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ABSTRACT
A general analysis of poroelasticity for vertical transverse

isotropy (VTI) shows that four eigenvectors are pure shear modes
with no coupling to the pore-fluid mechanics. The remaining two
eigenvectors are linear combinations of pure compression and
uniaxial shear, both of which are coupled to the fluid mecha
ics. After reducing the problem to a 2× 2 system, the analysis
shows in a relatively elementary fashion how a poroelastic sys-
tem with isotropic solid elastic frame, but with anisotropyintro-
duced through the poroelastic coefficients, interacts withthe me-
chanics of the pore fluid and produces shear dependence on fld
properties in the overall mechanical system. The analysis shows,
for example, that this effect is always present (though sometimes
small in magnitude) in the systems studied, and can be quite large
(up to a definite maximum increase of 20 per cent) in some roc
— including Spirit River sandstone and Schuler-Cotton Valley
sandstone.

INTRODUCTION
An important paper by Gassmann [1] concerns the effects

fluids on the mechanical properties of porous rock. His main re-
sult is the well-known fluid-substitution formula (that nowbears
his name) for the bulk modulus in undrained, isotropic poroe-
lastic media. He also postulated that the effective shear mod-
ulus would be independent of the mechanical properties of te
fluid when the medium is isotropic. That the independence
shear modulus from fluid effects is guaranteed for isotropicme-
1
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dia at very low or quasistatic frequencies was shown recently by
Berryman [2] to be tightly coupled to the original bulk modu-
lus result of Gassmann; each result implies the other in isotropic
media. It has gone mostly without discussion in the literature
that Gassmann [1] also derived general results for anisotropic
porous rocks in the same 1951 paper. It is not hard to see th
these results imply that, contrary to the isotropic case, the over-
all undrained shear modulus in fact generally does depend
fluid properties in anisotropic media. However, Gassmann’spa-
per does not remark at all on this difference in behavior between
isotropic and anisotropic porous rocks. Brown and Korringa[3]
also address the same class of problems, including both isotropic
and anisotropic cases, but again they do not remark on the shar
modulus results in either case. Norris [4] studies partial satu-
ration in isotropic layered materials in the low-frequencyregime
(' 100 Hz) and takes as a fundamental postulate that Gassman
results hold for the low frequency shear modulus, but it seems
that some justification should be provided for such an assum-
tion, and furthermore some indication of its range of validity es-
tablished.

On the other hand, Hudson [5], in his early work on
cracked solids, explicitly demonstrates differences between
fluid-saturated and dry cracks and relates his work to that
Walsh [6] and O’Connell and Budiansky [7], but does not mak
any connection to the work of either Gassmann [1], or Brow
and Korringa [3]. Mukerji and Mavko [8] show numerical re-
sults based on work of Gassmann [3], Brown and Korringa [3
and Hudson [5] demonstrating the fluid dependence of shear
Copyright c© 2004 by ASME
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anisotropic rock, but again they do not remark on these results at
all. Mavko and Jizba [9] use a simple reciprocity argument toes-
tablish a direct, but approximate, connection between undrained
shear response and undrained compressional response in roks
containing cracks. Berryman and Wang [10] show that devi
tions from Gassmann’s results sufficient to produce shear modu-
lus dependence on fluid mechanical properties require the pres-
ence of anisotropy on the microscale, thereby explicitly violating
the microhomogeneous and microisotropy conditions implicit in
Gassmann’s original derivation. Berrymanet al. [11] go fur-
ther and make use of differential effective medium analysisto
show explicitly how the undrained, overall isotropic shearmod-
ulus can depend on fluid trapped in penny-shaped cracks. Me-
while, laboratory results (see Berrymanet al. [12]) show conclu-
sively that the shear modulus does depend on fluid mechani
properties for low-porosity, low-permeability rocks, andhigh-
frequency laboratory experiments (f > 500 kHz).

One thing lacking from all the preceding work is a simple
example showing how the presence of anisotropy influencese
shear modulus, and specifically when and how the shear modus
becomes fluid dependent. Our main purpose in the present w
is therefore to demonstrate, in a set of rather simple examples,
how the shear behavior becomes dependent on fluid proper
in anisotropic media — even though overall shear modulus is al-
ways independent of the fluid properties in microhomogeneos
isotropic media at sufficiently low frequencies, whether drained
or undrained. Two other distinct but related analyses address-
ing this topic have been presented recently by the author [13,14].
Both of these prior papers have made explicit use of layered me-
dia, composed of isotropic poroelastic materials, together with
exact results for such media based on Backus averaging [15].In
contrast, the present analysis doesnotmake use of such a specific
model, and is therefore believed to be about as simple as poi-
ble, while still achieving the level of understanding desired for
this rather subtle technical issue. One important simplification
we make here in order to separate what part is due to poroelaic
effects, and what part would be present in any elastic (i.e., possi-
bly zero permeability porous medium) is to model each material
as if the elastic part is entirely isotropic, while the poroelastic
effects (i.e., the Biot-Willis coefficients [16] for the anisotropic
overall material) supply the only source of anisotropy in the sys-
tem. Thus, we specifically distinguish two possible sourcesof
anisotropy, the elastic or “hard” anisotropy that is assumed not
to be present here, and the poroelastic or “soft” anisotropythat is
the source of all the effects we want to study in this paper.

Our analysis for general transversely isotropic media is pre-
sented in the next three sections. In particular the “eigenvectors”
section also introduces the effective undrained shear modulus rel-
evant to our general discussion. Examples are then presented for
two sandstones. The paper’s results and conclusions are summa-
rized in the final section.
2

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use
c
-

n

al

u
rk

es

s

t

FLUID-SATURATED POROELASTIC MEDIA
In contrast to traditional elastic analysis, the presence in rock

of a saturating pore fluid introduces the possibility of an addi-
tional control field and an additional type of strain variable. The
pressurepf in the fluid is a new field parameter that can be con-
trolled. Allowing sufficient time for global pressure equilibration
will permit us to considerpf to be a constant throughout the per-
colating (connected) pore fluid, while restricting the analysis to
quasistatic processes. The changeζ in the amount of fluid mass
contained in the pores (see Biot [17] or Berryman and Thigpen
[18]) is a new type of strain variable, measuring how much of
the original fluid in the pores is squeezed out during the com-
pression of the pore volume while including the effects of com-
pression or expansion of the pore fluid itself due to changes in
pf . It is most convenient to write the resulting equations in terms
of compliances rather than stiffnesses, so the basic equation to
be considered takes the following form for isotropic media:









e11

e22

e33

−ζ









=









s11 s12 s12 −β
s12 s11 s12 −β
s12 s12 s11 −β
−β −β −β γ

















σ11

σ22

σ33

−pf









, (1)

whereei j andσi j for i, j = 1,2,3 are the components of overall
strain and stress, respectively, in 3D. The constants appearing in
the matrix on the right hand side will be defined in the following
two paragraphs. It is important to write the equations this way
rather than using the inverse relation in terms of the stiffnesses,
because the compliancessi j appearing in (1) are simply related
to the drained elastic constantsλdr andGdr in the same way they
are related in normal elasticity, whereas the individual stiffnesses
obtained by inverting the equation in (1) must contain coupling
terms through the parametersβ andγ that depend on the pore and
fluid compliances. Thus, we find that

s11 =
1

Edr
=

λdr +Gdr

Gdr(3λdr +2Gdr)
(2)

and

s12 = − νdr

Edr
, (3)

where the drained Young’s modulusEdr is defined by the second
equality of (2) and the drained Poisson’s ratio is determined by

νdr =
λdr

2(λdr +Gdr)
. (4)
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When the external stress is hydrostatic soσ = σ11 = σ22 =
σ33, equation (1) telescopes down to

(

e
−ζ

)

=

(

1/Kdr −α/Kdr

−α/Kdr α/BKdr

)(

σ
−pf

)

, (5)

wheree= e11+ e22+ e33, Kdr = λdr +
2
3Gdr is the drained bulk

modulus,α = 1−Kdr/Km is the Biot-Willis parameter [16] with
Km being the bulk modulus of the solid minerals present, an
Skempton’s pore-pressure buildup parameterB [19] is given by

B =
1

1+Kp(1/K f −1/Km)
. (6)

New parameters appearing in (6) are the bulk modulus of th
pore fluidK f and the pore modulusK−1

p = α/φKdr whereφ is the
porosity. The expressions forα andB can be generalized slightly
by supposing that the solid frame is composed of more than on
constituent, in which case theKm appearing in the definition of
α is replaced byKs and theKm appearing explicitly in (6) is re-
placed byKφ (see Brown and Korringa [3], Rice and Cleary [20],
Berryman and Wang [21]). This is an important additional com-
plication [22], but — for the sake of desired simplicity — we will
not pursue the matter further here.

Comparing (1) and (5), we find that

β =
α

3Kdr
(7)

and

γ =
α

BKdr
. (8)

RELATIONS FOR ANISOTROPY IN POROELASTIC
MATERIALS

Gassmann [1], Brown and Korringa [3], and many other
have considered the problem of obtaining effective constants for
anisotropic poroelastic materials when the pore fluid is confined
within the pores. The confinement condition amounts to a con
straint that the increment of fluid contentζ = 0, while the exter-
nal loadingσ is changed and the pore-fluid pressurepf is allowed
to respond as necessary and thus equilibrate.

To recall an elementary derivation of the Gassmann equatio
for anisotropic materials, we consider the anisotropic generaliza-
tion of (1)









e11

e22

e33

−ζ









=









s11 s12 s13 −β1

s12 s22 s23 −β2

s13 s23 s33 −β3

−β1 −β2 −β3 γ

















σ11

σ22

σ33

−pf









. (9)
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Three shear contributions have been immediately excluded from
consideration since they can easily be shown not to interactme-
chanically with the fluid effects. This form is not completely
general in that it includes only orthorhombic, cubic, hexagonal,
and all isotropic systems. Also, we have assumed that the mae-
rial axes are aligned with the spatial axes. But this latter assump-
tion is not significant for the derivation that follows. Suchan
assumption is important when properties of laminated materials
having arbitrary orientation relative to the spatial axes need to be
considered, but we do not treat this more general problem here.

If the fluid is confined (or undrained on the time scales of in
terest to applications in high frequency wave propagation), then
ζ ≡ 0 in (9) andpf becomes a linear function ofσ11, σ22, σ33.
Eliminating pf from the resulting equations, we obtain the gen
eral expression for the strain dependence on external stress under
such undrained conditions:





e11

e22

e33



 =









s11 s12 s13

s12 s22 s23

s13 s23 s33



− γ−1





β1

β2

β3





(

β1 β2 β3
)









σ11

σ22

σ33





≡





s∗11 s∗12 s∗13
s∗12 s∗22 s∗23
s∗13 s∗23 s∗33









σ11

σ22

σ33



 . (10)

Thesi j ’s are fluid-drained constants, while thes∗i j ’s are the fluid-
undrained (or fluid-confined) constants.

The fundamental result (10) was obtained earlier by bo
Gassmann [1] and Brown and Korringa [3], and may be writte
simply as

s∗i j = si j −
βiβ j

γ
, for i, j = 1,2,3. (11)

This expression is just the anisotropic generalization of the well-
known Gassmann equation for isotropic, microhomogeneo
porous media.

EIGENVECTORS FOR TRANSVERSE ISOTROPY
The 3×3 system (10) can be analyzed fairly easily, and

particular the eigenfunctions and eigenvalues of this system can
be obtained in general. However, such general results do
provide much physical insight into the problem we are tryingto
study, so instead of proceeding in this direction we will nowre-
strict attention to transversely isotropic materials. This case is
relevant to many layered earth materials and also industrial sys-
tems, and it is convenient because we can immediately eliminate
one of the eigenvectors from further consideration. Three mutu-
Copyright c© 2004 by ASME
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ally orthogonal (but unnormalized) vectors of interest are:

v1 =





1
1
1



 , v2 =





1
−1
0



 , v3 =





1
1
−2



 . (12)

Treating these vectors as stresses, the first corresponds toa sim-
ple hydrostatic stress, the second to a planar shear stress,and
the third to a pure shear stress applied uniaxially along thez-
axis (also the same as the symmetry axis for the layered system).
Transverse isotropy of the layered system requires:s11 = s22,
s13 = s23, and for the poroelastic problemβ1 = β2. Thus, it is
immediately apparent that the planar shear stressv2 is an eigen-
vector of the system, and furthermore it results in no contribution
from the pore fluid. Therefore, this vector will be of no further
interest here, and the system can thereby be reduced to 2×2.

Compliance Formulation
If we define the effective compliance matrix for the system

as S∗ having the matrix elements given in (11), then the bulk
modulus for this system is defined in terms ofv1 by

1
Ku

= vT
1 S∗v1 =

1
Kdr

− γ−1(2β1+ β3)
2 , (13)

where theT superscript indicates the transpose, and 1/Kdr ≡
∑3

i, j=1si j . This is the result usually quoted as Gassmann’
equation for the bulk modulus of the undrained (or confined
anisotropic (VTI) system. Also, note that in general

3

∑
i=1

βi = 2β1+ β3 = α/Kdr. (14)

Thus, even thoughv1 is not an eigenvector of this system, it nev-
ertheless plays a fundamental role in the mechanics. Further-
more, this role is quite well-understood. What is perhaps not so
well-understood then, especially for poroelastic systems, is the
role of v3. Understanding this role will become our main focus
for the remainder of this discussion.

The true eigenvectors of the subproblem of interest (i.e., in
the space orthogonal to the four pure shear eigenvectors already
discussed) are necessarily linear combinations ofv1 andv3. We
can construct the relevant contracted operator for the 2×2 sub-
system by considering:

(

vT
1

vT
3

)

S∗
(

v1 v3
)

≡
(

9A∗
11 18A∗

13
18A∗

13 36A∗
33

)

(15)
4
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(in all cases the∗ superscripts indicate that the pore-fluid effects
are included) and the reduced matrix

Σ∗ = A∗
11v1vT

1 +A∗
13(v1vT

3 +v3vT
1 )+A∗

33v3vT
3 , (16)

where

A∗
11 = [2(s∗11+s∗12+2s∗13)+s∗33]/9,

A∗
13 = (s∗11+s∗12−s∗13−s∗33)/9, (17)

A∗
33 = (s∗11+s∗12−4s∗13+2s∗33)/18.

Providing some understanding of these connections and the im-
plications for shear modulus dependence on fluid content is one
purpose for this work.

First we remark thatA∗
11 = 1/9Ku, whereKu is again the

undrained (or Gassmann) bulk modulus for the system in (13)
Therefore,A∗

11 is proportional to the undrained bulk compliance
of this system. The other two matrix elements cannot be given
such simple interpretations in general. To simplify the analy-
sis we note that, at least for purposes of modeling, anisotropy
of the compliancessi j and the poroelastic coefficientsβi can be
treated independently. Anisotropy displayed in thesi j ’s corre-
sponds mostly to the anisotropy in the solid elastic components
of the system, while anisotropy in theβi ’s corresponds mostly
to anisotropy in the shapes and spatial distribution of the poros-
ity. We will therefore distinguish these contributions by call-
ing anisotropy appearing in thesi j ’s the “hard anisotropy,” and
the anisotropy in theβi ’s will in contrast be called the “soft
anisotropy.”

Now, it is clear that the eigenvectorsf (θ) for this problem
(i.e., for the reduced operatorΣ∗) necessarily take the form

f (θ) =
cosθ√

3
v1 +

sinθ√
6

v3, (18)

with two solutions for the rotation angle:θ− andθ+ = θ− + π
2,

guaranteeing that the two solutions (the eigenvectors) areorthog-
onal. It is easily seen that the eigenvalues are given by

Λ∗
± = 3

[

A∗
33+A∗

11/2±
√

(A∗
33−A∗

11/2)2 +2(A∗
13)

2

]

(19)

and the rotation angles are determined by

tanθ∗± =
Λ∗
±/3−A∗

11√
2A∗

13

=

[

A∗
33−A∗

11/2±
√

(A∗
33−A∗

11/2)2+2(A∗
13)

2

]

/
√

2A∗
13. (20)
Copyright c© 2004 by ASME

: http://www.asme.org/about-asme/terms-of-use



d

n

c

g

e

Dow
One part of the rotation angle is due to the drained (fluid free)
“hard anisotropic” nature of the rock frame material. We will
call this partθ̄. The remainder is due to the presence of the flui
in the pores, and we will call this partδθ ≡ θ∗− θ̄ for the “soft
anisotropy.” Using a standard formula for tangents, we have

δθ± = tan−1
[

tanθ∗±− tanθ̄±
1+ tanθ∗± tanθ̄±

]

. (21)

Furthermore, definite formulas for̄θ± are found from (20) by
takingγ → ∞ (corresponding to air saturation of the pores).

Since

tanθ∗+ · tanθ∗− = −1, (22)

it is sufficient to consider just one of the signs in front of the rad-
ical in (20). The most convenient choice for analytical purposes
turns out to be the minus sign (which corresponds to the eige-
vector with the larger component of pure compression). Further-
more, it is also clear from the form of (20) that often the behavior
of most interest to us here occurs for cases whenA∗

13 6= 0.
In the limit of a nearly isotropic solid frame (so the “hard

anisotropy” vanishes and thus we will also call this the “quasi-
isotropic” limit), it is not hard to see that

A∗
33'

1
12Gdr

− (β1−β3)
2

9γ
, (23)

whereGdr is the drained shear modulus of the quasi-isotropi
solid frame. Similarly, the remaining coefficient

A∗
13 '− (β1−β3)(2β1 + β3)

9γ
, (24)

since all the solid contributions approximately cancel in this
limit.

Expanding the square root in (19), we also have

Λ∗
+ = 6A∗

33+ ∆ and Λ∗
− = 3A∗

11−∆, (25)

where∆ is defined consistently by either of the two preceedin
expressions or by 2∆ ≡ Λ∗

+ −Λ∗
−+3A11−6A33.

Stiffness formulation
The dual to the problem just studied replaces complianc

everywhere with stiffnesses, and then proceeds as before. Equa-
tions (15)–(18) are replaced by

(

vT
1

vT
3

)

C∗ (

v1 v3
)

≡
(

9B∗
11 18B∗

13
18B∗

13 36B∗
33

)

(26)
5
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(in all cases the∗ superscripts indicate that the pore-fluid effects
are included) and the reduced matrix

(Σ∗)−1 = B∗
11v1vT

1 +B∗
13(v1vT

3 +v3vT
1 )+B∗

33v3vT
3 , (27)

where

B∗
11 = [2(c∗11+c∗12+2c∗13)+c∗33]/9,

B∗
13 = (c∗11+c∗12−c∗13−c∗33)/9, (28)

B∗
33 = (c∗11+c∗12−4c∗13+2c∗33)/18.

It is a straightforward exercise to check that the two reduced
problems are in fact inverses of each other. We will not repeat
this analysis here, as it is wholly repetitive of what has gone be-
fore. The main difference in the details is that the expressions
for theB’s in terms of theβ’s are rather more complicated than
those for the compliance version, which is also why we chose to
display the compliance formulation instead.

Effective and undrained shear moduli Ge f f and Gu

Four shear moduli are easily defined for the anisotropic sys-
tem under study. Furthermore,Gi = Gdr for i = 1, . . . ,4, since
these are all related to the four shear eigenvectors of the sys-
tems, and these do not couple to the pore-fluid mechanics. But,
the eigenvectors in the reduced 2× 2 system studied here are
usually mixed in character, being quasi-compressional or quasi-
shear modes. It is therefore somewhat problematic to find a
proper definition for the fifth shear modulus. The author has ana-
lyzed this problem previously [13], and concluded that a sensible
(though approximate) definition can be made usingG5 = Ge f f.
There are several different ways of arriving at the same result, but
for the present analysis the most useful of these is to expressGe f f

in terms of the productΛ+Λ− (the eigenvalue product, which is
also the determinant of the 2×2 compliance system). The result,
which will be quoted here without further discussion (see [13]
for details), is

1
3Ku

· 1
2Ge f f

≡ Λ+Λ− = 18
[

A∗
11A

∗
33− (A∗

13)
2] . (29)

And, sinceA∗
11 = 1/9Ku, we have

1
Ge f f

= 12
[

A∗
33− (A∗

13)
2/A∗

11

]

. (30)

To obtain one choice for an isotropic average overall undrained
shear modulus, we next take the arithmetic mean of the five shear
Copyright c© 2004 by ASME
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compliances:

1
Gu

≡ 1
5

5

∑
i=1

1
Gi

. (31)

Combining these definitions and results gives:

1
Gu

− 1
Gdr

= − 4
15

(β′
1−β′

3)
2

1−αB
αB
Kdr

=
4
15

(β′
1−β′

3)
2

1−αB

[

1
Ku

− 1
Kdr

]

. (32)

The β′s are defined byβ′
i = βiKdr/α. The final equality is pre-

sented to emphasize the similarity of the present results tothose
of Mavko and Jizba [9] and Berrymanet al. [11]. Settingβ′

1 = 0,
β′

3 = 1, B= 1, andα ' 0 recovers the expressions of Mavko and
Jizba [9] for the case of a very dilute system of flat cracks.

Note that (31) is just the Reuss average (lower bound) of th
shear modulus. Also note that the definition (30) ofGe f f is actu-
ally based on the Voigt average. In terms of mathematical rigor,
the result (32) therefore cannot be considered rigorous; itis nei-
ther an upper nor a lower bound. The justification for the formula
comes not from absolute rigor, but instead from frequent obser-
vations thatGe f f is in fact a very close estimate of the energy pe
unit volume in the fifth shear mode and from the knowledge tha
the Reuss average for compressional modulus tends to be mu
closer (than does the Voigt average) to observed results formany
composite systems. So, for these reasons, the result (32) should
be viewed, not as a rigorous formula (it is not), but as a goo
physical estimate of the undrained shear modulus.

TABLE. Elastic and poroelastic parameters of the two rock
samples considered in the text. Bulk and shear moduli of the

grainsKm andGm, bulk and shear moduli of the drained porous
frameKdr andGdr, the effective and undrained shear moduli
Ge f f andGu, and the Biot-Willis parameterα = 1−Kdr/Km.

The porosity isφ.

Elastic/Poroelastic Schuler-Cotton Valley Spirit River

Parameters Sandstone Sandstone

Gm (GPa) 36.7 69.0

Gu (GPa) 17.7 12.41

Gdr (GPa) 15.7 11.33

Ge f f (GPa) 35.8 20.11

Km (GPa) 41.8 30.0

Kdr (GPa) 13.1 7.04

α 0.687 0.765

φ 0.033 0.052
6
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EXAMPLES AND DISCUSSION

It is clear from (25) that fluid effects in∆ cannot increase
the overall compliance eigenvalues simultaneously for both the
quasi-bulk and the quasi-shear modes. Rather, if one increases,
then the other must decrease. Furthermore, it is certainly always
true that the presence of pore liquid either has no effect or else
strengthens (i.e., stiffens) the porous medium in compression.
But this effect on the bulk modulus has been at least partially
accounted for inA∗

11 = 1/9K∗ through the original contribution
derived by Gassmann [1]. So presumably the contribution of∆ to
compliance cannot be so large as to negate completely the liquid
effects on the undrained bulk modulus.

Examples

To clarify the situation, we show some examples in Figures
1–4. The details of the analysis that produces these figures are
summarized in the Appendix. The main point is that, for the
compliance version of the analysis, the contours of constant en-
ergy are ellipses when the vectorf in (18) is interpreted as a
stress. Analogously, when the vector is treated as a strain,the
contours of constant energy are ellipses for the dual (or stiffness)
formulation. If we choose to think of these figures as diagrams
in the complex plane, then we note that — while circles and lines
transform to circles and lines when transforming back and forth
between these two planes — the shapes of ellipses are not pr
served (except, of course, in the special case – which is precisely
that of isotropy – when the ellipses degenerate to circles).Eigen-
vectors are determined by the directions in which the pointsof
contact of these two curves lie (indicated by red circles).

For the two sets of examples considered here, the value
used for the moduli of the samples are taken from results con
tained in Berryman [23] wherein it was shown how certain lab-
oratory data could be fit using an elastic differential effective
medium scheme. These results are summarized in the TABLE.

Figures 1 and 2 present results for Schuler-Cotton Valley
sandstone. Laboratory data on this material were also presented
by Murphy [24]. The values chosen forβ1 andβ3 wereβ1 =
0.20α/Kdr andβ3 = 0.60α/Kdr. The value of the energy per unit
volume used for normalization wasU ' 900.0 GPa. Computed
values for the effective and undrained shear moduli wereGe f f =
35.8 GPa andGu = 17.7 GPa.

Figures 3 and 4 present results for Spirit River sandstone
Laboratory data on this material were presented by Knight and
Nolen-Hoeksema [25]. The values chosen forβ1 andβ3 were
β1 = 0.25α/Kdr andβ3 = 0.50α/Kdr. The value of the energy
per unit volume used for normalization wasU ' 900.0 GPa.
Computed values for the effective and undrained shear modui
wereGe f f = 20.11 GPa andGu = 12.41 GPa.
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Figure 1. For Schuler-Cotton Valley Sandstone [24] having bulk modu-

lus Kdr = 13.1 GPa and shear modulus Gdr = 15.7 GPa, the locus of

points z = Reiθ [see equation (34)] having constant energy U = 900
GPa, when the linear combination of pure compression and pure uniax-

ial shear is interpreted as strain field applied to the stiffness matrix (solid

black line). The plot is in the complex z-plane, with the inverse of the cor-

responding expression for the compliance energy superposed for com-

parison (dashed blue line). Red circles at the two points of intersection

correspond to the two eigenvectors of the system of equations. The el-

lipse (solid black line) in this plane corresponds to the more complex curve

in Figure 2.

Discussion
We can compare the results obtained with results obtain

for the same rocks using differential effective medium theory to
fit data. The two characteristics that will interest us here are: (1)
comparisons between the values chosen in our examples fore
anisotropicβ′s and the best fitting crack aspect ratios found i
[23], and (2) comparisons between the magnitudes of changesin
the overall shear moduli from their drained to undrained values.

The preferred crack aspect ratios found for Schuler-Cotto
Valley sandstone and Spirit River sandstone in [23] were respec-
tively, 0.015 and 0.0125. Here we found that (β′

1,β′
3) for the same

samples were, respectively, (0.20,0.60) and (0.25,0.50).Clearly,
these values are at least weakly correlated with those of theas-
pect ratios for the same samples, but no stronger conclusions can
be reached at the present time concerning these values.

Similarly, the comparisons of the changes in shear modul
magnitude from drained to undrained also show a weak corr
lation. The increases in shear moduli observed in the measured
laboratory data for Schuler-Cotton Valley sandstone and Spirit
River sandstone are, respectively, about 10%, and 20%. As seen
in the TABLE, the magnitude of the changes predicted here
also about 10% in both cases. In fact, we know from relate
work in [14] that the maximum effect on shear for any hetero
geneous, saturated porous medium is a 20% increase. So
observed values of about 10% may be considered typical. Thu,
agreement is good both qualitatively and semi-quantitatively in
7
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Figure 2. Same parameters as Figure 1, but the linear combination of

pure compression and pure uniaxial shear is interpreted as a stress field

and is applied to the compliance matrix (dashed blue line). The plot is

again in the complex z-plane, with the inverse of the corresponding ex-

pression for the stiffness energy superposed for comparison (solid black

line). Red circles at the two points of intersection correspond to the two

eigenvectors of the system of equations. The ellipse (dashed blue line

here) corresponds to the more complex curve in Figure 1.

all cases. We conclude that the theory presented here is correctly
predicting the magnitudes of these shear modulus enhancements
due to pore-fluid effects.

SUMMARY AND CONCLUSIONS

The preceding discussion shows how overall shear modulu
dependence on pore-fluid mechanics arises in simple anisotropic
(the specific example used was transversely isotropic) media.
The results demonstrate in an entirely elementary fashion how
compression-to-shear coupling enters the analysis for anisotropic
materials, and furthermore how this coupling leads to overall
shear dependence on mechanics of fluids in the pore system.

These effects need not always be large. However, the e
fect can be very substantial (on the order of a 10% to 20% in
crease in the overall shear modulus) in cracked or fracturedma-
terials, when these pores are liquid-filled. The anisotropyand
liquid stiffening effects then both come strongly into playin the
results we see, such as those illustrated in Figures 1–4. In partic-
ular, if β1 ' β3, then soft anisotropy does not make a significan
contribution. But, if eitherβ1 << β3 or β1 >> β3, then the con-
tribution can be significant.
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SPIRIT RIVER SANDSTONE

Figure 3. For Spirit River Sandstone [25] having bulk modulus Kdr =
7.04 GPa and shear modulus Gdr = 11.33 GPa, the locus of points

z = Reiθ [see equation (34)] having constant energy U = 900 GPa,

when the linear combination of pure compression and pure uniaxial shear

is interpreted as strain field applied to the stiffness matrix (solid black line).

Otherwise the same type of plot as Figure 1. The ellipse (solid black line)

in this plane corresponds to the more complex curve in Figure 4.
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APPENDIX
The equation of an ellipse centered at the origin whose sem

major and semi-minor axes are of lengthsa and b and whose
angle of rotation with respect to thex-axis in the(x,y)-plane isψ
is given by

(xcosψ+ysinψ)2/a2+(−xsinψ+ycosψ)2/b2 = 1. (33)

For comparison, when a stress of magnituder =
√

x2 +y2 is ap-
plied to a poroelastic system, the energy stored in the anisotropic
media of interest here [using (16) and (18)] is given by

U(r,θ) = 3r2
[

A11cos2 θ+2
√

2A13cosθsinθ+2A33sin2 θ
]

= R2U(r0,θ), (34)

where in the second equationR≡ r/r0, and r0 in an arbitrary
number (say unity) having the dimensions of stress (i.e., dimen-
sions of Pa). It is not hard to see that, whenU(r,θ) = const,
8
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Figure 4. Same parameters as Figure 3, but the linear combination of

pure compression and pure uniaxial shear is interpreted as a stress field

and is applied to the compliance matrix (dashed blue line). Otherwise the

same as Figure 2. The ellipse (dashed blue line here) corresponds to the

more complex curve in Figure 3. Eq. (29) shows that the areas of the two

rectangles displayed here are equal.

the two equations (33) and (34) have the same functional form
and, therefore, that contours of constant energy in the complex
(z= x+ iy) plane are ellipses. Furthermore, we can solve for the
parameters of the ellipse by settingU = 1 (in arbitrary units for
now) in (34) and then factoringr2 out of both equations. We find
that

3A11 =
cos2 ψ

a2 +
sin2 ψ

b2 ,

6
√

2A13 = sin2ψ
(

1
a2 −

1
b2

)

, (35)

6A33 =
sin2 ψ

a2 +
cos2 ψ

b2 .

These three equations can be inverted for the parameters of the
ellipse, giving:

1
a2 =

3A11cos2 ψ−6A33sin2 ψ
cos2ψ

,

1
b2 = −3A11sin2 ψ−6A33cos2 ψ

cos2ψ
, (36)

tan2ψ =
2
√

2A13

A11−2A33
.

Although contours of constant energy are of some interest,
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it is probably more useful to our intuition for the poroelastic ap-
plication to think instead about contours associated with applied
stresses and strains of unit magnitude,i.e., for r = 1 (in appropri-
ate units) andθ varying from 0 toπ. We then have the important
functionU(1,θ). [Note that, whenθ varies instead betweenπ
and 2π, we just get a copy of the behavior forθ between 0 and
π. The only difference is that the stress and strain vectors have
an overall minus sign relative to those on the other half-circle.
For a linear system, such an overall phase factor of unit magni-
tude is irrelevant to the mechanics of the problem.] Then, ifwe
setU(r,θ) = const= R2U(r0,θ) and plotz = Reiθ in the com-
plex plane, we will have a plot of the ellipse of interest withR
determined analytically by

R=
√

U(r,θ)/U(r0,θ) =
√

const/U(r0,θ). (37)

We call R the magnitude of the normalized stress (i.e., normal-
ized with respect tor0).

The analysis just outlined can then be repeated for the stiff-
ness matrix and applied strain vectors. The mathematics is com-
pletely analogous to the case already discussed, so we will not
repeat it here. Since strain is already a dimensionless quantity,
the factor that plays the same role asr0 above can in this case
be chosen to be unity if desired, as the main purpose of the fac-
tor r0 above was to keep track of the dimensions of the stres
components.
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