1.56 30 160 1x10' 10 7 350 307
30 Sio, 1.56 30 160 1x10' 15 7 350 327
31 Sio, 1.56 30 160 1x10" 20 7 350 252
32 SiO, 1.56 30 160 1x10% 25 7 350 240
model can be generated through N times of iterations. In (2) Initialize the model
this paper, we use the Stochastic Gradient Boosting to turn N
ten SMO-SVR models into a strong predictive model (SGBS F, (x) = arg minz L(y,p). 7)
model). The algorithmic steps of the SGBS model are shown B0
as follows:
(3) Calculate the upper limit (M) of iterations by cross
validation.
(1) {X, Y} is a data sample of breakdown field strengths of (4) Calculate the gradient direction

different nanocomposite thin films, in which X = (x,,

Xy, ..., x,) isinputand Y = (yy, y,, ..., y,) is output. S5 [BL (i F (x;)) ] io1 N

The loss function is L(y;, F(x;)), i € {1,2,...,n}, and ' OF (x;) F(x):F,,H(x)’ T (8)

the prediction model of SMO-SVR is h(X).
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If iteration > M

Yes
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FIGURE 2: Flowchart of the SMO optimization algorithm.

(5) Fit the SMO-SVR by using least squares to obtain the
fitting model h(x;, «,,).

(6) Figure out new step length based on the loss function
N
B = argmin) L(y, E,y (%)) + P (xpt). (9
i=1
(7) Generate a new model

F, (x)=F,_ (x)+B,h(x«ap,). (10)

(8) Stochastically extract f% of the training sample to fit
the SMO-SVR during every time of iteration; then we
can get the SGBS model after M times of iterations:

M
F(x) = Z Buh(x, ). (11)
m=1

3. Experiment and Result Analysis

3.1 Construction of the Experimental Sample. Test the break-
down field strength by using a withstanding voltage tester
(type: CS2674C). Voltage range is 0-50 kV; test error is +5%;
leakage current measurement range is 0.5-20 mA; measure-
ment error is +5%. Take polymethylphenylsiloxane fluid with

high insulation strength (which can be up to 16 kV/mm) as
the medium, with the rate of voltage rise of 500 V/s. Test
the breakdown field strength of the nanocomposite films pre-
pared in Section 2.1. Select 20 samples as a group for testing
each hybrid PI, and take the mean value of the 10 middle
breakdown field strengths as the breakdown field strength of
the group. Then, calculate the standard deviation. After the
experiment we get the data of breakdown field strengths as
shown in Table 2. The input X includes type (X1), doping
ratio (X2), electrical resistivity (X3), dielectric constant (X4),
thermal conductivity (X5), size (X6), and specific area (X7)
of nanoparticles and thickness of the film (X8). The output Y
is the breakdown field strength of the hybrid PI.

3.2. Evaluation Indicators of the Prediction Performance.
There are many indicators for evaluating the prediction per-
formance, such as MAPE (mean absolute percentage error),
MAE (mean absolute error), RMSE (root mean squared
error), CC (correlation coefficient), RAE (relative absolute
error), and RRSE (root relative squared error). In this paper,
CC, MSE, RMSE, RSE, and RRSE are taken as evaluation indi-
cators.

CC (correlation coefficient) represents the relevancy of
the linear regression relationship between f; (independent
variable) and y; (response variable) of the model. It is a coef-
ficient of a simple linear correlation between y; and its estima-
ted values. CC is larger than zero and ranges from 0 to 1. A
larger CC means a more relevant linear regression relation-
ship.

MSE (mean absolute error) is to judge the different degree
between predicted values and real ones. It is inversely propor-
tional to prediction accuracy. A smaller MSE means a better
effect the predictor can be with. It can be expressed as

1< 1¢
MAE = ;Z |fi—yl= _Z lei] (12)
i=1

nia

where f; represents predicted values and y; represents real
values.

RMSE (root mean squared error) is the square root of the
ratio of the quadratic sum of deviations between predicted
values and real values to the times (1) of predictions. It is sen-
sitive to maximum or minimal errors of a group of predicted
values and therefore can well reflect prediction accuracy.
RMSE is inversely proportional to the prediction accuracy.
The smaller the RMSE is, the more accurate the predictor can
be. It can be expressed as follows:

MSE J S (- ) 13)
n

RSE (relative absolute error) is the different degree bet-
ween the absolute deviation obtained from the prediction
model and the absolute deviation obtained by directly spec-
ulating the training sample. It is inversely proportional to
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TABLE 3: Comparison on prediction performances of three kernel
functions.

Indicators Normaliz.ed Polynomial RBF
polynomial

Correlation coefficient 0.9603 0.9236 0.8901

Mean absolute error 16.8162 23.5927  29.6448

Root mean squared error 21.2266 292044 347791

Relative absolute error 26.255% 36.8351% 46.2842%

Root relative squared error ~ 26.9779% 371173%  44.2024%

prediction accuracy. The smaller the RSE is, the higher the
prediction accuracy can be:

RSE = Zizl If: - ;Vi| (14)

Y |?; - )’i|‘

RRSE (root relative squared error) can be calculated as
follows:

S fi- ol

RRSE = e 5 15)
2in1 |f i~ )’i|
RRSE is also inversely proportional to prediction accu-
racy. The smaller the RRSE is, the higher the prediction accu-
racy can be [22].

3.3. Experimental Results and Analysis. To verity the SGBS
prediction model, the type, dielectric constant, electrical
resistivity, thermal conductivity, size and specific area of
nanoparticles, and the thickness of films in Table 2 are taken
as the input X, and the breakdown field strength of hybrid
PI is taken as the output Y. In this paper, we use Macbook
Pro (CPU: Intel 17-2640 M; memory: 16G) as the hardware
for experiments and use Matlab 2012a to program prediction
model.

Experiment 1. Use the method of 10-fold cross validation
to fit the data in Table 2. Main parameters of the SGBS
model include kernel function, C and S, of which C is the
penalty factor of SMO-SVR and S is the extracting ratio
when training the sample. First of all, normalize the sample
data. Three kernel functions—normalized polynomial kernel,
polynomial kernel, and RBF kernel—are employed to test the
sample. The results are listed in Table 3. From the table we
know that the normalized polynomial kernel has the highest
correlation coeflicient but lowest mean absolute error, root
mean squared error, relative absolute error, and root relative
squared error. Therefore, we choose it as the kernel function
for the SGBS model.

For optimization function, the penalty factor of outliers
is selected by experience as well as by experiments. Figure 3
shows the comparison on prediction performances of SGBS
model when C varies from 1 to 1.8. Figure 3(a) demonstrates
that the correlation coeflicient reaches its peak values when
C = 1.6, 1.7, and 1.8, which are chosen as the value of C, for
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correlation coeflicient is proportional to prediction accuracy.
By analyzing Figures 3(b) and 3(d) we know that the mean
absolute error and relative absolute error reach their minimal
values when C = 1.7, only larger than the values when C =
1.6 and 1.8. Therefore, they reach optimal performance when
C = 1.7, for mean absolute error and relative absolute error
are inversely proportional to prediction accuracy.

By analyzing Figures 3(c) and 3(d) we know that the
smallest root mean squared error and root relative squared
error appear at C = 1.6, followed by C = 1.7 and C = 1.8.
Based on the above analysis, this paper takes C = 1.7 as the
optimum value.

S is the specify shrinkage rate in Stochastic Gradient
Boosting, namely, the proportion of the stochastically extra-
cted training sample. Figure 4 shows the impact of variation
of S on prediction performance when C = 1.7. When § = 1,
correlation coefficient reaches its peak value, and the predic-
tion attains the best performance as shown in Figure 4(a). By
analyzing Figures 4(b)-4(e) we know that when S = 1, mean
absolute error, root mean squared error, relative absolute
error, and root relative squared error reach their minimal
values, signifying the best prediction performance.

According to the above analysis we know that when C =
1.7 and S = 1 are taken as the optimum values of the SGBS
model, the prediction performance is the best. Figure 5 shows
the degree of fitting between predicted values and real ones.
Figure 6 shows the absolute error ratio of prediction. The
tables and figures demonstrate that the error ratios of sample
8 (70 wt%, 100 nm, BaTi0;), sample 17 (15 wt%, 40 nm, SiO,),
and sample 30 (15wt%, 7 nm, SiO,) are all larger than 15%,
indicating an ordinary fitting, while the error ratios of other
samples are less than 15%, indicating a better fitting. For all the
six multicomponent TiO, film samples with the thickness of
35 ym, the prediction errors are not larger than 15%. For the
eight BaTiO; film samples, there is one sample of which the
prediction errors are larger than 15%. For all the nine multi-
component Al,O, film samples, the prediction errors are not
larger than 15%, while for the nine multicomponent SiO, film
samples, there are also two samples of which the prediction
errors are larger than 15wt%. In this model, the prediction
performance of the multicomponent Al,O, and rutile TiO,
with different thicknesses is better than that of the BaTiO,
and SiO, film samples. For the thirty-two nanocomposite
films with different components, mixtures, and thicknesses,
there are twenty-nine film samples of which the prediction
errors are lower than 15%, proving that the model is of
practical value in actual engineering works.

Experiment 2. In order to further verify the SGBS model, it
needs to be compared to other models, namely, the linear
regression, BP neural network, GRNN neural network, SVR
(support vector regression), and SMO-SVR, under the same
conditions. Comparison results of the prediction perfor-
mance of these models are shown in Table 4. The correlation
coefficient of SGBS model is 0.962, larger than that of the
models of linear regression [23], BP neural network [24],
GRNN neural network [7], SMO-SVR [25], and SVR [26],
proving that the linear regression relationship of the SGBS
model is better than that of the other five models. In the SGBS
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TABLE 4: Comparisons of models’ prediction performance.

Indicators SGBS Linear regression BP GRNN SVR SMO-SVR

CcC 0.962 0.9438 0.960 0.957 0.459 0.917

RMSE 20.866 25.235 21.350 21.932 79.662 30.401

RRSE 26.520% 32.072% 27.135% 27.874% 101.246% 38.639%

TABLE 5: The comparison of the predicted and tested values of breakdown field strength.

Measured value [27] (kV/mm) Predicted value (kV/mm) MAE RMSE RAE (%) RRSE (%) Error ratio (%)
233 225.9667 7.0334 7.0334 24.5976 24.5976 3.0185
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= 100 . o %573
= i =
3 ;(5) L g 16
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--a- Measured value 7
- - Predicted value g
4
FIGURE 5: Comparison between real values and predicted values of %
the SGBS mode. 1 ; ; ; ;

model, the root mean squared error and root mean squared
error are 20.8668 and 26.520%, respectively, lower than those
of the other models, certifying its better prediction perfor-
mance.

Experiment 3. In order to validate the generosity of the
model, the actual measurement results conducted by Shi et
al. in [27] are chosen to do the prediction. In this preference,
the particle size is 30 ym, and the doping ratio is 2 wt%
with PI/nano-Al,O; composite films. The thickness of film is
30 pm. Its breakdown field strength is 233 kV/mm. Adopting
the samples in Table 2 as the training set of SGBS model.
For the parameters of the model, C = 1.7, § = 1. Using
the 2 wt%-PI/nano-Al,O; composite films in [27] as testing
sample, the results could be obtained as shown in Table 5. For
the test result of breakdown field strength that is 233 kV/mm,
its prediction value is 225.9667 kV/mm by SGBS model. The
error ratio is 3.0185%. The MAE, RMSE, RAE, and RRSE
are 7.0334, 7.0334, 24.5976, and 24.5976. The prediction and
actual data are in good agreement. This method could predict
the PI/nano-Al,O; composite films effectively.

0 5 10 15 20 25
Rate of error (%)

FIGURE 6: Analysis on sample errors.

4. Conclusions

This paper presents an ensemble learning method for predict-
ing breakdown field strength of polyimide nanocomposite
films. By using the method of Stochastic Gradient Boosting,
ten SMO-SVR prediction models are constructed into a
strong prediction model (SGBS model) that is efficient in pre-
dicting the breakdown field strength. Through analyzing the
experiment data we obtain following conclusions:

(1) In prediction of thirty-two nanocomposite films of
different components, particles, and thicknesses (25—
30 um) by using the method of 10-fold cross valida-
tion, there are twenty-nine samples of which the pre-
diction errors are lower than 15%, proving that the
SGBS model is efficient in predicting the breakdown
field strength of polyimide nanocomposite films.

(2) Comparisons show that the SGBS model has a larger
correlation coeflicient than that of linear regression,
BP, GRNN, SVR, and SMO-SVR models but smaller
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root mean squared error and root relative squared
error. Hence, prediction performance of the SGBS
model is better than that of the other five models.

(3) The SGBS model shows a better prediction on Al,O;
and rutile TiO, films than on BaTiO; and SiO, films.

Next, some other ensemble learning methods will be
employed to predict the corona resistance, dielectric constant,
dielectric constant, and thermal properties of polyimide
nanocomposite films.
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