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Abstract

In this note we present tight lower bounds on the information-based complexity of large-scale smooth
convex minimization problems. We demonstrate, in particular, that the k-step Conditional Gradient (a.k.a.
Frank-Wolfe) algorithm as applied to minimizing smooth convex functions over the n-dimensional box with
n ≥ k is optimal, up to an O(lnn)-factor, in terms of information-based complexity.

1 Introduction

In this note, we deal with information-based complexity of convex optimization problems, and we start with
outlining the associated notions. We are interested in solving optimization programs of the form

Opt(f) = min
x∈X

f(x) (Pf,x)

where X is a given convex compact subset of Euclidean space E, and f is known to belong to a given family
F of continuous convex functions on E. We assume that the family F is equipped with an oracle O which,
formally, is a function O(f, x) of f ∈ F and x ∈ E taking values in some information space I; when solving
(Pf,X), an algorithm at every step can input to the oracle a query point x ∈ E and gets back the value O(f, x).
In the sequel, we always assume the oracle to be local, meaning that whenever x ∈ E and f, g ∈ F are such
that f(·) = g(·) in some neighbourhood of x, we have O(f, x) = O(g, x).

A k-step solution method M, utilizing oracle O, for the family P(F , X) comprised of problems (Pf,X)
with f ∈ F , is a procedure as follows. As applied to a problem (Pf,X) with f ∈ F , M generates a sequence
xt = xt(M, f), 1 ≤ t ≤ k of search points according to the recurrence

xt = Xt({xτ ,O(f, xτ )}t−1
τ=1), t = 1, ..., k,

where the search rules Xt(·) are deterministic functions of their arguments; we can identifyM as a collection of
these rules. Thus, x1 is defined byM and is independent of f , and all subsequent search points are deterministic
functions of the preceding search points and the information on f provided by O when queried at these points.
We treat xk = xk(M, f) as the approximate solution generated by k-step solution method M as applied
to (Pf,X), and define the minimax risk associated with the family P(F , X) and oracle O as the function of
k = 1, 2, ... defined by

RiskF,X,O(k) = inf
M

[
RiskM(k) := sup

f∈F
[f(xk(M, f))−Opt(f)]

]
,

where the right hand side infinum is taken over all k-step solution algorithmsM utilizing oracle O. The inverse
to the risk function

CF,X,O(ε) = min {k : RiskF,X,O(k) ≤ ε}
∗The research was supported by the NSF grant CMMI-1232623.
†cguzman@gatech.edu
‡arkadi.nemirovski@isye.gatech.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357618281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for ε > 0 is called the information-based complexity of the family FX taken with respect to oracle O. The
standard reference on information-based complexity of various broad families of convex programs is [4]; for some
recent developments, see [8, 1] and references therein.

This note is primarily motivated by recently renewed interest in the Conditional Gradient (a.k.a. Frank-
Wolfe) method, originating from [3], for solving problems (Pf,X) with smooth convex objectives f . This method
utilizes the standard first order oracle (O(f, x) = (f(x),∇f(x)) and possesses two remarkable features:

1. Dimension-independent sublinear convergence rate depending solely on t and of the properly measured
smoothness parameters of f . Specifically, assuming w.l.o.g. that X linearly spans E, the set 1

2 [X −X] is
the unit ball of certain, depending solely on X, norm on E; we denote this norm ‖ · ‖X , and its conjugate
norm by ‖ · ‖X,∗. Assuming that the objective f in (Pf,X) is convex and (κ, L) smooth on X, meaning
that f has Hölder continuous, with parameters κ ∈ (1, 2], L <∞, gradient on X:

‖∇f(x)−∇f(y)‖X,∗ ≤ L‖x− y‖κ−1
X ∀x, y ∈ X, (1)

the conditional algorithm with t = 1, 2, . . . steps ensures that

f(xt)−Opt(f) ≤ 8L/tκ−1, t = 2, 3, . . . (2)

2. Possibility to work with “complex geometry” sets X. A nice fact about Conditional Gradient methods
(which is exactly the reason of the renewed interest in them, primarily coming from nuclear norm mini-
mization arising in Machine Learning) is that these methods are applicable when X is represented by a not
too computationally expensive Linear Minimization oracle (one capable of minimizing linear objectives
over X), which is essentially less restrictive than the ability, required by the majority of other first order
algorithms, to deal with much more computationally demanding prox mappings.

In spite of the just outlined attractive features of Conditional Gradient methods, these algorithms usually are
not optimal from the viewpoint of information-based complexity theory. For example when X is the unit
n-dimensional Euclidean ball and f has Lipschitz continuous gradient (i.e., (1) holds true, with some L, for
κ = 2, (2) exhibits the rate of convergence O(1)L/t, while the “true” optimal dimension-independent rate of
convergence in this case is O(1)L/t2 1). The only interesting situation where the existing knowledge did not
predict non-optimality of Conditional Gradient algorithm in terms of information-based complexity, was the
one where X is a high-dimensional unit box. This paper was primarily motivated by the desire to understand
what is the information-based complexity of smooth convex minimization over the n-dimensional unit box X.
The main contribution of this note is in demonstrating that when minimizing convex functions with Lipschitz
continuous, with constant L w.r.t. ‖ · ‖X = ‖ · ‖∞, gradient over n-dimensional unit box X, the risk, for all
t ≤ n, is lower-bounded by O(1)/(t lnn), so that the Conditional Gradient algorithm is in this case nearly (up
to an O(lnn) factor) optimal in terms of information-based complexity.

In fact, in what follows we provide tight lower bounds on information-based complexity if minimizing (κ, L)-
smooth functions on ‖ · ‖p-balls, where 2 ≤ p ≤ ∞, so that the just mentioned lower complexity bound for
smooth convex minimization over the unit box is the special case p = ∞ of the bounds to be presented. It
should be mentioned that for the case of p <∞ these bounds, obtained by the second author of this note, were
announced in [5, 2]; however, aside of the very special case of p = 2, the highly technical original proofs of the
bounds were never published. Motivated as explained above, we recently have revisited the original proofs and
were able to simplify them dramatically, thus making them publishable.

The rest of this note is organized as follows. In section 2 we restate in full details the problem we are interested
in. Section 3 is devoted to the main component of our construction – a Moreau-type scheme for approximating
a convex Lipschitz continuous function by a convex function with Lipschitz continuous gradients; a novelty
here, if any, stems from the fact that we need Lipschitz continuity of the gradient w.r.t. a given, not necessarily
Euclidean, norm, while the standard Moreau envelope technique is adjusted to the case of the Euclidean norm2).
Section 4 contains the main result of this note – a lower bound on information-based complexity of smooth
convex minimization.

1)For the O(1)L/t2 lower risk bound, see [4]; an O(1)L/t2 upper risk bound in the case in question is achieved by the celebrated
Nesterov’s optimal algorithm for smooth convex minimization [6, 7].

2)It well may happen that the extensions of the classical Moreau results which we present in section 3 are known, so that the
material in this section does not pretend to be novel. This being said, at this point in time we do not have at our disposal references
to the results on smoothing we need, and therefore we decided to augment these simple results with their proofs, in order to make
our presentation self-contained.
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2 The problem

Let E be an n-dimensional Euclidean space, and ‖ · ‖ be a norm on E (not necessary the Euclidean one). Let,
further, X be a nonempty closed and bounded convex set in E. Given a positive real L and κ ∈ (1, 2], consider
the family F‖·‖(κ, L) of all continuously differentiable convex functions f : E → R satisfying the inequality

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖κ−1 ∀x, y ∈ E, (3)

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖. We associate with ‖ · ‖, X, κ, L the family of convex optimization
problems P = P(F‖·‖(κ, L), X); recall that this is the family of all problems of the form Opt(f) = minx∈X f(x)
with f ∈ F‖·‖(κ, L).

We equip the family F‖·‖(κ, L) with a local oracle O; to avoid extra words, we assume that this oracle is at
least as powerful as the First Order oracle, meaning that f(x),∇f(x) is a component of O(f, x).

Our goal is to establish lower bounds on the risk Risk(t), taken w.r.t. the oracle O, of the just defined family
of problems P. In the sequel, we focus solely on the “large-scale” case n ≥ t, and the reason is as follows: it
is known [4] that when t � n, Risk(t) “basically forgets the details specifying P” and goes to 0, as t → ∞, as
O(exp{−O(1)t/n}); the data ‖ · ‖, X, L, κ participating in the description of P affect only the factor hidden in
the outer O(·) and thus become irrelevant when t� n. In contrast to this, the risk Risk(t) in the “large-scale
regime” t ≤ n is (at least in the cases we are about to consider) nearly independent of n and just sublinearly
decreases as t grows, and its behavior in this range heavily depends on P.

3 Local Smoothing

In this section we introduce the main tool of our technique, a Moreau-type approximation of a nonsmooth
convex function f by a smooth one. The main feature of this smoothing, instrumental for our ultimate goals,
is that is local – the local behaviour of the approximation at a point depends solely on the restriction of f onto
a neighbourhood of the point, the size of the neighbourhood being under our full control.

3.1 Smoothing Functional

Let ‖ · ‖ be a norm on a Euclidean space E, and C‖·‖ be the set of all Lipschitz continuous, with constant 1
w.r.t. ‖ · ‖, convex functions on E. Let also φ(h) be a twice continuously differentiable convex function defined
on an open convex set Domφ ⊂ E with the following properties:

A. 0 ∈ Domφ and φ(0) = 0, φ′(0) = 0;

B. There exists a compact convex set G ⊆ Domφ such that 0 ∈ intG and φ(x) > ‖x‖ for all x ∈ ∂G.
Note that A and B imply that whenever f ∈ C‖·‖, the function f(x) + φ(x) attains its minimum on the
set intG. Indeed, for every x ∈ ∂G we have f(x) + φ(x) ≥ f(0)− ‖x‖+ φ(x) > f(0) + φ(0), so that the
(clearly existing) minimizer of f +φ on G is a point from intG. As a result, for every f ∈ C‖·‖ and x ∈ Rn

one has
min

h∈Domφ
[f(x+ h) + φ(h)] = min

h∈intG
[f(x+ h) + φ(h)], (4)

and the right hand side minimum is achieved.

C. For some Mφ <∞ we have

eT [∇2φ(h)]e ≤Mφ‖e‖2 ∀(e ∈ E, h ∈ G). (5)

Given a function f ∈ C, we refer to the function

S[f ](x) = min
h∈Domφ

[f(x+ h) + φ(h)] = min
h∈G

[f(x+ h) + φ(h)]

as to the smoothing of f . Observe that by our assumptions on φ we have

1. S[f ](x) = f(x+ h(x)) + φ(h(x)), where h(x) ∈ intG is such that

f ′(x+ h(x)) + φ′(h(x)) = 0 (6)

for properly selected f ′(x+ h(x)) ∈ ∂f(x+ h(x));
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2. f(x) ≥ S[f ](x) ≥ f(x)−R‖·‖(G), where

R‖·‖(G) = max
h∈G
‖h‖;

indeed, by A we have φ(h) ≥ φ(0) = 0, so that f(x) = f(x) + φ(0) ≥ S[f ](x) = f(x+ h(x)) + φ(h(x)) ≥
f(x+ h(x)) ≥ f(x)− ‖h(x)‖ (recall that f ∈ C‖·‖), while h(x) ∈ G.

3. We have
‖∇S[f ](x)−∇S[f ](y)‖∗ ≤Mφ‖x− y‖ ∀(x, y ∈ E, f ∈ C). (7)

To prove the last claim, by the standard approximation argument, it suffices to consider the case when, in
addition to the inclusion f ∈ C‖·‖ and our previous assumptions A – C on φ, f and φ are C∞ smooth and φ is
strongly convex. As we remember,

S[f ](x) = f(x+ h(x)) + φ(h(x)), (8)

where h(x) : E → G is well defined and solves the nonlinear system of equations

F (x, h(x)) = 0, F (x, h) := f ′(x+ h) + φ′(h) = 0. (9)

We have ∂F (x,h)
∂h = f ′′(x + h) + φ′′(h) � 0, implying by the Implicit Function Theorem that h(x) is smooth.

Differentiating the identity (9), we get

f ′′(x+ h(x))︸ ︷︷ ︸
P

[I + h′(x)] + φ′′(h(x))︸ ︷︷ ︸
Q

h′(x) = 0 ⇔ P + (P +Q)h′(x) = 0

⇒ h′(x) = −[P +Q]−1P = −[P +Q]−1[P +Q−Q] = [P +Q]−1Q− I.

On the other hand, differentiating (8), we get

〈∇S[f ](x), e〉 = 〈f ′(x+ h(x)), e+ h′(x)e〉+ 〈φ′(h(x)), h′(x)e〉
= 〈f ′(x+ h(x)), e〉+ 〈f ′(x+ h(x)) + φ′(h(x))︸ ︷︷ ︸

=0

, h′(x)e〉 = −〈φ′(h(x)), e〉

that is,
∇S[f ](x) = −φ′(h(x)).

As a result, for all e, x, we have, taking into account that P , Q are symmetric positive definite,

eT∇2S[f ](x)e = −[h′(x)e]Tφ′′(h(x))e = −eT [[P+Q]−1Q−I]TQe = eTQe−eTQ[P+Q]−1Qe ≤ eTQe ≤Mφ‖e‖2,

and (7) follows.

3.2 Approximating a function by smoothing

For χ > 0 and f ∈ C‖·‖, let
Sχ[f ](x) = min

h∈χDomφ
[f(x) + χφ(h/χ)].

Observe that S[f ]χ(·) can be obtained as follows:

• We associate with f ∈ C‖·‖ the function F (x) = χ−1f(χx); observe that this function belongs to C‖·‖ along
with f ;

• We pass from F to its smoothing

S[F ](x) = ming∈Domφ [F (x+ g) + φ(g)] = ming∈Domφ

[
χ−1f(χx+ χg) + φ(g)

]
= χ−1 minh∈χDomφ [f(χx+ h) + χφ(h/χ)]
= χ−1Sχ[f ](χx).
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It follows that
Sχ[f ](x) = χS[F ](χ−1x).

The latter relation combines with (7) to imply that

‖∇Sχ[f ](x)−∇Sχ[f ](y)‖∗ ≤ χ−1Mφ‖x− y‖ ∀x, y.

As bottom-line, if we can find a function φ as described above we have that for any convex function f :
E → R with Lipschitz constant 1 w.r.t. ‖ · ‖, there exists a smooth (i.e., with Lipschitz continuous gradient)
approximation Sχ[f ] that satisfies:

S.1. Sχ[f ] is convex and Lipschitz continuous with constant 1 w.r.t. ‖ · ‖ and has a Lipschitz continuous
gradient, with constant Mφ/χ, w.r.t. ‖ · ‖:

‖∇Sχ[f ](x)−∇S[f ](y)‖∗ ≤ χ−1Mφ‖x− y‖ ∀x, y;

S.2. supx∈E |f(x)− Sχ[f ](x)| ≤ χR‖·‖(G). Moreover, f(x) ≥ Sχ[f ](x) ≥ f(x)− χR‖·‖(G).

S.3. Sχ[f ] depends on f in a local fashion: the value and the derivative of Sχ[f ] at x depends only on the
restriction of f onto the set x+ χG.

3.3 Example: p-norm Smoothing

Let n > 1 and p ∈ [2,∞], and consider the case of E = Rn and ‖ · ‖ = ‖ · ‖p. Assume for a moment that p > 2,
and let r be a real such that 2 < r ≤ p. Let also θ > 1 be such that 2θ/r < 1. Let us set

φ(x) = φr,θ(x) = 2
(∑n

j=1 |xj |r
)2θ/r

,

G = {x ∈ Rn : ‖x‖p ≤ 1}.
(10)

Observe that φ is twice continuously differentiable on Domφ = Rn function satisfying A. Besides this, r ≤ p
ensures that

∑
j |xj |r ≥ 1 whenever ‖x‖p = 1, so that φ(x) > ‖x‖p when x ∈ ∂G, which implies B. Besides this,

we have

eT [∇2φ(x)]e = 4rθ(2θ/r − 1)(
∑
j

|xj |r)2θ/r−2

∑
j

|xj |r−1sign(xj)ej

2

+4θ(r − 1)(
∑
j

|xj |r)2θ/r−1
∑
j

|xj |r−2e2
j

≤ 4θ(r − 1)(
∑
j

|xj |r)2θ/r−1
∑
j

|xj |r−2e2
j (11)

≤ 4θ(r − 1)
[
‖x‖rp n1−r/p

]2θ/r−1

∑
j

|xj |
(r−2)p
p−2


p−2
p
∑

j

|ej |p
 2
p

(12)

≤ 4θ(r − 1)
[
‖x‖rp n1−r/p

]2θ/r−1
[
‖x‖

(r−2)p
p−2

p n1− r−2
p−2

]1−2/p

‖e‖2p (13)

≤ 4θ(r − 1)‖x‖2θ−2
p n

2θ(p−r)
pr ‖e‖2p,

Note we used that 2θ/r < 1 in (11), the inequality
∑n
j=1 |aj |u ≤ (

∑
i |ai|v)u/vn1−u/v (for 0 < u ≤ v ≤ ∞ and

u <∞) in (12), (13), and the Hölder inequality in (12).
We see that setting r = min[p, 3 lnn] choosing θ > 1 close to 1, we ensure the postulated inequalities

2 < r ≤ p, θ > 1, 2θ/r < 1, and well as the relation

x ∈ G ⇒ eT [∇2φ(x)]e ≤ O(1) min[p, lnn]‖e‖2p ∀e ∈ Rn, (14)

expressing the fact that φ, G satisfy assumption C with Mφ = O(1) min[p, lnn].
Up to now, we have assumed that p > 2. In the case of p = 2, we can set φ(x) = 2‖x‖22 and, as above,

G = {x : ‖x‖2 ≤ 1}, clearly ensuring A, B, and the validity of C with Mφ = 1.
Applying the results of the previous section, we get
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Proposition 3.1. Let p ∈ [2,∞] and f : Rn → R be a Lipschitz continuous, with constant 1 w.r.t. the
norm ‖ · ‖p, convex function. For every χ > 0, there exists a convex continuously differentiable function
Sχ[f ](x) : Rn → R with the following properties:

(i) One has f(x) ≥ Sχ[f ](x) ≥ f(x)− χ for all x.
(ii) ‖∇Sχ[f ](x)−∇Sχ[f ](y)‖ p

p−1
≤ O(1) min[p, lnn]χ−1‖x− y‖p for all x, y, with absolute constant O(1);

(iii) For every x, the restriction of Sχ[f ](·) on a small enough neighbourhood of x depends solely on the
restriction of f on the set

Bpχ(x) = {y : ‖y − x‖p ≤ χ}.

4 Lower Bounds for the Information-Based Complexity of Smooth
Convex Minimization

In this section we utilize Proposition 3.1 to prove our main result, namely, a general lower bound on the
information-based complexity of smooth convex minimization, and then specify this result for the case of
minimization over ‖ · ‖p balls, 2 ≤ p ≤ ∞.

Proposition 4.1. Let

I. ‖ · ‖ be a norm on Rn and X be a nonempty convex set in Rn;

II. k be a positive integer and ∆ be a positive real with the following property:
One can point out k linear forms 〈ωi, ·〉 on Rn, 1 ≤ i ≤ k, such that

(a) ‖ωi‖∗ ≤ 1 for i ≤ k, and

(b) for every collection ξk = (ξ1, ..., ξk) with ξi ∈ {1;−1}, it holds

min
x∈X

max
1≤i≤k

ξi〈ωi, x〉 ≤ −∆; (15)

III. M and R be positive reals such that for properly selected convex twice continuously differentiable on an open
convex set Domφ ⊂ Rn function φ and a convex compact subset G ⊂ Domφ the triple (φ,G,Mφ = M)
satisfies properties A, B, C from section 3.1 and R‖·‖(G) ≤ R.

Then for every L > 0, κ ∈ (1, 2], every local oracle O and every k-step method M associated with this oracle
there exists a problem (Pf,X) with f ∈ F‖·‖(κ, L) such that

f(xk(M, f))−Opt(f) ≥ ∆κ

2κ+1(RM)κ−1
· L

kκ−1
. (16)

Proof. 10. Let us set

δ =
∆

2k
, χ =

δ

2R
=

∆

4kR
, β =

Lχκ−1

22−κMκ−1
=

L∆κ−1

2κ(kRM)κ−1
. (17)

20. Given a permutation i 7→ σ(i) of {1, ..., k} and a collection ξk ∈ {−1, 1}k, we associate with these data
the functions

gσ(·),ξk(x) = max
1≤i≤k

[
ξi〈ωσ(i), x〉 − (i− 1)δ

]
.

Observe that all these functions belong to C‖·‖ due to ‖ωj‖∗ ≤ 1, j ≤ k, so that the smoothed functions

fσ(·),ξk(x) = βSχ[gσ(·),ξk ](x) (18)

(see section 3.2) are well defined continuously differentiable convex functions on Rn which, by item S.1 in section
3.2, satisfy the relation

‖∇fσ(·),ξk(x)−∇fσ(·),ξk(y)‖∗ ≤ βmin[χ−1M‖x− y‖, 2] ∀x, y,

whence, as it is immediately seen, ‖∇fσ(·),ξk(x) − ∇fσ(·),ξk(y)‖∗ ≤ β22−κ(χ−1M)κ−1‖x − y‖κ−1 for all x, y.

Recalling the definition of β, we conclude that fσ(·),ξk(·) ∈ F‖·‖(κ, L).
30. Given a local oracle O and associated k-step method M, let us define a sequence x1, ..., xk ∈ Rn, a

permutation σ(·) of {1, ..., k} and a collection ξk ∈ {−1; 1}k by the following k-step recurrence:
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• Step 1: x1 is the first point of the trajectory of M (this point depends solely on the method and is
independent of the problem the method is applied to). We define σ(1) as the index of the largest in
magnitude of the quantities 〈ωi, x1〉 and specify ξ1 ∈ {−1; 1} in such a way that ξ1〈ωσ(1), x1〉 = |〈ωσ(1), x1〉|.
We set

g1(x) = ξ1〈ωσ(1), x〉, f1(x) = βSχ[g1](x).

• Step t, 2 ≤ t ≤ k: At the beginning of this step, we have at our disposal the already built points xτ ∈ Rn,
distinct from each other integers σ(τ) ∈ {1, ..., k} and quantities ξτ ∈ {−1; 1}, 1 ≤ τ < t. At step t, we
build xt, σ(t), ξt, namely, as follows. We set

gt−1(x) = max
1≤τ<t

[
ξτ 〈ωσ(τ), x〉 − (τ − 1)δ

]
,

thus getting a function from C‖·‖, and define its smoothing f t−1(x) = βSχ[gt−1](x) which, same as above,
belongs to F‖·‖(2, L). We further define

– xt as the t-th point of the trajectory of M as applied to f t−1,

– σ(t) as the index of the largest in magnitude of the quantities 〈ωi, xt〉 with i varying in {1, ..., k} and
distinct from σ(1), ..., σ(t− 1),

– ξt ∈ {−1; 1} such that ξt〈ωσ(t), xt〉 = |〈ωσ(t), xt〉|

thus completing step t.

After k steps of this recurrence, we get at our disposal a sequence x1, ..., xk of points form Rn, a permutation
σ(·) of indexes 1, ..., k and a collection ξk = (ξ1, ..., ξk) ∈ {−1; 1}n; these entities define the functions

gk = gσ(·),ξk , fk = βSχ[gσ(·),ξk ].

40. We claim that x1, ..., xk is the trajectory of M as applied to fk. By construction, x1 indeed is the first
point of the trajectory of M as applied to fk. In view of this fact, taking into account the definition of xt
and the locality of the oracle O, all we need to support our claim is to verify that for every t, 2 ≤ t ≤ k, the
functions fk and f t−1 coincide in some neighbourhood of xt−1. By construction, we have

t ≤ s ≤ k ⇒ ξs〈ωσ(s), xt−1)〉 ≤ |〈ωσ(t−1), xt−1〉| = ξt−1〈ωσ(t−1), xt−1〉, (19)

gk(x) = max
[
gt−1(x), max

t≤s≤k
[ξs〈ωσ(s), x〉 − (s− 1)δ]︸ ︷︷ ︸

gt(x)

]
(20)

and
gt−1(xt−1) ≥ ξt−1〈ωσ(t−1), xt−1〉 − (t− 2)δ.

Invoking (19), we get

t ≤ s ≤ k ⇒ gt−1(xt−1) ≥ [ξs〈ωσ(s), x〉 − (s− 1)δ] + δ

⇒ gt−1(xt−1) ≥ gt(xt−1) + δ.

Since both gt−1 and gt belong to C‖·‖, it follows that gt−1(x) ≥ gt(x) in the ‖ · ‖-ball B of radius δ/2 centered
at xt−1, whence, by (20),

x ∈ B ⇒ gk(x) = gt−1(x).

Since χR = δ/2, it follows that gt−1 ∈ C‖·‖ and gk ∈ C‖·‖ coincide on the set xt−1 + χG, whence, as we know

from item S.3 in section 3.2, f t−1(·) = βSχ[gt−1](·) and fk(·) = βSχ[gk](·) coincide in a neighbourhood of xt−1,
as claimed.

50. We have gk(xk) ≥ ξk〈ωσ(k), xk〉 − (k − 1)δ = |〈ωσ(k), xk〉| − (k − 1)δ ≥ −(k − 1)δ, whence, by item S.2

in section 3.2, Sχ[gk](xk) ≥ −(k − 1)δ − χR ≥ −kδ = −∆/2, implying that

fk(xk) ≥ −β∆/2.

On the other hand, by (15) there exists x∗ ∈ X such that gk(x∗) ≤ max1≤i≤k ξi〈ωσ(i), x∗〉 ≤ −∆, whence

Sχ[gk](x∗) ≤ gk(x∗) ≤ −∆ and thus Opt(fk) ≤ fk(x∗) ≤ −β∆. Since, as we have seen, x1, ..., xk is the
trajectory of M as applied to fk, xk is the approximate solution generated by M as applied to fk ∈ F(L),
and we see that the inaccuracy of this solution, in terms of the objective, is at least β∆

2 = ∆κ

2κ+1(RM)κ−1 · L
kκ−1 ,

as required. Besides this, fk is of the form fσ(·),ξk , and we have seen that all these functions belong to
F‖·‖(κ, L).
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4.1 Illustration: Smooth Convex Minimization over ‖ · ‖p-Balls

Consider the case when ‖ · ‖ is the norm ‖ · ‖p on Rn, 2 ≤ p ≤ ∞. Given positive integer k ≤ n, let us specify
ωi, 1 ≤ i ≤ k, as the first k standard basic orths, so that for every collection ξk ∈ {−1; 1}k one clearly has

min
‖x‖p≤1

max
1≤i≤k

ξi〈ωi, x〉 ≤ −k−1/p. (21)

Invoking the results from section 3.3 (cf. Proposition 3.1), we see that whenever X ⊂ Rn is a convex set
containing the unit ball of the norm ‖ · ‖p, assumptions II and III in Proposition 4.1 are satisfied with M =
O(1) min[p, lnn], R = 1 and ∆ = k−1/p. Applying Proposition 4.1, we arrive at

Corollary 4.1. Let p ∈ [2,∞], κ ∈ (1, 2], let L > 0, and let X ⊂ Rn be a convex set containing the unit ball
of ‖ · ‖p. Then, for every k ≤ n, every local oracle O, and k-step method M associated with the oracle, there
exists an objective f ∈ F‖·‖p(κ, L) such that for the approximate solution xk generated by M as applied to the
problem

Opt(f) = min
x∈X

f(x)

one has

f(xk)−Opt(f) ≥ O(1)

minκ−1[p, lnn]

L

kκ+κ
p−1

. (22)

In other words, in the situation under consideration the minimax risk of the family of problems (Pf,X) with
f ∈ F‖·‖p(κ, L) admits the lower bound

Risk(k) := RiskF‖·‖p (κ,L),O(k) ≥ O(1)

[min[p, lnn]]κ−1

L

kκ+κ
p−1

, (23)

whatever local oracle O be used.

Discussion. Some comments are in order.
A. Corollary 4.1 implies that when X is the unit ‖ · ‖∞ ball in Rn, the k-step minimax risk RiskF,X,O(k)

of minimizing over X of objectives from the family F = F‖·‖∞(κ, L) in the range k ≤ n is lower-bounded
by O(1/ lnn)Lk1−κ. Comparing this lower risk bound with the efficiency estimate (2) we conclude that when
minimizing functions f ∈ F‖·‖∞(κ, L) over n-dimensional unit box X, the performance of the Conditional
Gradient algorithm, as expressed by its minimax risk, cannot be improved by more than O(1) lnn factor,
whatever be a local oracle in use. In fact, comparing (22) and (2), we see that the same conclusion remains true
when ‖ · ‖∞ and X are replaced with ‖ · ‖p and the unit ball of ‖ · ‖p, respectively, and p is large, specifically,
p ≥ O(1) lnn.

B. In fact, in the case of 2 ≤ p <∞ the lower complexity bounds for smooth convex minimization over ‖·‖p-
balls established in Corollary 4.1, are tight: it is shown in [5], see also [2, Chapter 2] that a properly modified
Nesterov’s algorithm N for smooth convex optimization via the First order oracle, as applied to problems of
minimizing functions f from F‖·‖p(κ, L) over the unit ‖ · ‖p-ball X in Rn, for every number k = 1, 2, ... of steps
ensures that

f(xk(N , f))−min
x∈X

f(x) ≤ C(p)
L

kκ+κ
p−1

,

with C(p) depending solely on p, which is in full accordance with (23).
C. Corollary 4.1 remains true when replacing in it the embedding space E = Rn of X with the space

E = Rn×n of n × n matrices, the norm ‖ · ‖p on Rn with the Shatten norm ‖ · ‖Sh,p 3), and the requirement
“X ⊂ Rn is a convex set containing the unit ball of ‖ · ‖p” with the requirement “X ⊂ Rn×n is a convex set
containing the unit ball of ‖ · ‖Sh,p.”

The latter claim is an immediate consequence of the fact that when restricting an n × n matrix onto its
diagonal, we get a linear mapping of Rn×n onto Rn, and the factor norm on Rn induced, via this mapping,
by ‖ · ‖Sh,p is nothing but the usual ‖ · ‖p-norm. Consequently, minimizing a function from F‖·‖p(κ, L) over the
unit ‖ · ‖p ball X of Rn reduces to minimizing a convex function of exactly the same smoothness, as measured
w.r.t. ‖ · ‖Sh,p, over the unit ‖ · ‖Sh,p ball X+ of Rn×n. As a result, every “universal” (i.e., valid for every local
oracle) lower bound on the minimax risk for the problem class P(F‖·‖p(κ, L), X) automatically is a universal
lower bound on the minimax risk for the problem class P(F‖·‖Sh,p(κ, L), X+).

3)the norm ‖x‖Sh,p of an n× n matrix x is, by definition the ‖ · ‖p-norm of the vector of singular values of x.
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