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Abstract Due to the discarded attributes, the effectual condition classes of the decision
rules are highly different. To provide a unified evaluative measure, the deriva-
tion of each rule is depicted by the reduced attributes with a layered manner.
Therefore, the inconsistency is divided into two primary categories in terms of
the reduced attributes. We introduce the notion of joint membership function
wrt. the effectual joint attributes, and a classification method extended from the
default decision generation framework is proposed to handle the inconsistency.
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1. Introduction
Classification in rough set theory [1] is mainly composed of two components: fea-

ture extraction and decision synthesis. Many researches focus on the construction of
classification algorithm, such as probabilistic method [2], decision trees[3] and para-
meterized rule inducing method [4]. The purpose of these methods is to generate rules
with high precision and simple expression. In view of the comprehensiveness and con-
ciseness of the training rules, many discernibility matrices based rule extracting meth-
ods [5] concerning both approximate inducing and accurate decision are proposed to
classify the objects previously unseen. We would like to point out the dynamic reduct
[6], variable thresholds based hierarchical classifier [7]. The synthesis methods place
emphasis on how to efficiently resolve the conflicts of training rules for the test ob-
jects, such as the stable coverings based synthesis [6], hierarchical classifier [7] and
lower frequency first synthesis [8].

This paper, based on the default rule extracting framework [5], analyzes the con-
flicts [9] with two categories of inconsistent rules, and a synthesis stratagem with the
notion of joint membership function is proposed to resolve the inconsistency [10]. In
the sequel, a report from our experiments with the medical data sets is given to indicate
the availability of our classification method.
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2. Rough set preliminaries
The starting point of rough set based data analysis is an information system denoted

by IS, which is a pair A(U,A) [1]. An IS is a decision system when the attributes
A can be further classified into disjoint sets of condition attributes C and decision
attributes D. With every subset of attributes B ⊆ A in A, the indiscernibility relation
denoted by IND(B) is defined as follows:

IND(B) = {(x, y) ∈ U × U |∀a∈B , (a(x) = a(y))}. (1)

By U/IND(B) we indicate the set of all equivalence classes in IND(B). Two
objects x, y ∈ U with equation (1) held are indistinguishable from each other. In
other words, each object in the universe can be expressed by its own equivalence class
Ei ∈ U/IND(B). For a set of objects X ⊆ U , based on U/IND(B), the lower
and upper approximations denoted by BX and BX are ∪{E ∈ U/IND(B)|E ⊆
X} and {E ⊆ U/IND(B)|E

⋂
X 6= ∅} respectively. For an information system

A(U,A), the discernibility matrix denoted by MD(A) is expressed as an n×n matrix
{mD(i, j)}, where n = |U/IND(A)| and

mD(i, j) = {a ∈ A|∀i,j=1,2...n, (a(Ei) 6= a(Ej))}, (2)

which implies the set of attributes of A which can distinguish between the two classes
Ei, Ej ∈ U/IND(A). For a decision system A(U,C ∪ {d}), the relative dis-
cernibility matrix M ′

D(A) is composed of m′
D(i, j) = ∅ if d(Ei) = d(Ej) and

m′
D(i, j) = mD(i, j)\{d}, otherwise.
Following this, a unique boolean variable a is associated with each attribute a, and

mD(i, j) is transformed from mD(i, j) in terms of a. Therefore, the discernibility
function of the attribute set A in an information system A(U,A) is defined by:

f(A) = ∧
i,j∈{1...n}

∨mD(Ei, Ej), (3)

where n = |U/IND(A)|, and the relative discernibility function f ′(C) in A(U,C ∪
{d}) is constructed from M

′
D(A) like equation (3). Similarly, for n = |U/IND(C)|,

the local discernibility function of any Ei ∈ U/IND(C) is given as:

f ′(Ei, C) = ∧
j∈{1...n}

∨m′
D(Ei, Ej). (4)

For A(U,A), a dispensable attribute a of A implies IND(A) = IND(A\{a}),
and its counterpart called the indispensable has an opposite implication. A reduct of
A denoted by RED(A) is a minimal set of attributes A′ ⊆ A so that all attributes
a ∈ A\A′ are dispensable, namely IND(A′) = IND(A). For A(U,C ∪ {d}),
the relative reducts RED(C, d) of C to d are judged by f ′(C) similarly with the
determination of f(A) on RED(A) [6]. Accordingly, we entitle an attribute (set)
CCut ⊆ C relatively indispensable to d iff ∀c∈CCut

∨ c can construct a conjunct of
f ′(C), and the prime implicants of f ′(Ei, C) is utilized to determine the local reduct
of a condition class Ei in A. For X ⊆ U and B ⊆ A, the rough membership function
of X with respect to any class Ei ∈ U/IND(B) is

µB(Ei, X) =
|Ei ∩X|
|Ei|

, 0 ≤ µB(Ei, X) ≤ 1. (5)
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3. Rule extracting from training tables
Though not entirely correct wrt. the classical relative reducts oriented rule extract-

ing methods [1, 5, 7], the default rule extracting framework proposed in [5] provides
at lest two advantages, namely simplicity and generalization. Therefore, we will use
this framework as a basis to validate our research under a restriction of vast rules
generation.

For a given training table A(U,C ∪{d}), taking the prime implicants of f ′(Ei, C)
of each class Ei ∈ U/IND(C) for the predecessor while regarding the prime im-
plicants of d of each {Xj ∈ U/IND({d}) | Ei ∩ Xj 6= ∅} as the successor, all the
simpler rules can be expressed as R : Des(Ei, C) → Des(Xj , {d}) with µC(Ei, Xj)
no less than a filtering threshold µtr. By introducing an iterative reduct stratagem,
thereby, new training rules by deserting the relatively indispensable attributes are gen-
erated as much as possible to handle test objects. Accepting A and a given threshold
µtr as the input, the primary extracting framework can be described as the following
four steps:
Step 1 INIT (Ψ). Calculate U/IND(C), U/IND({d}) and M ′

D(A). For each Ei ∈
U/IND(C), calculate f ′(Ei, C) and generate the rule R : Des(Ei, C) → Des(Xj , {
d}) |µC(Ei, Xj) with each Xj ∈ U/IND(d) if µC(Ei, Xj) ≥ µtr . Let CPr = C and
goto Step 4.

Step 2 Exit if ISEND(Ψ); let A′(U, C′S{d}) equal to NEXT (Ψ) and let CPr = C′.
Calculate U/IND(CPr) and M ′

D(A′).
Step 3 For any E(k,CP r) ∈ U/IND(CPr), calculate f ′(Ei, CPr) and generate a rule ∆ :

Des(E(k,CP r), CPr) → Des(Xj , {d}) |µCP r (E(k,CP r), Xj)) for each Xj ∈U/IND
(d) if µC(E(k,CP r), Xj) ≥ µtr , while the blocks to this rule F : Des(Ei, CPr) →
¬Des(Xj , {d}) are made if ∀Ei∈U/IND(C), Ei ⊆ E(k,CP r) ∧ Ei ∩Xj = ∅.

Step 4 Calculate f ′(CPr). For each attribute set CCut emerging in the conjuncts of f ′(CPr),
select the projections C′

Pr = CPr\CCut, then INSERT (Ψ) with A′(U, C′
Pr ∪ {d}).

Goto step2.
Where the cursor queue Ψ composed of all the subtable A′ has four main opera-
tions {INIT ; INSERT ; ISEND; NEXT}. Different from the classical queue,
ISEND judges if the cursor is pointing to a NULL subtable, and NEXT is uti-
lized to get the subtable pointed by cursor and move the cursor to the next subtable.
To elucidate the generation of the rule set(denoted by RUL(A)), an illustrative sam-
ple displayed in figure 1 results from having observed a total of one hundred objects
that were classified according to the condition attributes C = {a, b, c} and decision
attributes {d}. Furthermore, the decision classification followed with the cardinality
of each U/IND(C ∪ {d}) is represented as D = {d}.

Figure 1. An illustrative example

V a b c d

E1 1 2 3 1 (50×)
E2 1 2 1 2 (5×)
E3 2 2 3 2 (30×)
E4 2 3 3 2 (10×)
E5,1 3 5 1 3 (4×)
E5,2 3 3 1 4 (1×)

Figure 2. Flow graph of reduct

The real line with the executing sequence number in figure 2 illustrates the projec-
tion order of the default algorithm on figure 1, and the dashed denotes the duplicate
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projection prevented by the cursor queue. The node represents condition attribute set
derived from the corresponding projection. Furthermore, the partial relation exists in
the nodes which are in different layers and connected by the bidirectional line.

4. Inconsistency classifying based on Reducted Layer
The default decision generation method [5] extracts the rules measure up to a mem-

bership threshold as much as possible, also, it employs the membership as the interface
to resolve the synthesis of the training rules for the test objects. Unfortunately, the con-
flict of the decision generation can not be resolved completely under this framework.
Wang developed a rule-choosing stratagem named lower frequency first [8] to quan-
tificationally dispose the inconsistency in view of a standpoint that a decision derived
from the class with few test objects can represent some special cases, and the precon-
dition of this stratagem is the rules obtained from training set with poor relativity to
the test objects, but this stratagem can not work well under the situation in which the
training table provides enough reliability for the universe. To parse the causation of
the conflict, a notion of reduced layer is defined recursively as follows:

Definition 1 For a given training decision tableA(U,C∪{d}), the reduced layer
L of each subtable A′(U,C ′ ∪ {d}) ∈ Ψ denoted by L(A′) is

- 0 iff IND(C) = IND(C ′);
- k+1 iff ∃A′′(U,C′′∪{d})∈Ψ, L(A′′) = k ∧ C ′′\C ′ ∈ CON(f ′(C ′′)).

Where CON(f ′(C ′′)) accepts the attribute sets emerging in all the conjuncts of
f ′(C ′′) as its elements, and each element corresponding to a conjunct in f ′(C ′′) in-
cludes all the attributes emerging in this conjunct. We call A′′ the parent of A′ (i.e
A′′PA′) iff C ′′\C ′ ∈ CON(f ′(C ′′)). Simultaneously, P is used to depict the partial
relation between C ′′ and C ′. If A1PA2 and A2PA3, due to the transitivity of ⊆,
subtable A1 is called the forefathers of A3 (i.e. A1FA3 or C1FC3). From the above,
obviously, the original table A(U,C ∪ {d}) is with the reduced layer 0. Any subtable
A′(U,C ′ ∪ {d}) in Ψ with reduced layer larger than 0 is homogenous with A except
for C ′ ⊆ C, where C ′ is called reduced attributes. Let us now assume that the consid-
ered original table had no condition attributes with the same equivalence classes, i.e.
∀c1,c2∈C , IND/{c1} 6= IND/{c2}, and it is commonly satisfied in the large-scale
environments.

Proposition 2 For two reduced attributes C ′′ and C ′ which belong to A′′ and
A′ respectively, U/IND(C ′) ⊆ U/IND(C ′′) exists iff C ′′FC ′, namely A′′FA′.

When considering the necessity, due to the transitivity of relation P among all the
middle subtables between A′ and A′′, U/IND(C ′) ⊆ U/IND(C ′′) can be easily
proven. When considering the sufficiency, we suppose there exists another subtable
B(U,B ∪ {d}) with L(B) = L(A′′) ∧ BFA′ held, and due to the greedy manner
of the default rule extracting framework discussed in [5], we assert U/IND(B) =
U/IND(C ′′); also because both B and A′′ root in the original table A with several
indispensable attributes deserted, B = C ′′ can be obtained. And thus C ′′FC ′ and
A′′FA′ are proven.

As discussed in section 3, a set of rules with the form of rk : Pred(rk) →
Succ(rk)|µ(rk) can be generated by applying the four steps to a given training table
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A(U,C∩{d}). For the universe W , each object u ∈ W can be classified to a decision
class CLS(Succ(rk)) iff any attribute a ∈ A emerging in Pred(rk) is supported by u,
and it’s denoted by Mat(rk, u) : ∀a∈A, a(Pred(rk)) 6= ∅ → a(u) = a(Pred(rk)).
Therefore, the inconsistency consists in RUL(A) iff

∃ri,rj∈RUL(A),Mat(ri, u)∧Mat(rj , u)∧CLS(Succ(ri)) 6= CLS(Succ(rj)), (6)

where Mat(ri, u) denotes Pred(ri) is supported by u, and CLS(Succ(ri)) denotes
the decision class determined by Succ(ri). Therefore, RUL(A) is inconsistent due to
the existence of any ri, rj ∈ RUL(A) with both ∀a∈A, a(Pred(ri)) 6= ∅∧a(Pred(rj))
6= ∅ → a(Pred(ri) = a(Pred(rj))) and CLS(Succ(ri)) 6= CLS(Succ(rj)) held.
To distinguish the rules derived from different subtables, each r ∈ RUL(A) is ex-
pressed by Des(Er

i , Cr) → Des(Xj , {d}), where Des(Er
i , Cr) implies Pred(r)

comprising the local reduct of Er
i in subtable Ar(U,Cr ∪ {d}). Based on the correl-

ative notions of reduced layer, the inconsistency among the rules can be divided into
two cases according to their condition class.

Corollary 3 For two inconsistent rule r1 and r2 derived respectively from Ar1

and Ar2 , suppose L(Ar2) ≥ L(Ar1), we shall say that this inconsistency is:{
inherited iff Cr2 ⊆ Cr1 , (7b)
varietal iff Cr2 6⊆ Cr1 . (7c)

The inherited inconsistency can be ulteriorly divided into two cases, i.e. L(Ar2) =
L(Ar1) → Cr2 = Cr1 and L(Ar2) > L(Ar1) → Cr2 ⊂ Cr1 , and the varietal
inconsistency has two similar cases. In figure 2, the consistency between the rules
from node II and the rules from node IV belongs to the inherited, and the consistency
arising from node III and node IV is varietal. With little consideration of the difference
among the subtables, many researches focus on the inconsistency of the rules derived
from the same subtable, hence the rule certainty is converted into the cardinality-based
evaluation measures for the sake of achieving high-frequency rule.

5. Methods of inconsistency handling
In this paper, to complement the default decision generation method, we mainly

discuss the inconsistency from different layers and suppose L(Ar2) > L(Ar1). For
two inconsistent rules r1 : Des(Er1

i1
, Cr1) → Des(Xj1 , {d}) and r2 : Des(Er2

i2
, Cr2)

→ Des(Xj2 , {d}), if Cr2 ⊂ Cr1 exists, it’s obvious that the condition classes could
hold either Er1

i1
⊂ Er2

i2
or Er1

i1
∩ Er2

i2
= ∅. Being comparable with the condition

class determined by r1, the effectual set covered by r2 is only composed of the classes
which leads to Succ(r2) while belonging to U/IND(Cr1), namely:

ES(Er2
i2

, Cr1) = {Er1
i ∈ IND/Cr1 |Er1

i ∩Xj2 6= ∅ ∧ Er1
i ⊆ Er2

i2
}. (8)

When measuring the rules r1 and r2 with the relation Cr2 ⊂ Cr1 held, due to the
desertion of the relatively indispensable attributes Cr1\Cr2 , the condition classes in
U/IND(Cr1) which could not lead to the decision Succ(r2) are taken into account,
and it may depress the rule r2. Hence, for disposing the inherited inconsistency, the
notion of joint membership function can be determined by the cardinality-based eval-
uation measure of the effectual set.
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Definition 4 For two inconsistent rules r1, r2 with Cr2 ⊂ Cr1 held, the joint
membership function of r2 with respect to Cr1 is defined as:

µCr1 (Er2
i2

, Xj2) =

∑
Ek∈ES(E

r2
i2

,Cr1 ) |Ek ∩Xj2 |∑
Ek∈ES(E

r2
i2

,Cr1 ) |Ek|
, 0 ≤ µCr1 (Er2 , Xj2) ≤ 1. (9)

Where the denominator denotes the cardinality of the effectual set for r2 under
the condition attributes Cr1 , and the numerator denotes the cardinality of the objects
which support r2. Clearly, one can perceive that the rough membership function is a
special case of the joint membership function, i.e. µCr1 (Er2

i2
, Xj2) = µCr2 (Er2

i2
, Xj2))

iff Cr1 = Cr2 . As shown in equation (9), on the assumption that both r1 and r2 are un-
der the same condition restriction, ES(Er2

i2
, Cr1) depicts the object sets contained by

r2 comparable with the ones determined by r1, and µCr1 (Er2
i2

, Xj2) is more equitable
than µCr2 (Er2

i2
, Xj2) for inherited inconsistency.

When considering the varietal inconsistency, for the above two rules r1 and r2,
Cr2 6⊆ Cr1 comes into existence as discussed in corollary 3. Similarly with the analy-
sis of the inherited case, it can be divided into two subcases, i.e. L(Ar2) = L(Ar1) →
Cr2 6= Cr1 and L(Ar2) > L(Ar1) → Cr2 6⊂ Cr1 . In figure 2, one may conclude
the inconsistent rules from node II and node III to be the former and the ones from
III and IV the latter. Due to the necessity of proposition 2, the condition attribute
set Cr1 ∪ Cr2 is the forefather of the both subset, denoted by (Cr1 ∪ Cr2)FCr1 and
(Cr1 ∪Cr2)FCr2 . Therefore, Cr1 ∪Cr2 can be utilized to evaluate the rule certainty,
and called by the effectual joint attributes.

Proposition 5 For two inconsistent rules r1, r2 with L(Ar2) = L(Ar1) →
Cr2 6= Cr1 held, we shall say that the rule certainty can be evaluated by the joint
membership function µCr1∪Cr2 (Er1

i1
, Xj1) and µCr1∪Cr2 (Er2

i2
, Xj2).

It’s obvious that Cr1 = Cr1 ∪ Cr2 iff Cr2 ⊆ Cr1 , thus proposition 5 provides
a unified evaluative condition attributes for the both rules, and the both categories of
inconsistency can be disposed by choosing the rules with higher joint membership
function. All the above accounts for the inconsistency between two rules, but when
two rules r1, r2 are consistent with both the predecessor and the successor (denoted
by r1Cst r2), i.e. ∀a∈A, a(Pred(r1)) 6= ∅ ∧ a(Pred(r2)) 6= ∅ → a(Pred(r1) =
a(Pred(r2))∧CLS(Succ(r1)) = CLS(Succ(r2)), to compete with any r3 ∈ RULA
which is inconsistent with (denoted by r3Inc r1) the both rules, all the consistent pairs
of each rule must be treated like the inconsistent pairs for obtaining the most credible
rule. To achieve the forementioned, the rule is constructed by a header followed with
an array of consistent rule descriptions and an array of inconsistent rule descriptions,
and the header include six members:

Idt : Rule : Block : Strength : Layer : Pds : CstArray : IncArray. (10)

For any ra ∈ RUL(A), the symbol Idt denotes the identifier of ra and Strength(ra)
= |Era

ia
∩Xja

| denotes the cardinality of the ra supported objects. Layer denotes the
reduced layer of Ar

a. Pts points to the ra related decision subtable in the cursor
queue Ψ, and ra is also pointed by its related subtable. During the rule extracting
phase, as discussed in definition 1, these four members are obtained from Step 2 of
the extracting framework with a layer marker in A′. Each element in the last two
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arrays is composed of an identifier Idt(rb) and a pair of joint membership function
value (µCra∪Crb (Era

ia
, Xja), µCra∪Crb (Erb

ib
, Xjb

)), in which CstArray records all
the consistent rules to ra and IncArray includes all the inconsistent ones.

Following Step 3, according to the established subtables in Ψ, each generated
rule is fetched to compare with ra. And then, as discussed in definition 4, join
Idt(rb) : (µCra∪Crb (Era

ia
, Xja

), µCra∪Crb (Erb
ib

, Xjb
)) into CstArray if raCst rb

and join Idt(rb) : (µCra∪Crb (Era
ia

, Xja
), µCra∪Crb (Erb

ib
, Xjb

)) into IncArray if
raInc rb. The generated rule implies that the both arrays only record the correspond-
ing rules which are generated from the subtable with the reduced layer smaller than
Ara , due to the reflexivity of both Cst and Inc, this can reduce the complexity of
extracting and synthesis. From all above, we assert the time and space complexity
of reduced attributes oriented rule extracting algorithm are of order O(n4 · m2) and
O(n ·m + m2), respectively.

According to the above structures, suppose several rules M = (r1...rk) are sup-
ported by a test object u, then the most credible rule can be obtained by:

1. Classify ∀ra ∈ M into several consistent subsets (Suppose the number is K) ac-
cording to Xja .

2. For each consistent subset, with a dimidiate manner, chose the rule with the maxi-
mal joint membership value by CstArray; if the result is not unique, chose the
rule with the largest Strength, and M ′ = (r1...rK) is obtained.

3. For ∀ra, rb ∈ M ′, with a dimidiate manner, chose the one with the maximal joint
membership value by IncArray; if the result is not unique, chose the rule with
the largest Strength, and the most credible rule for u is found.

In Step 2 and 3, for comparing rules pairs, fetch the CstArray or IncArray of
the rule with the larger Layer. The random selection is applied if both the joint
membership value and Strength of any pair are the same.

6. Computational experiments
To indicate the validity of our method, three medical data from the UCI Machine

Learning Repository is used in our experiments. Let us notice that the data sets used
in our experiments are assumed to be complete. To achieve this, the data were slightly
modified by removing a few attributes which result in vast incompleteness, and the
other missing values with a ratio of 8% were made out by a statistic method. To insure
the comparability, 10 fold cross-validation reclassification technique was performed.

In order to indicate the availability of our method, three synthesis methods based
on vast rules generation algorithm [5] are given for comparison. In which, Std is the
standard discernibility applying a random rule selection to the rules with equal mem-
bership, HFF uses the high frequency first strategy of inconsistenct rule-choosing and
LFF is it’s opposite. The Reducted Attributed oriented Rule Generation is denoted by
RARG. Moreover, we consult two popular rough sets based rule induction systems,
i.e. new version of LERS (New LERS) and the classification coefficient oriented syn-
thesis system based on the object-oriented programming library (RSES-lib). For the
purpose of comparison, the membership value threshold for Std, HFF, LFF and RARG
are all 0.55 and the coefficient threshold for RSES-lib is 0.75, which are quoted by the
corresponding authors.
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Table 1. Computational result with the medical datasets

Lymphography Breast cancer Primary tumor
Rule Error rate Rule Error rate Rule Error rate

Algorithm number Train Test number Train Test number Train Test
New LERS 984 0.000 0.233 1163 0.063 0.342 8576 0.245 0.671
RSES-lib 427 0.000 0.195 756 0.152 0.277 6352 0.136 0.687
Std 1321 0.000 0.320 2357 0.060 0.361 7045 0.175 0.764
HFF 1321 0.000 0.267 2357 0.042 0.338 7045 0.147 0.742
LFF 1321 0.000 0.341 2357 0.245 0.470 7045 0.360 0.720
RARG 1321 0.000 0.207 2357 0.051 0.292 7045 0.125 0.598

As shown in table 1, since HFF refined the default decision generation framework,
its performance exceeds the later in all the three datasets. Due to the different granular-
ity distribution of both classes, LFF works well in the first and the third datasets while
falling across a sharply decrease in the breast cancer dataset. Because RARG provides
a unified evaluation criterion for conflicts, with the irrelevant condition classes filtered,
it guarantees the decision with the largest ratio of the sustaining decision objects to the
effectual condition objects. For the tested objects, it refers to the most accordant rule
with respect to other conflict ones. Therefore, RARG is particularly outstanding in the
applications with voluminous inconsistency, such as the Primary tumor dataset dis-
played in the result. In conclusion, RARG takes on a comparatively high performance
in the above four methods. The results also show that RARG is comparable with the
other two systems, and especially, it exceeds them in the Primary tumor dataset.
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