
Compact Location Encodings for Scalable Internet

Routing

Feng Wang†, Lixin Gao∗, Xiaozhe Shao∗, Hiroaki Harai§, Kenji Fujikawa§

† School of Engineering and Computational Science, Liberty University, Lynchburg, VA 24515, USA
∗ Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA

§ National Institute of Information and Communications Technology, Tokyo 184-8795, Japan

Abstract—The Internet is facing the double-challenge of accel-
erating growth of routing table size and ever higher reliability
requirements. Considerable progress has been made toward the
scalability and reliability of the Internet. However, most of the
proposals are only partial solutions that address some of the
challenges. In this paper, we present a new addressing encoding
scheme and a corresponding forwarding mechanism for Internet
routing to solve the aforementioned problems. Underlying our
design is a succinct data structure that allows us to compactly
embed a set of addresses into packet headers. At the same
time, the structure allows the data plane to efficiently extract
multiple address information for the same destination without
decompression. We provide time and space complexity analysis,
and present experimental results evaluating the performance
of our encoding method. It shows that the proposed encoding
method can achieve a good compression factor without degrading
packet-forwarding performance.

I. INTRODUCTION

Today, the world is becoming more interconnected. On the

one hand, many new heterogeneous network technologies and

applications of very large scale are emerging, such as data

centers and social network applications. On the other hand,

according to the predictions from Cisco Systems, by 2020,

50 billion “smart” embedded devices will be connected to the

Internet [1]. As the address space of IPv4 is nearly exhausted,

the increasing users, applications, services, and devices pose

a great demand on the Internet. At the same time, Internet

users expect to have any information/service available at their

fingertips. This exacerbates the demand for a highly available

and scalable Internet.

Considerable progress has been made toward the scalabil-

ity and reliability of the Internet. The well-known schemes

include the locator/ID separation based solutions and hier-

archical routing. However, most of the proposals are only

partial solutions that address some of the challenges, and

have difficulty meeting the high availability and scalability

requirements. The locator/ID separation based solutions, such

as LISP and ILNP [2], [3], [4], can significantly reduce

routing table size and enhance the support of multi-homing.

However, these approaches rely on an identifier-to-locator

mapping to recover a failure in the Internet. The identifier-

to-locator mapping might not be available at all intermediate

nodes, and/or might need to resort to active probing to discover

the best mapping. As a result, when there is a temporary link

or node failure, it might take much longer than typical end-to-

end latency to reach a service or host [5], [6]. Hierarchical

routing has long been proposed to reduce the overhead of

routing table [7], [8]. Kleinrock and Kamouns [7] showed that

hierarchical routing can reduce the length of the routing table

under certain assumptions. However, previous work has shown

that implementing resilient routing in hierarchical routing is

challenging [9], [10], [6], [11].

We believe that the challenges of achieving resilient Internet

routing are mainly rooted in the weakness of the current

data plane. In the existing proposals, topologically dispersed

locations are intended to be used as a means to increase

resilience of the Internet. The problem is that even though a

host may have multiple addresses, both the control plane and

the data plane are not aware of this information. Specifically,

the data plane has no way to associate the addresses with

the same destination so that it treats them separately and

individually.

After recognizing that the key issue for addressing the

aforementioned problems is to embed multiple addresses into

packets, we propose to exploit multiple addressing – packets

carrying multiple destination addresses instead of one single

address to meet the scalability and availability requirements.

Nonetheless, an efficient implementation of this method is not

trivial. There are several challenges in supporting multiple

addressing. First, simply embedding multiple addresses into

packets will substantially increase the space overhead of

packet headers. Previous work has proposed some encod-

ing algorithms, such as XBW-transform [12], to compress

a labeled tree. However, it is still not clear how to employ

those compression methods in multiple addressing, and the

impact that those methods will have on the performance of

packet forwarding. Second, multiple addressing requires a

fast and efficient forwarding mechanism. Specifically, when a

compression method is employed, the time of decompression

becomes another critical issue.

In this paper, we develop a succinct data structure, Compact

Prefix Directed Acyclic Graph (CP-DAG), which allows us to

encode multiple addresses in the packet header in a space effi-

cient way. And, most importantly, the structure allows the data

plane to extract multiple addresses without decompression.

Subsequently, we propose a corresponding packet forwarding

plane. Finally, we call to the reader’s attention to the fact that

the idea to encode multiple addresses into the packet header is

different from source routing. In source routing, such as recent

work SlickPackets [13], the sender specifies alternative paths

2

in the packet header that a packet could traverse the network.

In order to decide the paths, a map of the available links from

the sender to the source is required, which imposes much

higher overhead on source routing. Unlike source routing,

in our solution a sender simply specifies multiple destination

addresses instead of one single address in the packet header.

Each router in the network determines the path based on

the packet’s destination addresses. Thus, the overhead of

our solution is relatively smaller than that of source routing

because our solution does not need to determine the end-to-

end paths.

We extensively evaluated the scalability and efficiency of

our design using practical data generated from today’s Internet

AS-level topology. Our time and space complexity analysis

and experimental results suggest that the proposed CP-DAG

encoding and the corresponding forwarding mechanism can

achieve fast and efficient packet forwarding, and impose

low packet space and access overhead. Hence, the proposed

encoding method and the forwarding mechanism can scale to

the future Internet routing.

The rest of the paper is organized as follows. In Section II,

we introduce an addressing scheme allowing large numbers

of nodes to co-exist and communicate in the Internet and the

forwarding plane. In Section III, we introduce the concept of

a CP-DAG. In Section IV, we describe how to perform packet

forwarding based on CP-DAGs. In Section V, we present our

measurement results. In Section VI, we present the related

work. We conclude the paper in Section VII with a summary.

II. APPROACH OVERVIEW

In this section, we provide an overview of our solution.

The purpose of this overview is to highlight the improved

scalability and reliability features of our solution. We first

briefly introduce the addressing scheme that is based on our

previous work, HANA and HIMALIS [8], [14]. And then, we

present the high level idea of the corresponding forwarding

plane. Finally, we underline the fundamental challenges in

implementing the forwarding mechanism.

A. Provider-rooted Addressing Scheme

The proposed addressing scheme follows hierarchical

provider-rooted addressing and the identifier/locator separation

design principles. The address of each host is split into two

components: a host name and a locator. The name of a host

distinguishes the host among all other hosts. Each host is

assigned a globally unique host name by a naming scheme.

As proposed in HIMALIS [14], a host name has two parts:

local host name and global domain name. The host name is

used for identifying a host, and would not change even if the

host moved to another location.

A locator is used to describe the network attachment point(s)

to which a host connects. Each host can have multiple locators

representing different routes toward it. A host name will map

to one locator if the host has only a single topological location.

Otherwise, multiple topological locations will map to the same

host name. We can use the existing hierarchical mapping

1.4, 2.3

1

1.3, 2.2

2

1.5, 2.4

1.3.1, 2.2.1

1.4.6, 2.3.6

1.3.2, 2.2.2

1.4.7, 2.3.7

1.3.1.1, 2.2.1.1, 1.4.6.1, 2.3.6.1, 1.3.2.2

2.2.2.2, 1.4.7.2, 2.3.7.2, 1.5.6, 2.4.6

Provider-to-customer

3

3.1

3.1.1

Peer-to-peer

Routing Table at AS11

Prefix Nexthop

3 AS10

3.1 AS10

2 AS10

1 AS10

Fig. 1. An example of provider-rooted prefix labelling. The label beside a
node corresponds to its prefix.

system to implement the mapping. For example, a global

directory service and an intermediate network mapping service

proposed in our previous work HIMALIS [14] are used to

maintain the mapping.

Each locator is automatically allocated according to the

provider-customer hierarchies in the Internet topology. Specif-

ically, the top level or tier-1 providers obtain addresses from

an address assignment authority, such as IANA or ICANN.

The tier-1 providers can then allocate its address space to its

subscribers. In consequence, every subscriber inherits one sub-

address from each of its providers.

In this paper, each locator is a variable-length string, which

consists of three parts: prefix, midfix, and suffix. All three

elements are also variable length. The prefix part consists of

a set of integer labels. The first label is allocated by a tier-1

provider, and other labels are allocated by non-tier-1 providers.

The midfix and suffix are allocated by the network in which a

host resides. Each AS is divided into different areas, and each

area is uniquely identified by a midfix. A suffix is a unique host

ID within the area. Consequently, a prefix and the following

midfix at a certain level of hierarchy can be combined into a

new prefix for the level underneath.

Fig.1 is used to demonstrate the prefix labeling scheme. We

use delimiter ‘.’ to join elements of a prefix. In this example,

AS1 and AS2 are tier-1 providers, and they have addresses 1

and 2, respectively. As a result, AS3 obtains two prefixes 1.3

and 2.2 from AS1 and AS2. Subsequently, for a host inside

AS8, there are ten prefixes associated with the host. Note that

in this paper, we focus on the prefix labeling because the

midfix and suffix allocation are needed only for intra-domain

routing, and different midfix and suffix allocation schemes can

be employed inside an AS.

Furthermore, an inter-domain location routing protocol, in-

cluding HANA proposed in our previous work [8], can be used

to propagate routing information about each network location.

More specifically, to each provider, an AS only announces the

prefixes that are inherited from the provider. The prefixes as-

signed by other providers cannot be advertised to the provider.

In addition, the provider does not have to inform customers of

all its locators. It can announce aggregated prefixes to its non-

provider neighbors, such as customers and peers. Providers

3

shall aggregate their customers’ addresses and announce the

whole address block rather than the specific address block for

each customer. For example, in Fig.1, the routing table at AS11

contains two aggregated entries, 1 and 2, and the two entries,

3 and 3.1, from its providers.

B. Forwarding Plane

Before we present the forwarding mechanism based on the

proposed addressing scheme, we employ a naive method, a

pointer-based graph representation to encode a set of prefixes

associated with a host. The purpose of this simple encoding

is to illustrate the basic idea of the forwarding plane. We will

present a more efficient encoding algorithm in the next section.

Note that when we encode a set of locators into a packet

header, we focus on encoding a set of prefixes. In Section V,

we present a way to encode the midfix and suffix numbers.

Upon receiving a packet with a set of prefixes, a router infers

every prefix by performing a depth-first search. The router

reads the first node. Then, it follows the pointers of the node to

retrieve other nodes. Finally, the router concatenates the labels

of those visited nodes into a prefix. After that, the router looks

up its routing table to determine if the prefix is reachable. If

that is the case, it obtains the next hop towards the destination

and forwards the packet accordingly. For instance, in Fig.1,

suppose that a router at AS3 receives a packet destined to

AS8. The first prefix 1.3.1.1 is obtained by employing the

depth first search.

If the first derived prefix is unreachable, a router attempts to

derive the second prefix and forwards the packet accordingly.

If no alternative prefix can be found, the packet is discarded.

Each router along the path from the source to the destination

does the same. From the above, we observe that the delivery

of packets to a destination does not stop as long as a router

has an alternative path to the locators of the destination.

C. Challenges

We outline two fundamental challenges in designing an

efficient forwarding mechanism for our proposed addressing

scheme.

• The space overhead of packet header. We augment the

packet header with a list of prefixes, which potentially

incurs high packet header overhead. The challenge is

to design an efficient compression encoding algorithm

to encode the prefixes. In the paper, we propose two

compression methods to address this issue.

• The time efficiency of forwarding. The proposed forward-

ing plane incurs extra packet processing overhead because

it traverses the graph to derive the prefixes. Moreover,

if we compress the graph, the time of decompression

becomes another critical issue. In Section IV, we improve

the forwarding plane through a two phase lookup to

address this challenge.

In the rest of the paper, we describe our design and imple-

mentation to address the two challenges in detail.

III. COMPACT LOCATION ENCODING

In this section, we present two compact location encoding

methods. The key idea of our first compression method,

Compact Prefix DAG (Directed Acyclic Graph), or CP-DAG,

is to compress a pointer-based DAG, where recurrent substruc-

tures exist only once. The DAG is then encoded into a bit

string. Unlike the first method, XBW-transform is a pointerless

encoding method based on previous work [12]. Both methods

result in a smaller packet header size, but the former is more

scalable and efficient than the latter in terms of space and

time overhead, according to our analysis and measurements.

Thus, we focus on the introduction of the CP-DAG encoding

method.

A. CP-DAG Code

First, we present the following steps to construct a CP-DAG:

• The first step is to perform a tree compression. We first

represent a set of prefixes in a tree format. To encode

a set of prefixes into a tree, we first add a “virtual”

root node, whose children are the labels representing

the prefixes of tier-1 providers. The fake root node is

labeled with 0. This step is to take advantage of common

subtrees so that the prefix tree can be transformed into a

DAG by eliminating all recurrent subtrees. We use the

technique that was introduced by previous work [15],

[16] to identify the repeated subtrees. Removing such

repetitions finally results in a DAG.

• The second step is to assign a level ordering to the result

DAG. A level ordering of a DAG is the ordering of the

nodes that are visited by a breadth-first search traversal

starting at the root and traversing in left-to-right order at

each level. The left-to-right ordering is maintained from

one level to the next level order. Thus, the level of a node

is the number of edges in the path from the root to the

node. We refer to the level of the root as level 0. The

level below that is level 1, and so on.

• The third step is to label each node. A triplet s =
(chd, label, ptr) is associated with each node in the DAG,
where chd represents a child type, label represents a

label, and ptr represent a pointer. A child type is used for

storing the children belonging to each node. We use one

bit to indicate if the child is the last child of its parent

or not. If a node is the last child of its parent, the bit is

1, otherwise it is 0. A label is a value allocated by the

node’s parent or a tier-1 provider’ prefix label. A pointer

is used to tell the order of the first child, and each leaf

node has an empty pointer.

• The last step is to generate the codeword. According to

the level-order of a CP-DAG, the DAG can be packed

consecutively into a bit string, called a CP-DAG code-

word. The order of each node is the index value of the

node in the string.

Thus, in a CP-DAG, each prefix can be represented by a

sequence of labels describing the path from the root to a

leaf node. In addition, the children of the root are defined

4

1.3.1.1

2.2.1.1

1.3.2.2

2.2.2.2

1.4.6.1

2.3.6.1

1.4.7.2

2.3.7.2

1.5.6

2.4.6

1 2

3 4 5 6 7 8

9 10 11 12 13

14 15

Fig. 2. The structure of a CP-DAG. Each of the nodes of the DAG contains
a child type (1 bit), a label, and a pointer.

first level nodes
︷ ︸︸ ︷

chd+ label ptr
︷ ︸︸ ︷︷ ︸︸ ︷

0 0000000001 00011 1 0000000010 00110 0 0000000011 01011 · · ·

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Node 1 Node 2 Node 3

leaf node
︷ ︸︸ ︷

· · · 1 0000000110 00000 1 0000000010 00000 1 0000000001 00000

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

Node 13 Node 14 Node 15

Fig. 3. An example of a CP-DAG codeword associated with the CP-DAG
shown in Fig.2.

as the first level nodes. Fig. 2 shows the construction of the

corresponding CP-DAG of the previous example. The numbers

inside each node are a child type, a label and a pointer. The

corresponding CP-DAG codeword is shown in Fig.3.

From the figures, we find that all the children of a parent

are numbered contiguously. As a result, the order of any child

node can be computed efficiently by using a pointer, which

points to the beginning of the child node block, and the child

type bit, which will identify the last child. This feature is

desirable when a router attempts to extract multiple address

from a CP-DAG so that it does not need to restart at the top

of the DAG to retrieve a new prefix.

Each node in a CP-DAG represents a single label value

assigned by a parent. However, we can extend a CP-DAG

such that a node can accommodate more than one label. This

extension is motivated by the increasingly prevalent peer-to-

peer connection scenarios. Due to the page limit, we refer

to [17] for more detailed discussion of supporting peer-to-peer

connections in a CP-DAG.

B. CP-DAG Operations

For a given CP-DAG codeword, S, we define the following

operations:

• Select(S, i) = si returns the i-th node from S.

• GetTop(S) returns all the first level nodes from S.

• GetChildren(S, i) returns all children of the i-th node.

Due to the page limitation, we refer the readers to the full

version of this paper for the implementation [17].

C. XBW Code

Our second method is a pointerless tree representation,

and is inspired by the XBW transform [12]. The XBW is a

generalization of the Burrows-Wheeler Transform that applies

to ordered labeled trees. We use the transform to achieve

compact storage of a set of prefixes in a tree format.

The basic idea is to represent a set of prefixes in three

strings: a string Slast that indicates if a node is the last child

of its parent, a string SI that indicates if a node is an interior

node or leaf node, and a string Sα containing all the labels of

the nodes. We define a triplet xbt(T) = {Slast, SI , Sα} as a

XBW codeword of a set of prefixes T . For more details about

the strings construction, we refer the reader to [12].

Two primitives are defined to navigate the XBW structure:

ranks(S, q) that returns the number of times symbol s oc-

curs in the prefix S[1, q], and selects(S, q) that returns the

position of the q-th occurrence of symbol s in S. For a given

XBW codeword xbw(T), we define three operations based

on the two primitives: Select(xbt, i) = si, GetTop(xbt),
and GetChildren(xbt, i). GetTop(xbt) returns all the first

level nodes from xbt(T), and GetChildren(xbt, i) returns

all children of the i-th node. Due to the page limitation,

we refer the readers to the full version of this paper for the

implementation [17].

D. Space Complexity

In this subsection, we analyze the space complexity of

the two representations. First, the information-theoretic lower

bound for storing a set of prefixes in a tree T with t nodes is

2t − (log t) + t⌈log |δ(T)|⌉, where δ(T) is the degree of the

tree T [12]. The degree of a tree is the maximum number of

outgoing edges of any of its nodes.

Second, for a CP-DAG, suppose that there are n ≤ t nodes

in the graph. The upper bound of the length of the codeword

is equal to the number of nodes times the size of each node.

The size of each node is determined by the size of a label and

the number of nodes in the DAG, 1 + ⌈log |δ(T)|⌉ + logn.
The total length is equal to n × (1 + ⌈log |δ(T)|⌉ + logn).
Thus, the space complexity is O(n log n). Third, the XBW

representation takes at most 2t+ t⌈log |δ(T)|⌉ bits [12]. From
this analysis, we conclude that the CP-DAG encoding has

the smallest space overhead. In Section V, we present our

experimental measurements on the two encoding methods,

which are consistent with our analysis result.

IV. CODEWORD-BASED PACKET FORWARDING

Before we present an improved codeword-based packet

forwarding algorithm, we use an example to demonstrate the

idea. In Fig.1, suppose that a host at AS11 sends a packet

to a server inside AS8. Based on the path that the packet

traverses, we define an uphill-path as a path from a sender

to the providers of the destination. An uphill-path consists

of one or more customer-to-provider links, and one or none

5

Fig. 4. Overview of codewords based packet forwarding, which consists of
two main phases: prefix matching and next hop lookup.

peering link. A downhill-path is a path from the providers to

its customers, and finally to the destination. A downhill-path

consists of one or more provider-to-customer links. In this

example, path AS11 → AS10 → AS9 is an uphill-path, and

path AS1 → AS3 → AS6 → AS8 is a downhill-path.

If we examine the routing tables at the ASes along the

uphill-path, for example, AS11, AS10 and AS9 in Fig.1,

we find that they have two routes to the destination. Most

importantly, the two routes are already aggregated so that they

has one single label. Thus, for the ASes along an uphill-path,

they do not need to know the whole prefix. This implies that

they can forward the packets just based on the first label

of the prefixes. Similarly, for the ASes along a downhill

path, we find that the prefixes of the destination and the

ASes’ locators contain a common part. In other words, the

locators of those ASes are the prefixes of the destination’s

locators. Consequently, those ASes can derive the next label

directly from the compressed representation and use it to make

forwarding decisions. For example, suppose that a router at

AS6 receives a packet with locator 1.3.1.1. One of the

router’s locators is 1.3.1, which is a prefix of 1.3.1.1. In

this case, the last label of 1.3.1.1 represents the location of

the customer so that the router can use it to make forwarding

decisions.

Hence, we propose a new forwarding algorithm, which

consists of two main operations: prefix matching and next hop

lookup, as shown in Fig.4. Upon receiving a packet with a CP-

DAG or XBW codeword, each router first uses its own prefixes

as the matching keys to search the code. Then, the incoming

packet is marked by a type based on the matching result.

Finally, a forwarding lookup table associated with the packet

type is selected to search the outgoing interface. Each router

has two different ways to lookup next hop: uphill-lookup and

downhill-lookup. Uphill-lookup is to forward packets along

an uphill-path to reach the providers of the destination, while

downhill-lookup is to forward packets along a downhill-path

from the providers to the destination.

The forwarding algorithm presented in Algorithm 1 is used

to forward packets carrying CP-DAG or XBW codewords. To

simplify our description, for a node S[i] in a CP-DAG or XBW

codeword, we use last(S[i]) to denote the child type of the

label. If the node is the rightmost or last child of its parent,

last(S[i]) = 1. Otherwise, last(S[i]) = 0. We use α(S[i]) to

denote the label of S[i]. We use ρ(S[i]) to indicate if the node

is a leaf (ρ(s) = 0) or an internal node (ρ(s) = 1). Finally,
π(S[i]) is the string obtained by concatenating the labels on

the upward path from the root to node s. We use ⊕ as the

string appending operator, ∼ as the prefix matching operator,

and |S| to represent the length of S. Finally, we use a set P

to denote a router’s own prefixes. In the following, we present

the details about the algorithm.

A. Prefix Matching

Upon receiving a packet with a CP-DAG or XBW code-

word, a router first uses its own prefixes as the matching keys

to search the codeword. The prefix matching is performed from

the top level to the bottom level:

1) First Level Matching: First, the router reads the first

level nodes, and compares the labels of those nodes with its

own prefixes. If there is more than one prefix matching the first

level labels, the router will select the prefix with the longest

prefix matching. If after that there is still more than one prefix,

the router will select one of them, according to its routing

policy. Note that the first level matching can reduce the set

of possible prefixes to one prefix, which is used for further

matching.

2) Traversing Other Levels: The router continues to match

the selected prefix if the prefix has any unmatched labels. The

router follows the pointer of the matched node si at the first

level (CP-DAG), or the index value (XBW) to retrieve the

next level node. The node is the first child of si. Its label is

compared with the prefix again. If the label does not match

the prefix, other children will be retrieved and examined. The

matching process will continue until either the whole prefix

is matched or it is determined that none of them match the

prefix. Thus, the incoming packet is classified as either an

“Exact matching” packet if the selected prefix can be matched

entirely, or a “Partial matching” packet when they cannot.

B. Next Hop Lookup

Each router maintains two FIBs: a forwarding table and a

neighborhood table. A forwarding table only keeps the prefixes

advertised by providers or peers, while a neighborhood table

contains the labels allocated to customers. Based on the type

of an incoming packet, the two tables are used to lookup the

next hop:

• No match packet. This case implies that the router and

the destination do not have the same top provider(s).

The router will select all the first level nodes and use

the uphill-lookup to search those labels in its forwarding

table.

• Exact match packet. In this case, the packet already

arrives at a provider of the destination so the router

uses the downhill-lookup to search the next hop. All

the children of the last encountered node are used as

the searching keys to search its neighborhood table.

Furthermore, if the last encountered node is a leaf, the

packet has already arrived at the destination network. The

midfix and suffix values of the destination will be used

to reach the destination.

• Partial match packet. This case means that the router

and the destination host have the same provider(s). The

6

Algorithm 1: Packet Forwarding Algorithm

input : a packet with either a CP-DAG or XBW codeword S, and P
output : a set of next hops for the packet, Nexthops

1 Select the first level nodes S1 = GetTop(S) ;
2 foreach S[i] ∈ S1, P [i] ∈ P do /* first level matching */

3 if α(S[i]) ∼ P [i] then M ← (S[i], P [i]);
4 end
5 if M = ∅ then /* No match */

6 foreach S[i] ∈ S1 do Nexthops = SearchFIB(α(S[i])) ;
7 return Nexthops ;
8 else
9 π(S[i]) = π(S[i])⊕ α(S[i]) ;
10 while |P [i]| > |π(S[i])| do /* matching other levels

*/

11 child = GetChildren(S[i] ;
12 foreach S[j] ∈ child do

13 if α(S[j]) ∼ P [i] then
14 π(S[j]) = π(S[i])⊕ α(S[j]) ;
15 end

16 end

17 if No child matching P [i] then break ;
18 end
19 if P [i] = π(S[j]) then /* Exact match */

20 C = GetChildren(S[j]) ;
21 if C = ∅ then /* Leaf node */

22 de-encapsulate the packet to get midfix and suffix: hid ;
23 Nexthops← SearchNeg(hid) ;
24 else

25 foreach ciinC do Nexthops← SearchNeg(α(ci)) ;
26 return Nexthop ;
27 end

28 else /* Partial match */

29 Nexthops← SearchFIB(π(S[i])) ;
30 return Nexthop ;
31 end

32 end

matched part of the prefix represents the prefix of the

common provider. The router will use the uphill-lookup

to search the common provider’s prefix in its forwarding

table.

C. Time Complexity

We first analyze prefix match time and next hop lookup

time along an uphill-path. Let t be the number of labels,

w be the length of one label, k be the average number of

first level nodes in a CP-DAG or XBW codeword, n be the

average number of children for a node, and s be the length (in

terms of nodes) of the longest prefix. Let m be the average

number of a router’s prefixes. Prefix match starts at the first

level. Then, identifying an unsuccessful match takes O(mk)
time. For a “No match” packet, the next hop lookup step takes

O(kw) time to search all the k nodes in the forwarding table.

Furthermore, it takes O(mk + s) steps to identify a partial

match in the worst case. The common parts of the matched

prefix are used to perform next hop lookup so that the lookup

complexity is O(sw). Thus, for the two codewords, the prefix

match time is the same along an uphill-path.

Second, we analyze the match time and the next hop lookup

time along a downhill-path. In this case, the packet type should

be “Exact match”. For a CP-DAG codeword, it takes O(mk+
s) steps, and the next hop lookup complexity is O(nw). On
the contrary, for an XBW codeword, it takes more time to

extract the children because of the pointerless representation.

By scanning the two string SI and Slast, it takes O(mk+3t)
steps. The next hop lookup complexity is the same as the CP-

DAG.

Next, we compare the time complexity of a CP-DAG and

XBW codeword with a pointerless list format proposed in [13].

Let N be the total number of prefixes. As shown in Table I,

in the worst case, the time to extract all prefixes from the list

is O(N), and the lookup time for all the prefixes is O(swN).
Thus, the time complexity in a list format is much larger than

using a CP-DAG codeword.

Scheme uphill-path downhill-path

CP-DAG O(mk + s) +O(sw) O(mk + s) + O(nw)
XBW O(mk + s) +O(sw) O(mk + 3t) + O(nw)
List O(N)+ O(swN) O(N)+O(swN)

TABLE I
TIME COMPLEXITY FOR TWO DIFFERENT ENCODING SCHEMES.

The above analysis shows that at each router, the prefix

match time and the next hop lookup time depend on the length

of the router’s prefixes, not the length of the destination pre-

fixes. This also implies that the time complexity is proportional

to the level at which a router forwards a packet. Top level

backbone routers only need to access the first level part so

that the match and lookup times are greatly reduced compared

to IP forwarding. Although low level routers need to explore

the codeword to match its prefixes, the next hop lookup time

could not be worse than IP forwarding. In order to reduce the

lookup time further, we can explicitly store the first level nodes

in a packet header when it traverses an uphill-path. After the

packet arrives at one of the providers of the destination, the

first level nodes are replaced by the provider’s prefix. As a

result, the following routers can directly use the prefix instead

of inferring it from the codeword.

V. PERFORMANCE EVALUATION

In this section, we investigate the scalability of the pro-

posed addressing scheme and the efficiency of the proposed

forwarding method.

A. Scalability

1) Scalability of the proposed addressing scheme: We first

investigate the scalability in terms of the number of prefixes

allocated by the scheme, and the number of entries in the

forwarding table and neighborhood table. To measure the

scalability on a realistic network topology, we download daily

dumps of BGP tables from all monitors deployed by Route-

Views [18] and RIPE RIS [19] to generate the current Internet

AS-level topology. We use the routing tables in 05/01/2013,

which contains a total of 44,863 ASes. For each AS, we build

its AS-level graph. The AS relationship inference algorithm

proposed in [20] is adopted in this paper because this algorithm

gives the most accurate inference compared to the existing

algorithms [21], [22], [23].

Fig.5 (a) shows the cumulative distribution of the number

of prefixes. It can be seen that 90% of the ASes will have less

than 45 prefixes. Fig.5 (b) shows the cumulative distribution

7

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Number of Prefixes

C
D

F

(a) Number of prefixes

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Entries

C
D

F

forwarding table

neighborhood table

(b) Size of forwarding tables

Fig. 5. Scalability of the proposed addressing scheme. (a) CDF of the number
of prefixes, and (b) CDF of the size of forwarding table and neighborhood
table.

of the number of forwarding entries. More than 90% of the

ASes have less than 2,000 entries in their forwarding tables,

and 4 entries in their neighborhood tables.

2) Scalability of the proposed encoding methods: To in-

vestigate the scalability of the encoding methods, we define

a compression factor as the ratio between the the proposed

prefix encoding formats (CP-DAG and XBW) and a list

representation:

Compression factor =
Size of a list format

Size of a CP-DAG/XBW codeword
.

The compression performance results are shown in Fig.6.

When we encode each AS’s prefixes, we use three different

label sizes: 8 bits, 10 bits, and 16 bits. In Fig.6(a)-(c), we

show the size of the selected prefixes in a CP-DAG codeword,

XBW codeword, and list format according to the label sizes.

In Fig.6(a), when each label is encoded in 8 bits, the majority

of ASes (about 80%) in the Internet have CP-DAG codewords

with less than 89 bytes, and about 50% of the ASes have

CP-DAG codes with less than 46 bytes. If those prefixes are

encoded in XBW codewords, the majority of the ASes have

XBW codes with less than 120 bytes, and about half of them

have less than 50-byte XBW codewords. On the contrary, if

those prefixes are encoded in a list format, the size will be 160

bytes for the majority of the ASes, and half of them are less

than 70 bytes. We observe that our encoding methods generate

smaller packet header size than the list format, and the size

of CP-DAG codes is the smallest among the three formats.

From Fig.6(b) and (c), we make the same observations. Note

that this observation is consistent with our space complexity

analysis in Section III-D.

In Fig.7(a)-(c), we show the compression factor for the

CP-DAG and XBW codewords with the three label sizes.

From Fig.7(a), we find that 40% of the ASes can achieve

a compression factor with more than 1.5 (saving 33% of

packet space) when the prefixes are encoded in CP-DAG codes

with 8 bits label; only 14% of the ASes can have the same

compression factor using XBW encoding. However, when we

use 10 bits and 16 bits to represent each label in CP-DAG

codes, we find that more than 50% (10-bit) and 60% (16-bit)

of the ASes have a compression factor of more than 1.8 (saving

44% of packet space), respectively. Furthermore, for more than

20% (10-bit) and 40% (16-bit) of the ASes, they can save more

than 50% of the packet space (compression factor = 2) when

their prefixes are encoded in CP-DAG codes. Compared to CP-

DAG codes, only 20% of the ASes can achieve a compression

factor of more than 1.5 by using XBW encoding.

Hence, our experiments show that CP-DAG codes can

produce a higher compression rate than XBW codes.

B. Efficiency of Packet Forwarding

The goal of this measurement is to investigate efficiency of

the proposed forwarding method in terms of locator lookup

delay. The lookup delay includes the delay of decoding indi-

vidual locators and next-hop lookup latency. To achieve this

goal, we first design a common forwarding plane, including

sofware/hardware implementations. We evaluate and compare

the forwarding overhead of the proposed encoding methods

under the same forwarding plane.

1) Testbed: The testbed consists of a Dell PowerEdge

server with Intel Xeon CPUs running at 2.493 GHz clock

speed and two desktop computers. One of two computers

generates traffic destined to the other one via the sever. The

sever is designed as a router to forward the traffic. We use the

Click modular router [24] to implement the data forwarding

plane on the server.

2) Embedding CP-DAG or XBW in IPv6 Packet Headers:

In this paper, a CP-DAG or XBW code is embedded into

an IPv6 header. The IPv6 header consists of two parts: the

IPv6 base header, and optional extension headers [25]. First,

we utilize two IPv6 extension headers to encode a node’s

host ID. We use a Hop-to-Hop Options header to encode a

codeword, and a Destination Options header to encode the

midfix and suffix. Second, to reduce the lookup delay further,

we explicitly store the first level nodes or a locator in the

original IPv6 source and destination addresses. Due to the

page limitation, we direct the readers to the full version of

this paper for the implementation [17].

3) Measurement Results: In our implementation, we use 10

bits to represent a label because our scalability measurements

in Section V-A have shown that 10-bit label size can produce

a better compression rate. We present the measurement results

in Fig.8. We measure the lookup delay at two different phases:

uphill lookup and downhill lookup. Since tier-1 ASes need to

modify the destination address format if a packet is destined

to their customers, we measure the lookup delay at tier-1 ASes

as well.

In order to understand the forwarding performance during

a failure, we evaluate the lookup delay when the first locator

fails. In Fig.8, the labels of X-axle are used to represent the

locator failures. “First” means that the first locator is used

to forward the packet, while “Second” means that the second

locator is used to forward the packet because the first one fails.

We show the uphill lookup delay in Fig.8(a). We see that

the uphill lookup delays for CP-DAG and XBW are almost

the same. On the contrary, the lookup delay of a list format is

the longest because a router needs to search the whole locator

to make the forwarding decision. The downhill lookup delay

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
D

F

Size (Byte)

CP-DAG
XBW

List

(a) Label with 8 bits

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Size (Byte)

CP-DAG
XBW

List

(b) Label with 10 bits

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

C
D

F

Size (Byte)

CP-DAG
XBW

List

(c) Label with 16 bits

Fig. 6. CDF of the size of prefixes encoded in a list, CP-DAG, and XBW code format.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Compression Factor

CP-DAG
XBW

(a) Label with 8 bits

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Compression Factor

CP-DAG
XBW

(b) Label with 10 bits

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Compression Factor

CP-DAG
XBW

(c) Label with 16 bits

Fig. 7. CDF of compression factors for the prefixes encoded in a list, CP-DAG, and XBW code format.

 0.1

 1

 10

 100

First Second

L
o

o
k
u

p
 D

e
la

y
(µ

 s
e

c
o

n
d

)

Locator used for forwarding

CP-DAG
XBW

List

(a) Uphill Lookup Delay

 0.1

 1

 10

 100

First Second

L
o

o
k
u

p
 D

e
la

y
(µ

 s
e

c
o

n
d

)

Locator used for forwarding

CP-DAG
XBW

List

(b) Downhill Lookup Delay

 0.1

 1

 10

 100

First Second

L
o

o
k
u

p
 D

e
la

y
(µ

 s
e

c
o

n
d

)

Locator used for forwarding

CP-DAG
XBW

List

(c) Lookup Delay at a tier-1 AS

Fig. 8. Locator lookup delay for different encoding methods.

for XBW is the longest time as shown in Fig.8(b). The reason

is because that a downhill router needs to calculate the index

of the children, which incurs the packet processing overhead.

On the contrary, the children can be inferred by following a

pointer in a CP-DAG codeword so that forwarding a packet

with a CP-DAG codeword is the fastest. In Fig.8(c), we show

the packet processing and lookup delay when a tier-1 router

modifies the address. We observe that the delay for a CP-DAG

code is the shortest time. Moreover, from Fig.8, we find that

the forwarding delay for CP-DAG codewords does not increase

significantly during a failure.

Hence, our measurement results show that our forwarding

method for CP-DAG codewords is the fastest forwarding

mechanism. It does not increase packet header processing cost

significantly, and the locator processing and lookup delay is

almost the same at each router. Furthermore, it can reduce the

failover reaction time.

VI. RELATED WORK

There are several works closely related to ours. NIP [26]

is proposed to support multi-homing and mobility capabilities

by introducing a three-tuple addressing scheme. However, NIP

is based on a flat node ID space, which is different than

our hierarchical addressing scheme. In addition, NIP simply

represents a set of node IDs in a list format, which causes an

increase in data packet size. XIA [27] is a network architecture

9

to support multiple communication types and allow networks

to accommodate new styles of communication. However,

addresses in XIA are specified as DAGs, which could result in

a large packet header. NIRA [28] is an inter-domain routing

system to enable end users to choose their own routes. In

NIRA, a route consists of a source address and a destination

address. Up-graphs from the source and destination are used

to derive the addresses. However, NIRA packets only contain

one single source and destination address, which is different

from ours. SlickPackets [13] is based on source routing to

achieve fast re-routing during a failure. To meet the goal,

SlickPackets first generates a forwarding graph, which consists

of a set of alternate paths from the source to the destination.

And then, the graph is embedded into packet headers. The

main differences between our work and SlickPackets are: 1)

Our work focuses on both the scalability and reliability issues

of Internet while SlickPackets focuses only on the reliability

issue, 2) Our method is based on Locator/ID separation, not

a source routing based solution so that it does not need to

assign link labels that are required in SlickPackets, 3) a CP-

DAG is used to compactly represent a set of locators, so it can

be easily built based on a host’s locators, without obtaining a

map of the available links as required in SlickPackets, and 4) a

CP-DAG code can achieve a better compression rate than the

two list based encoding methods proposed in SlickPackets.

VII. CONCLUSION AND FUTURE DIRECTION

We have presented a CP-DAG based packet forwarding

method to improve the scalability and reliability of Internet

routing. The proposed CP-DAG can encode multiple prefixes

in an efficient way. As our performance analysis and evaluation

show, using the proposed addressing scheme and the CP-

DAG compression can reduce packet space overhead without

degrading packet-forwarding performance.

The future research remains to address issues such as im-

plementing a path-vector based inter-domain and intra-domain

routing protocols to propagate routing information about loca-

tors and routing inside each area; designing a mapping system

to map host names to locators and CP-DAG, and designing

protocols for CP-DAG construction and advertisement.

VIII. ACKNOWLEDGMENT

This work was supported by National Science Foundation

grant CNS-1402857 and CNS-1402594 and under NSF-NICT

Collaborative Research JUNO (Japan-U.S. Network Opportu-

nity) Program.

REFERENCES

[1] D. Evans, “The Internet of Things: How the Next Evolution of the In-
ternet Is Changing Everything.” http://www.cisco.com/web/about/ac79/
docs/innov/IoT IBSG 0411FINAL.pdf, 2011.

[2] L. Iannone, D. Saucez, and O. Bonaventure, “Locator/ID Separation
Protocol (LISP) Map-Versioning,” RFC 6834, January 2013.

[3] L. Iannone, D. Saucez, and O. Bonaventure, “Implementing the Lo-
cator/ID Separation Protocol: Design and experience,” Computer Net-

works., vol. 55, pp. 948–958, March 2011.
[4] R. Atkinson, S. Bhatti, and U. S. Andrews, “Identifier-Locator Network

Protocol (ILNP) Architectural Description,” RFC 6740., 2012.

[5] D. Saucez and B. Donnet, “On the Dynamics of Locators in LISP,” in
IFIP’12, pp. 385–396, 2012.

[6] D. Saucez, J. Kim, L. Iannone, O. Bonaventure, and C. Filsfils, “A Local
Approach to Fast Failure Recovery of LISP Ingress Tunnel Routers,” in
IFIP’12, pp. 397–408, 2012.

[7] L. Kleinrock and F. Kamoun, “Hierarchical Routing for Large Networks,
Performance Evaluation and Optimization,” Computer Networks, vol. 1,
pp. 155–174, January 1977.

[8] K. Fujikawa, H. Tazaki, and H. Harai, “Inter-AS Locator Allocation of
Hierarchical Automatic Number Allocation in a 10,000-AS Network,”
in SAINT 2012, 2012.

[9] H.-J. Shin, D. Pei, M. Lad, Y. Choi, and L. Zhang, “The Impact of
Multi-homing on Network Reliability and Stability: A Case Study,” in
ICCCN 2005, pp. 543–548, 2005.

[10] R. Gummadi and R. Govindan, “Practical Routing-Layer Support for
Scalable Multihoming,” in Infocom 2005, 2005.

[11] Y. Song, L. Gao, and K. Fujikawa, “Resilient Routing under Hierarchical
Automatic Addressing,” in GLOBECOM’11, pp. 1–5, 2011.

[12] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan, “Compress-
ing and Indexing Labeled Trees, with Applications,” J. ACM, vol. 57,
no. 1, 2009.

[13] G. T. Nguyen, R. Agarwal, J. Liu, M. Caesar, P. B. Godfrey, and
S. Shenker, “Slick Packets,” SIGMETRICS Perform. Eval. Rev., vol. 39,
pp. 205–216, June 2011.

[14] V. P. Kafle, R. Li, D. Inoue, and H. Harai, “Design and Implementation
of Security for HIMALIS Architecture of Future Networks,” IEICE

Transactions on Information and System, vol. E96-D, pp. 226–237,
February 2013.

[15] P. J. Downey, R. Sethi, and R. E. Tarjan, “Variations on the Common
Subexpression Problem,” J. ACM, vol. 27, pp. 758–771, October 1980.

[16] P. Flajolet, P. Sipala, and J.-M. Steyaert, “Analytic Variations on the
Common Subexpression Problem,” in ICALP (M. Paterson, ed.), vol. 443
of Lecture Notes in Computer Science, pp. 220–234, Springer, 1990.

[17] F. Wang, L. Gao, S. Xiaozhe, H. Harai, and K. Fujikawa,
“Compact Location Encodings for Scalable Internet Routing.”
http://rio.ecs.umass.edu/html/publication/.

[18] D. Meyer, “University of Oregon Route Views Project.”
http://www.routeviews.org/, 2004.

[19] “RIPE RIS, Ripe routing information service.” http://www.ripe.net/ris.
[20] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun,

k. claffy, and G. Riley, “AS Relationships: Inference and Validation,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 37,
pp. 29–40, Jan 2007.

[21] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characterizing
the Internet Hierarchy from Multiple Vantage Points,” in INFOCOM,
2002.

[22] L. Gao, “On Inferring Autonomous System Relationships in the Inter-
net,” in Proc. IEEE GLOBAL INTERNET, November 2000.

[23] G. Di Battista, T. Erlebach, A. Hall, M. Patrignani, M. Pizzonia,
and T. Schank, “Computing the Types of the Relationships Between
Autonomous Systems,” IEEE/ACM Trans. Netw., vol. 15, pp. 267–280,
April 2007.

[24] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Trans. Comput. Syst., vol. 18, pp. 263–
297, August 2000.

[25] S. Deering and R. Hinden, RFC 2460 Internet Protocol, Version 6 (IPv6)

Specification. Internet Engineering Task Force, December 1998.
[26] A. Gladisch, R. Daher, and D. Tavangarian, “Node-oriented Internet

Protocol: A Novel Concept for Enhancement of Mobility and Multi-
homing in Future Internet,” in LCN Workshops, pp. 1070–1077, IEEE,
2012.

[27] R. Grandl, D. Han, S.-B. Lee, H. Lim, M. Machado, M. Mukerjee, and
D. Naylor, “Supporting Network Evolution and Incremental Deployment
with XIA,” in ACM SIGCOMM ’12, (New York, NY, USA), pp. 281–
282, ACM, 2012.

[28] X. Yang, D. Clark, and A. W. Berger, “NIRA: A New Inter-domain
Routing Architecture,” IEEE/ACM Trans. Netw., vol. 15, pp. 775–788,
August 2007.

