
Apprenticeship Learning for Motion Planning with Application

to Parking Lot Navigation — A Summary

Twan van Laarhoven

5th April 2009

1 Introduction

In this essay I will give a summary of the arti-
cle Apprenticeship Learning for Motion Plan-
ning with Application to Parking Lot Naviga-
tion by Pieter Abbeel, Dmitri Dolgov, An-
drew Ng and Sebastian Thrun [1].

There are two sides to this article. On the
one hand it deals with planning paths for a
car driving around in a parking lot. That
problem is solved by searching for a path that
minimizes some cost function.

On the other hand, a good cost function needs
to be designed. In the paper the cost function
is learned from examples made by a human
driver.

2 Path planning

The goal of path planning is to find a way
to get from a given start point to given end
point, while minimizing the cost Φ(s) of the
path.

Many different cost functions can be used. For
instance we want short paths, but perhaps
also paths without many corners (low curva-
ture), etc. Table 1 lists all the cost functions
used in the paper.

Some of these functions are based on a graph
G of the roads in the parking lot, which has to
be specified by hand. There is a cost to being
far away from a road in the graph, and for the
angle between the road and the car.

forward length
∑

i:δi=0

‖xi − xi−1‖

backward length
∑

i:δi=1

‖xi − xi−1‖

switching direction
∑

i:δi 6=δi−1

1

off-road driving
∑

i:¬R(xi)

‖xi − xi−1‖

distance to lane
∑

i

D(xi, θi,G)

lane alignment
∑

i

sin2(2(θi − αi))

curvature
∑

i

(xi+1 − 2xi + xi−1)2

Table 1: Different cost functions used in the
paper. xi are the points in the path, δi is
the driving direction (forward or backward),
R(xi) indicates whether a point is on the road,
D(xi, θi,G) is the distance to a predefined
graph of roads, θi is the angle of the car and
αi is the angle of the nearest road.

The overall cost function will be some lin-
ear combination of the cost functions from ta-
ble 1,

Φ(s) =
p∑

k=1

wkφk(s)

= wfwdφfwd(s) + wbwdφbwd(s) + · · ·

With different weights w many different styles
of paths are possible.

For now, assume that the weight vector is
known, so that Φ(s) can be calculated. The
paper then uses a two step approach to find a

1



path that is close to optimal:

1. Global A? search in a discretized space.
2. Local refinement with conjugate gradient

method using the actual cost function.

The A? algorithm is a good algorithm for find-
ing optimal paths, but it requires a discrete
search space. The state of the car can be
specified by a 4-dimensional vector: two di-
mensional location, angle and driving direc-
tion. To be able to use A? this 4-dimensional
state space is discretized.

Not all cost functions are suitable for such a
discretization, however. In particular the last
three functions (distance to lane, lane align-
ment and curvature) can not be discretized,
since they are sensitive to local properties of
the path. Therefore, after finding a rough
global path that ignores these aspects of the
cost, they are improved by using a conjugate
gradient method.

3 Learning cost functions

The algorithm described in the previous para-
graph depends on a set of weights w for com-
bining the cost functions. Manually picking
these weights is difficult, so the authors chose
to train them based on examples from a hu-
man expert. The path planning should pro-
duce paths that are ‘close’ to these examples.

Directly comparing paths from the experts to
paths found by the algorithm is not possible.
There may, for instance, be two equally good
ways around an obstacle. A better option of
comparing the paths is by looking at the cost
functions.

Define µk =
∑

i φk(s(i)) where s(i) ranges over
the paths found for different training exam-
ples (all with the same driving style). Let the
vector µ contain the costs of paths found by
the algorithm and let µE be the correspond-
ing vector for the expert’s paths. The goal
is then to find a set of weights that makes µ

match µE as close as possible, i.e. that mini-
mizes ‖µ− µE‖.

Surprisingly, the apprenticeship learning algo-
rithm [2] can always find such weights. Infor-
mally the algorithm works as follows:

1. Pick an initial weight vector w(0).
2. Find the optimal paths for the current

weight vector w(j).
3. Calculate the corresponding µ(j).
4. Calculate µ as a linear combination of all

previous µ(j).
5. Pick a new weight vector that is in some

sense orthogonal to the previous weight
vectors.
(steps 4 and 5 involve solving a single
quadratic optimization problem).

6. Goto 2 unless ‖µ− µE‖ ≤ ε

In the end at least one of the weight vectors al-
lows the path planner to behave as good as the
expert. The algorithm is explained in more
detail in [2] and [1].

4 Experiments

The authors have recorded paths using a car
equipped with sensors. The human drivers
were instructed to use several different driving
styles:

• ‘nice’: stick to the roads as much as pos-
sible.

• ‘sloppy’: the driver is allowed to deviate
from the roads.

• ‘backward’: the driver may drive back-
ward.

In all these cases the learning algorithm has
found a set of weights that produce paths that
are very similar to those used by the expert.

Figure 1 compares one of the expert’s paths
with a path found by the algorithm.

2



(a) the expert’s path (b) the algorithm’s path

Figure 1: Paths with the ‘sloppy’ driving
style. Note that while the algorithm finds
a slightly different path, the costs will be
roughly equal. The paper contains many more
examples.

5 Discussion

Defining a good cost function is often a diffi-
cult thing to do. While it is not hard to come
up with different costs, figuring out which
ones to use can be very hard. I therefore
think that the approach of learning a policy
tho match an ‘expert’ is widely applicable to
reinforcement learning tasks.

A difficulty of the parking lot navigation prob-
lem is that there is no good way to quantify
the results. While the planned paths look
similar to the expert’s paths, it is hard judge
“how good” these paths actually are.

The parking lot navigation problem is also
very small: there are just 7 cost functions,
and only a 5 training examples were used for
each driving style. It is not clear how well
apprenticeship learning scales to larger prob-
lems. One can for example imagine intro-
ducing many variations of the costs, such as
squared distance, log of distance, etc. I would
expect this to lead to overfitting, but when
enough data is available it might help to find

a closer match to the expert.

References

[1] Pieter Abbeel, Dmitri Dolgov, Andrew Ng,
and Sebastian Thrun. Apprenticeship learn-
ing for motion planning, with application to
parking lot navigation. In Proceedings of the
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS-08), Nice,
France, September 2008. IEEE.

[2] Pieter Abbeel and Andrew Y. Ng. Apprentice-
ship learning via inverse reinforcement learn-
ing. In In Proceedings of the Twenty-first In-
ternational Conference on Machine Learning.
ACM Press, 2004.

3


