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Abstract 

The one-dimensional transient radiative transfer problem in the Cartesian coordinate system – an absorbing and 
scattering medium illuminated by a short laser pulse – is solved by the use of a Discrete Ordinates – Finite Volume 
method. Previous works have shown that the original numerical approach, based in the space-time domain, induces 
transmitted flux emerging earlier than the minimal time required by the radiation to leave the medium. Therefore, a 
frequency-based numerical method is formulated implemented, and validated in this paper. Results for transmittances are 
accurate, without physically unrealistic behaviors at early time periods. However, the frequency-dependent approach is 
computationally expensive; it requires approximately five times more computational time than its temporal counterpart. 
The next step will be devoted to the optimization of these CPU requirements. 
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Nomenclature 
a Anisotropy factor - 
c Speed of electromagnetic waves in the  

medium ms
-1

 
H Heaviside function - 
i Complex constant (-1)

1/2
 

I Intensity Wm
-2

sr
-1
m

-1
 

j Spatial node - 
k Frequency step - 
m Discrete direction - 
n Temporal step - 
Re Real part of a complex number - 
Sc Source term Wm

-2
m

-1
 

t Time t 
t* Dimensionless time - 
T Hemispherical transmittance - 
wm Discrete solid angle, weight of a numerical 

quadrature - 
z Spatial coordinate m 
 

 
Greek Symbols 

 Extinction coefficient m
-1

 

 Polar angle rad 

 Direction cosine - 

 Optical depth - 

 Scattering phase function - 

 Albedo for single scattering - 

̂  Time-dimensionless angular frequency 
(pulsation) - 

Subscripts 
0 Incident collimated beam  
c Collimated component 
d Diffuse component 
j Refers to a spatial node 
j±½ Refers to the boundary of a control volume 
L Refers to medium thickness 
p Refers to the pulse 
Exponents 
′ Other directions 
^ Frequency-dependent quantity 
k Refers to a discrete frequency step 
m Refers to a discrete direction 
n Refers to a temporal step 
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1. Introduction 

 
The interest for transient radiative transfer has 

recently increased, mainly because of numerous possible 
uses of short pulse lasers in a wide variety of engineering 
and biomedical applications [1]. Optical diagnosis of 
absorbing and scattering media using temporal 
distributions of transmittance and/or reflectance remains 
a promising application of transient radiative transfer 
[1,2]. 

Transient effects associated with radiation heat 
transfer can be neglected when the time needed by the 
photons to leave a medium is shorter than the period of 
variation of the radiative source, which is the case in 
most engineering applications. However, a radiative flux 
emitted in a short time scale (from picosecond to 
femtosecond), such as a pulsed laser, involves non-
negligible unsteady effects. Therefore, a typical transient 
radiative transfer problem arises when an absorbing and 
scattering medium is illuminated by a short laser pulse, 
for which the duration is of the same order of magnitude, 
or less, than the time needed by the radiation to leave the 
medium [1]. 

A wide variety of methods have been developed in 
order to solve the time-dependent radiative transfer 
equation. Among these methods: the Monte Carlo 
formulations [3-6], the classical Spherical Harmonics [1], 
and the modified MP1/3A [7], the two-flux approaches [1], 
the Radiation Element Method [8], the Discrete Ordinates 
approaches [9-15], the integral formulation [16] and, more 
recently, a backward method of characteristics [17]. 

In this paper, a Discrete Ordinates – Finite Volume 
(DO-FV) approach is retained, where DO and FV refer to 
the directional and spatial discretizations, respectively. 
The main drawback of a DO-FV approach, based in the 
time domain, is that radiative fluxes are transmitted 
earlier than the minimal time required by the radiation to 
leave the medium. This has been widely reported in the 
literature [9,10,13-15], and it is caused mainly by the 
interdependence between the spatial and temporal 
discretizations, and also by the numerical approximations 
embedded within the application of an interpolation 
scheme. 

In order to avoid early transmitted radiation, some 
researchers [9,10,18] have proposed using high order 
spatial interpolation schemes; this has been tested by the 
authors in their last contribution to the ICTEA [14]. 
Despite the implementation of a second order Lax-
Wendroff scheme, coupled with a Van Leer or a 
Superbee flux limiter, the physically unrealistic behavior 
were still present. It has been concluded that the non-
physical transmitted fluxes cannot be totally avoided with 
an approach based in the space-time domain, but only 
minimized with the use of high order schemes. 

On the other hand, in order to assess the use of the 
Diffusion approximation for the solution of transient 
radiation transport problems, Elaloufi et al. [19] solved the 
time-dependent radiative transfer equation in the space-
frequency domain with a DO method. This provided the 
incentive for the present research work that pertains to 
the solution of the Radiative Transfer Equation (RTE) in 
the space-frequency domain. 

The problem under consideration and the associated 
assumptions are succinctly described in the second 
section. The third part of the paper is devoted to the 
theoretical and numerical formulation of the frequency-
dependent method. This approach is then applied to 
solve two one-dimensional transient radiative transfer 

problems, and results are compared with those obtained 
previously by the authors from time-based techniques 
[13,14], and with those available in the literature. 

2. Problem Description and Assumptions 

 
Throughout this paper, the following assumptions 

apply: (1) the medium is a plane-parallel semi-infinite 
layer of thickness zL; (2) the layer is composed of an non-

emitting, absorbing and scattering homogeneous 
medium, with a relative unit refractive index; (3) radiative 
properties are calculated at the central wavelength of the 
pulse’s spectral bandwidth and, consequently, reference 
to wavelength is omitted in the notations; (4) scattering is 
assumed to be independent; (5) boundaries are 
transparent; (6) the layer is subject to a collimated short 
square pulse of radiation at normal incidence (the 
problem is azimuthally symmetric); (7) a pure transient 
radiative transfer regime is considered, i.e. the pulse 
width is less than characteristic time for the establishment 
of any other phenomenon [1].  

More details regarding the problem description are 
available in reference [14]. 

3. Solution in the Space-Frequency Domain 

3.1. Mathematical Models 

 
Since the problem deals with collimated irradiation, 

the most convenient approach to fulfill this need for a 
mathematical solution is to consider a separate treatment 
of the diffuse-scattered component (Id) of the radiative 
intensity. Variations of the collimated intensity (Ic) are 

simply described by a spatial exponential decay and a 
temporal term originating from the propagation of the 
pulse [9,13,14]. 

The Transient Radiative Transfer Equation (TRTE) 
describes spatial and temporal variations of the diffuse 

component of the intensity along the direction  in a 
participating medium [9,13,14].  

Since the objective is to solve the transient radiative 
transfer problem in the space-frequency domain, all 
temporal variables have to be transformed into 
frequency-dependent variables by applying a temporal 
Fourier Transform (FT) of the intensity [19]: 






  ˆ)ˆexp()ˆ,,(ˆ),,( ** dtiItI   (1) 

where ̂  is the angular frequency deriving from the 

dimensionless time variable t*= ct, and  is the optical 

depth ( = z) Inversely the frequency-dependent 

intensity can be written as the FT of the time-dependent 
intensity. The time-dependent Fourier analysis applied to 
the TRTE leads to: 
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where the frequency-dependent intensity )ˆ,,(ˆ dI  and 

)ˆ1( i  are complex numbers. The first and second 

terms of the right-hand side of Eq. (2) represent 
respectively the attenuation by absorption and scattering 
and the reinforcement due to the scattering of the diffuse 
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part of intensity. This equation has the form of a steady-
state radiative transfer equation and is called the 
Complex Radiative Transfer Equation (CRTE). The 

source term cŜ  originating from the scattering of the 

collimated intensity is determined from a particular 
solution of Eq. (2) without scattering sources [19]: 

),1()]ˆ1(exp[)ˆ(ˆ
4

)ˆ,,(ˆ
0 




  iISc   (3) 

where )ˆ(ˆ
0 I  is obtained from the temporal Fourier 

analysis of the incident pulse. From the above statement, 
it is concluded that the solution of a transient radiative 
transfer problem can be obtained by solving the CRTE for 
each angular frequency contained in the temporal Fourier 
decomposition of the pulse. 

3.2. Numerical Formulation 

 
A DO-FV approach is used in order to solve the 

transient radiative transfer problem in the space-

frequency domain. For a given angular frequency ̂ , a 

steady-state radiation transport problem is solved by 
calculating the frequency-dependent intensities on the J 

nodes and M directions of the spatial and directional 

discretizations, respectively. Then, integrating the CRTE 

over a control space jwm yields: 
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  (4) 

In the above, km

jI ,ˆ  is the frequency-dependent 

intensity at node j, in direction m, and at frequency k, 

corresponding to the discrete pulsation k̂  for which the 

CRTE is solved. The variables nm

jI ,

21  are the intensities at 

the boundaries of the control volume surrounding the 
node j. The subscript d, referring to the diffuse 

component of intensity, is omitted for more clarity.  
To solve Eq. (4), one needs to relate the value of the 

intensity at control volume boundaries (j ± ½) – for a 
specific direction and frequency – to the nodal values (…, 
j – 1, j, j + 1,…), by choosing an appropriate spatial 

interpolation scheme. In this work, a first order upwind 
scheme is sufficient, since the CRTE is a steady-state 
equation. 

Eq. (4) is then solved, for a specific frequency k, for 
each node j and in each direction m of the spatial and 

angular discretizations, respectively. An iterative scheme, 
based upon the convergence of the source term due to 
the scattering of the diffuse part of intensity, is used [15]. 

In order to determine the frequencies for which the 
CRTE is solved, a temporal FT is applied on the incident 
square pulse: 
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The K relevant angular frequencies are selected by 

calculating Eq. (5) for a series of discrete pulsations k̂ . 

A graphical representation of the real and imaginary parts 

of kI0 , as a function of k̂ , allows one to find the 

threshold angular frequencies, 2
ˆ

K  and 2
ˆ

K , for which 

the CRTE has to be solved (i.e., frequencies below and 

above which the real and imaginary parts of kI0  vanish). 

The angular frequency discretization k̂  is determined 

by performing a numerical sensitivity analysis. 
Finally, the time-dependent intensities have to be 

recovered from the frequency-dependent intensities. This 
is done by applying an Inverse Fourier Transform (IFT) 
on the frequency-dependent intensities: 
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Eq. (6) implies that the frequency-dependent 
intensities can be calculated and summed only for the K/2 

relevant angular frequencies (symmetry of the 
summation) in order to determine the time-dependent 
intensity at a given instant tn

*. Unlike a space-time 
approach, the determination of the intensity at instant tn

* 

doesn’t require the knowledge of intensities at 0, t1
*, t2

*, 

…, *

1nt . 

The principal steps to solve the transient radiative 
transfer problem in the space-frequency domain are 
summarized hereafter: (1) the temporal FT of the pulse is 
first calculated; (2) the relevant frequencies are 
determined; (3) a CRTE is solved for each selected 
angular frequency; (4) an IFT is applied in order to derive 
time-dependent intensities. 

4. Results and Discussions 

 
Two typical transient radiative transfer problems are 

solved in this section; in both cases, the absorbing and 
scattering medium is illuminated by a square pulsed 
collimated radiation beam of unit intensity (I0 = 1) and unit 

dimensionless duration (tp
* = 1) on its boundary  = 0 

[14]. When the medium is anisotropically scattering, the 

linear anisotropic phase function is considered ((′,) = 

1 + a′). In post-treatment, the temporal hemispherical 

transmittance is calculated from the time-dependent 
intensities [14]. 

The numerical codes are written in FORTRAN and 
compiled with the software Microsoft Developer Studio – 
Fortran PowerStation 4 on a PC Pentium III of 600 MHz. 

4.1. Optically Thick and Highly Scattering Media 

 
In this first problem, the optical thickness of the 

medium is L = 10 while the scattering albedo is  = 

0.998. The transmittance is calculated for three types of 
scattering media: isotropic (a = 0), highly forward 
scattering (a = 0.9), and highly backward scattering (a = -

0.9). For this problem, 100 spatial nodes and 10 
directions (equal weights polar quadrature) are sufficient 
to discretize the spatial and directional domains; no 
significant improvement of the results has been observed 
beyond these thresholds. 

Also, the temporal Fourier transform of the square 
pulse allows the determination of pulsations for which the 

CRTE has to be solved (from -16 to 16, except k̂  = 

0). A preliminary parametric analysis permitted the 
identification of an optimal angular frequency 

discretization ( k̂  = 3 10
-4
). 

Transmittances obtained by solving the CRTE with a 
DO-FV method are reported in Fig. 1. It is important to 

note that since the optical thickness (L) of the slab is 10, 

the minimal dimensionless time required by the radiation 
to leave the medium (tL

*) is also 10. 
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Fig. 1. Temporal distribution of hemispherical 

transmittance; comparison between the frequency-
domain approach and a Monte Carlo formulation [6] 

 

Figure 1 clearly indicates that for a large time scale 
(from 0 to 100), results from the frequency-dependent 
method are in good agreement with those obtained from 
a MC formulation, even at early time periods (i.e., near 
tL

*). It is important to note here that the physical 

interpretation of the results is available in reference [14].  
In order to analyze more precisely the relative 

accuracy of the frequency-domain approach, the 
transmittances obtained from this method are compared 
at early time periods with those obtained with a first order 
exponential scheme [13], the Van Leer flux limiter [14] 
and the Superbee flux limiter [14]. Only results for a = 0.9 

are shown, since early transmitted radiation becomes 
more important as the medium is highly forward 
scattering. 
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Fig. 2. Temporal distribution of hemispherical 

transmittance; comparison between the Van Leer 
flux limiter [14], the Superbee flux limiter [14], the 
exponential interpolation scheme [13], and the 
frequency-domain method at early time periods. 

 

Figure 2 shows that no flux is transmitted before tL
* = 

10 only with the frequency-dependent method, since the 
problem associated with the interdependence between 
the spatial and temporal discretizations is avoided. 

It can be concluded that, from a strict point of view of 
accuracy, the frequency-dependent approach is superior 
than solving directly the TRTE in the space-time domain, 
since the transmittance begins exactly at the 
dimensionless time t* = 10. Even after this instant, the 

approaches give different results, and converged to the 

same values approximately between t* = 10 and t*   12. 

However, the temporal resolution of the available MC 
results [6] is insufficient to conclude about this 
divergence. 

4.2. Medium of Unit Optical Thickness and Variable 
Scattering Albedo 

 
In this second problem, the optical thickness of the 

medium is fixed at L = 1 while the scattering albedo  is 

variable (0.25, 0.50, 0.75 and 0.90). In all cases, the 
medium is isotropically scattering (a = 0). This second 

test problem has been compared [15] with a Discrete 
Ordinates approach coupled with the Piecewise Parabolic 
Advection scheme (DO-PPA) [9], which has been 
validated with a MC formulation [6]. The same spatial and 
angular discretizations used for the first problem are 
found sufficient. 

Only a comparison between the frequency and time-
dependent methods (exponential scheme [13], Van Leer 
flux limiter [14], and Superbee flux limiter [14]), at early 
time periods, is shown for this particular problem (Fig. 3). 
The minimal dimensionless time needed by the radiation 
to leave the slab of unit optical thickness is tL

* = 1. 

Complete results are available in reference [15]. 
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Fig. 3. Temporal distribution of hemispherical 

transmittance; comparison between the Van Leer 
flux limiter [14], the Superbee flux limiter [14], the 
exponential interpolation scheme [13], and the 
frequency-domain method at early time periods. 

 
As for the first problem, results from the space-

frequency method are the most accurate; the physics of 
the problem is respected, since the transmittance begins 
exactly at t* = 1. 

At the opposite of what have been observed for the 
first problem (Fig. 2), the Fig. 3 does not report a 
significant difference between the two approaches after 
tL

*. This can be explain by the fact that, for a medium of 

unit optical thickness, the ballistic regime (collimated 
component) is dominant compared to the sinuous 
propagation regime (diffuse component), in the beginning 
of the temporal process. The collimated intensity does 
not induced early transmitted radiation, since its solution 
is determined exactly by a spatial exponential decay. 

5. Conclusion 

 
The one-dimensional transient radiative transfer 

problem for absorbing and scattering media has been 
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solved, in Cartesian coordinates, using a Discrete 
Ordinates – Finite Volume approach based in the 
frequency-domain. 

It has been shown that the temporal distributions of 
transmittance obtained from the frequency-domain 
approach are accurate, without physically unrealistic 
fluxes emerging earlier than the minimal time required by 
the radiation to leave the medium. 

However, compared to a time-dependent approach, 
the space-frequency method is time consuming (requires 
approximately, for all simulations carried out, five times 
more CPU time than solving directly the Transient 
Radiative Transfer Equation with a Superbee flux limiter). 
This can be explained by the fact that a large number of 
frequencies are needed to correctly represent the square 
pulse, and also, by the fact that the shift from the space-
frequency to the space-time domain constitutes a 
supplementary computational step compared to a time-
based technique. 

A Fast Fourier Transform algorithm was 
implemented to accelerate the Inverse Fourier Transform 
(IFT) step, but the success of this strategy was mitigated: 
no significant improvement in CPU time was reported 
(unpublished). The reason is that the IFT itself is not what 
burdens the algorithms, and the large CPU time are 
mostly due to the large numbers of angular frequencies. 
Therefore, a more physically realistic Gaussian incident 
pulse should be taken into account, since less angular 
frequencies would be required to adequately represent 
this temporal pulse. 
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