Abstract Riemann Surfaces of Imtegral Domains
and Spectral Spaces (*).
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Sunto. — La superficie astratia di Riemann di un dominio R, introdotia da Zariski, é uno spazio
topologico X(R) il cui insieme sostegno consiste di tutti ¢ sovranelli di valutazione di R.
L’applicazione canonica suriettiva fp: X(R) — Spec(R), V > centro di V su R, é un’appli-
cazione chiusa, dunque Spec(R) & uno spazio-quoziente di X(E). Il teorema principale di
questo lavoro & il seguenie: X(R) é uno spazio speitrale, nel senso di M. Hochster, e fp é
un’applicacione spetirale. Inoltre, facendo wuso della cosiddetia topologia costruttibile, viene
dimosirato che se B & integralmente chiuso e Spec(R) é uno spazio noetheriano allora f; &
wn’ applicazione aperta se e soltanto se B & un going-down dominio.

1. — Introduction.

One cornerstone of modern algebraic geometry is the study of a commutative
ring B by means of its set Spee (&) of prime ideals, equipped with the Zariski topology
(as in [B, Definition 4, page 99]). An older topological tool of Zariski is also available
in cage R is an integral domain, namely the abstract Riemann surface X(E) whosge
underlying set is the collection of all valuation overrings of R (cf. 8* in [ZS, page 113]).
The purpose of this article is twofold: to study the connection between Spec (R)
and X(R), and to modernize our understanding of abstract Riemann surfaces via the
category of spectral spaces and spectral maps (in the sense of [H]).

As Lemma 2.1 demonstrates, the tools are connected by a continuous surjection
f: X(R) — Spec (R). Only rarely is f a homeomorphism. Indeed, if R is integrally
closed, then f is a homeomorphism if and only if R is a Priifer domain (cf. Proposi-
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tion 2.2). However f is always a closed map (Theorem 2.5) and, as a result, f realizes
Spec (B) as a quotient space of X(R) (cf. Corollary 2.6). Section 2 concludes by using f
to study the passage of the « diserete Alexandroff » separation property (cf. [A,
page 28]) between X(R) and Spec(R).

Proposition 3.1 establishes that f is an open map if and only if R is an FTO-
domain (in the sense of [Pa]). In case R is integrally closed, openness of f may be
characterized using the constructible topology (Lemma 3.2(c).) One consequence
(Theorem 3.3) is that an integrally closed going-down ring (in the sense of [DP])
with Noetherian speetrum is an FTO-domain. Aeccordingly, Remark 3.4(b) congtructs
an FTO-domain with exacting properties. As with most of this article’s examples,
this one depends on a pullback construction, and so familiarity with [F] will be
assumed.

It is well-known (cf. [ZS, Theorem 40, page 113]) that X(R) is always a quasi-
compact T,-space. What more can be said? Theorem 4.1 gives the answer: X(R)
is a spectral space. In Corollary 4.5, a funetorial variant follows: X(—) may be
viewed as a functor from a ecategory of integral domains to the category of spectral
spaces and spectral maps which factors through the full subecategory of abstract
Riemann surfaces.

Throughout, B denotes an integral domain with integral closure R’ and quotient
field K. Any unexplained material is standard and may be found in the texts cited
as references.

2. — Relating X(R) and Spec(R).

As a set, X(R) is the collection of all valuation overrings of R, that is, valuation
domains V such that Rc V c K. A basis for the open sets in the canonical topology
of X(E) is given by the sets

B(#yy ..y #,) = {VeX(R): 4,V for each i =1, ..., n}
as {®, ..., »,} ranges over the finite subsets of K. (Since ’
E(wn ) wﬂ) N E(yu reey ?/m) - E(wu cory Ty Y19 ey ym)

one does in fact obtain a topology.) Evidently X(R) is a T,-space, and in the usual
way ([H, page 53]) thus acquires the structure of a partially ordered set: Vi<V,
if and only if V, is in the closure of {V,}, that is, if and only if V,c V,. As recalled
in the introduction, X(R) is quasi-compact. Since E(w, ..., s,) = X(R[®y, ..., ®.])
as topological spaces, it follows that X(R) has an open basis consisting of quasi-
compact opens; moreover, the typical guasi-compact open subset of X(R) is the
union of finitely many sets of the form E(x, ..., x,).

The relation between X(R) and Spec (R) is forged with the funetion f = fz: X(B) —
— Spec (R) defined as follows: if Ve X(R) and M is the maximal ideal of V, then
VY= M N R. In other words, fx(V) is the center of V on E.
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Lrmma 2.1. — With the above notation, f: X(R) — Spee (R) is surjective, continu-
ous, order-preserving and order-reflecting.

Proor. — By «extension of valuations», f is surjective (cf. [G,, Theorem 19.6]).
Next, to check that f is continuous, it is enough to show that f~1(X,) is open, where
X,= {PeSpec(R): r¢ P}, r€ R, is a basic Zariski-open subset of Spec (R). Without
loss of generality, r=£0. Then fYX,) = {(V, M)e X(R): r¢ M} = {(V, M) X(R):
r~te M or r-* is a unit of V} = E{r'), which is open in X(R), as desired. Finally,
for V, and V, in X(R), [G,, Theorem 17.6] assures that f(V,) c {(V,) if and only it
V,c V,, that is, if and only if V;<V,. Thus, f is both order-preserving and order-
reflecting, to complete the proof.

In view of Lemma 2.1, Spec (R) is the continuous image (viaf )of a quasi-compact
space, and is thus itself quasi-compact. Besides giving this amusing proof of a well-
known fact, f leads to other useful information, to which we now turn.

Recall that R is called an i-domain in case the contraction map Spec (I') — Spec (&)
is an injection for each overring 7 of R; equivalently, if and only if R, is a valuation
domain for each P e Spec(R) (cf. [Pa, Corollary 2.15]). It is well-known (cf. [G,,
Theorem 19.15]) that the integrally closed ¢-domains are just the Priifer domains.
As fz is an injection whenever R is a Priifer domain and as X(R) = X(R’) in general,
the next result is perhaps to be expected.

PropositioN 2.2. — Let f: X(R) — Spec(R) be the function introduced above.
Then the following conditions are equivalent:
(i) f is a homeomorphism;
(ii) f is an order-isomorphism;
(iii) f is a bijection;
(iv) f is an injection;
(v) For each P c Spec(R), only one valuaﬁon overring of R dominantes Rp;

)
(vi) B is an ¢-domain.

Proor. — (i) = (ii): Apply Lemma 2.1.

(i) = (iiii): Trivial.

(ili) =~ (iv): Trivial.

(iv) <> (v): Ve X(R) dominates B, if and only if f(V) = P.

(v) <= (vi): Combine the above remarks with [G,, Corollary 19.9] and [B, Theo-
rem 1, page 376].

(vi) = (1): Assume (vi). By Lemma 2.1, it is enough to prove that Y =
= f(B(#, ..., »,)) is open in Spec(R) for any m,..,z,€K. As (vi)=(iv),
Y = () f(E(x;)). Thus, without loss of generality, » =1; write # for x,. Then
Y = {P e Spec(R): there exists ¥ e X(R) such that vV and V dominates R}
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which, since (vi) == (v), is just {P € Spec(R): meR,',}. Therefore, if I denofes the
ideal {re R: ro€ R’} of R, we have that ¥ = {P € Spec(R): I ¢ P}, which is open
in Spec(R). This completes the proof.

The preceding result leaves open the question of what one may assert if fg is
not an injection. Corollary 2.6 will show that f permits Spec(R) to be obtained as
an identification space from X(R). First, we pause to note a more trivial way to
recover the space Spec(R) from the set X(R).

REMARK 2.3. — Let Y(R) be the set X(R) endowed with the coarsest topology
making fz: ¥(R) — Spec(R) continuous. (Since we saw in the proof of Lemma 2.1
that E{(r-t) = f~1(X,), it follows that E(r-1), for 0s£re R, is a typical subbasic
open set in Y(R).) The T,-space canonically associated to Y(R) is Y(R)/r, where
VTV, if and only if f(Vy) = f(V,). The function Y(R)/v —> Spec(R) induced by f
is @ homeomorphism.:

For a proof, it is enough to show that f, viewed as a map from Y (R) to Spec(R),
is open; that is, that Z = f({) /(X)) is open in Spec(R) for each finite subset {r.}
of R\{0}. This is readily shown, for Z = {P e Spec(R): there exists (V, M) e X(R)
such that f(V) = P and r, ¢ M for each i} = ) X,,, which is indeed open in Spec (R).

It was noted above that Y(R) is not a T,-space if f is not an injection. By Propo-
sition 2.2, X(R) and Y (R) are thus distinet if R is not an ¢-domain. A good illustration
of this arises in case R is the local (Noetherian) ring at the singular point of a nodal
plane curve. Then X(R) = {V,, V,, K} where V,, V, are distinct discrete rank 1
valuation domains (such that B'== ¥V, V, and K is the quotient field of R).
One may check that {V,, K} is open in the canonical topology of X(R), but the only
open subsets of Y(R) are §, Y(R) and {K}.

Our next major goal is to show that fr is always closed. The following technical-
ities, borrowed from [ZS, pages 115-116], will help. By analogy with the construction
of X(R), we let Q2(R) denote the collection of quasilecal overrings of E; and topologize
Q(R) by taking as basic opens the sets Q{R[w, ..., #,]), where {u,...,x,} ranges
over the finife subsets of K. By analogy with the construction of fz, define
g = gz: 2(R) — Spec (R) by setting ¢(8) = M N R for each (S, M)e 2(R). Next,
let L(R) = {R,: P € Spec(R)} with the subspace topology inherited from 2(R), and
let b = hy: L(R) — Spec(R) denote the restriction of g to L(R)."

LeMMA 2.4, — With the above notation, k: L(R) — Spec (R) is a homeomorphism,

Proor. — Since W(Rp) = P, it is clear that % is a bijection. To see that b is con-
tinuous, it is enough to show g is continuous. Consider the complement of the in-
verse image of a closed set. If I is an ideal of R and V(I) = {P € Spec(R): I P}
is the associated closed subset of Spec(R), then QR)\g~HV(I)) = {(8, M) € 2(R):
there exists re IN(M N R)} = {J {Q(R[r']): 0£r e I}, which is indeed open in
L(R), as desired.
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Finally, to see that % is open, we shall prove that Y = Spec (R)\IL(L(R) N
N QO R[x,, ...,wn])) is closed in Spec(R) for each finite subset {w,...,2,} of K.
It will be convenient to let I'(z,...,#,) denote Q(R)N\Q(R[z,,...,».]). Then
Y = b{LR) N L2, ...,2,)) = U BMIL(R) N I'(z,)), and so we may assume that » = 1,
with # denoting #,. Consider the ideal J = {re R:rwc R} of R. For each Pe
€ Bpec(R), J c P if and only if # ¢ R, that is, if and only if R, € I'(x). Consequently
Y = V(J), which is Zarigki-clogsed, completing the proof.

THEOREM 2.5. — fz: X{E) — Spec(R) is a closed map.

Proo¥. - We claim that d: X(R) — L{R), given by d(V) = R, ., for each (V, M) ¢
€ X(R), is a closed map. This follows by applying [ZS, Lemma 4, page 116] since
L(R) is a « complete model » in the sense that each element of X(R) dominates some
element of L(R). (Actually, the cited result in [ZS] shows that X(R)\ {K} -> L(R)
is closed, but this readily yields our claim.) The theorem now follows from Lemma 2.4
since f = hd is a composite of closed maps.

Define an equivalence relation ~ on X(R) be decreeing V,~ V, if and. only if
fa(Vy) = fa(Vsy), and let X(R)/~ have the quotient topclogy. Denote the induced
function X(R)/~ — Spec(R) by fz. As Lemma 2.1 and Theorem 2.5 show that f
is a continuous closed surjection, we immediately infer

COROLLARY 2.6. — With the above ﬁo’oafoion, fr: X(R)/~ — Spec (R) is a homeo-
morphism.

Ordinary separation properties are of no interest for X (R), since X(R) is a T;-space
if and only if X(R) is Hausdorff if and only if R is a field. The crux is that the
closure of {K} in X(R) is the entire space, so that K being a closed point implies
(by the existence of dominating valuation overrings) that Spec(E) = {0} and hence
that B is a field. (On the other hand, one sees similarly that K is an open—that
i8, isolated—point in X(R) if and only if K is a finite-type E-algebra, that is, if and
only if R is a G-domain in the sense of [K, Theorem 18]. In a subsequent article,
we shall return to an intensive study of G-domaing via abstract Riemann surfaces.)

Next, recall a more exotic separation property: a discrele Alexandroff space is
a T,-space in which every intersection of (arbitrarily many) open subsets is open.
It is well-known (cf. [Pi, Propogition 1, section 5]) that Spec(A4) is discrete Alexan-
droff (with respect to the Zariski topology) if and only if 4 is a g-ring. Moreover,
[DFP, Theorem 2.16] shows how to retopologize any spectral set Spec(4) so as to
give a canonical discrete Alexandroff structure. We now turn to related matters
involving X(R).

COROLLARY 2.7. — (a) If X(R) is a discrete Alexandroff space, then Spec () is
also diserete Alexandroff (and so R is a g-ring).

(b) X(R) is a discrete Alexandroff space if and only if each valuation overring
of E is a finite-type R'-algebra. )
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PrOOF. — (a) We shall show that ¥ =] ¥, is closed for each collection {¥,} of
closed subsets of Spec(R). Since f is continuous, each f~1(Y,) is closed in X(R), and
s0 Z = {J /YY) is closed by hypothesis. By Theorem 2.6, f(Z) is closed. However,
since f is surjective, f(Z) = Y.

(b) Without loss of generality, B = R'. Assume that each valuation overring
of R is a finite-type R-algebra. Then by [FV, Theorem 1], R{= R') is a so-called
strong G-domain and, in particular, both a g-ring and a Priifer domain (cf. [Mar,
Theorem 2.21). By the above comments, Spec(R) is then discrete Alexandroff, and
50 the «if» assertion follows by invoking Proposition 2.2.

CUonversely, assume that X(RB) is discrete Alexandroff. Since R = R’, [FV,
Theorem 14] reduces our task to showing that B is a strong G-domain. However,
Spec (R) is diserete Alexandroff by (a), and so by [Mar, Proposition 2.4], it suffices
to prove that R is & Priifer domain. To this end, let {V,} be the set of minimal val-
uation overrings of B. Ag X(R) is discrete Alexandroff, it follows readily that each
X(V,) is open in X(R). Since X(R)= ] X(V,) is quasi-compact, we see next that
{V} is finite. Thus, by [K, Theorem 107], R =R = [V, is a Priifer domain,
completing the proof.

REMARK 2.8. — (a) The reference to R’ in Corollary 2.7(b) is unavoidable. Indeed
- we produce next an E for which X(R) is discrete Alexandroff but some valuation
overring of E iz not a finite-type IR-algebra.

Begin with an infinite-dimensional algebraic field extension F ¢ L, and consider
the formal power series ring V = L[X] = L + M, with ¥ = XV. Then R = F + M
has the asserted properties. Indeed, X(R) = X(R') = X(V) is homeomorphic to
Spec (V) by Proposition 2.2, and, being a finite T,-space, is hence discrete Alexan-
droff. Moreover, V is not algebra-finite over R since L is not algebra-finite over F.

(b) The condition alluded to in (@) is, however, very useful. To reiterate:
[V, Theorem 1] demonstrates that if each valuation overring of R is a finite-type
R-algebra, then R’ is a strong G-domain. It is interesting to note that, as in Corol-
lary 2.7(b), the proof of the cited result depends on the quasi-compactness of X(R).

(¢) Pursuing an observation in the proof of Corollary 2.7(b), we find that X(R)
is a discrete Alexandroff space if and only if X(7) is open in X(R) for each overring T
of B. The reader can thence deduce the following addendum to Corollary 2.7(b):
X(R) is discrete Alexandroff if and only if for each valuation overring V of R, there
exists a finite-type R-algebra § contained between R and V such that V is the integral
closure of §.

(d) Recall another exotic separation property: a T,-space X is called T, in
case, for each Y c X, the set of accumulation points of Y is closed. Any discrete
Alexandroff space is a T, -space. It is not difficult to characterize when Spec(R) is
a T,-space (cf. [FM, Proposition 1]}; however, we do not have an equally neat com-
panion for Corollary 2.7(b) characterizing when X(R) is T',.
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We can, however, show that X(R) need not be a 7',-space in case Spec(R) is 7',.
To illngtrate this, alter the construction in (a) by taking F to be algebraically closed
in the larger field L. It is easy to verify that Spec(R) = {0, M} is a T,-space by
using the definition of Zariski topology. However, X(F) is not a T ,-space since V
is not an isolated point in the closure of V. To see this, assume on the contrary that
{V} is the intersection of some H(z,, ..., #,) with the closure of V. Without loss of
generality, each z,e INF, and so R[w,...,»,] = 8 + M, where 8 = [z, ..., x,]
is not a field (eof. [B, Corollary 3, page 354]). Taking W= L to be a valuation
ring of L containing S (ef. [G,, Theorem 19.6]), we find that W 4 & is in both
Bz, ..., %,) and the closure of V, the desired contradiction. (A degenerate case
should be noted: if n = 0, select v IN\JF and use F[z],, in place of § in the above
argument.)

(¢) We next give the « discrete Alexandroff » analogue of the result in (d);
that is, we shall show that the converse of Corollary 2.7(a) is false. To this end, begin
with a rational prime p, and let § denote the integral closure of Z , in the algebraic
closure of Q. As shown by Gilmer [G,, Example 1], § is a one-dimensional Bézout
(hence, ¢ —) domain with infinitely many maximal ideals. In particular, 8§ is not
a g-ring and so X(8) (which is homeomorphic to Spec(S)) is not a discrete Alexan-
droff space. Next, let J(8) be the Jacobson radical of § and let

w: Z(p)/pZ(p) = Fp - S/J(S)

be the induced injective integral ring-homomerphism. Take R to be the pullback
of the diagram

8

v
F, — 8JJ(8)

whose horizontal (resp., vertical) map is u (resp., the canonical projection).

By appealing to the topological characterization of B in [¥, Theorem 1.4], we
find that R is a one-dimensional quasilocal domain. In particular, Spec(RE) is a
discrete Alexandroff space. By also appealing to [F, Corollary 1.5(5)], we have
R = 8. Thus X(R) = X(8) which, as we have seen, is not discrete Alexandroff.

3. — When f is open.

Recall that if X(R) has the canonical topology, then f: X(R) — Spec{R) is closed
in general {Theorem 2.5). Moreover, by retopologizing the set X(R), one may also
view «f» as open (Remark 2.3). We next study openness of the genuine f, that is,
for X(R) with the canonical topology.
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It will be convenient first to recall some background material. (For additional
background, see [DP] and [Pal.) R is said to be a going-down ring (write: R is a
G.D-domain) in case the extension R c T has the going-down property for each over-
ring T of R. Priifer domains and one-dimensional integral domains are the natural
examples of going-down rings. Following [Pa], we say similarly that R is an open
(resp., fimile-type open; resp., simple open) domain in case the contraction map
Spee (T) — Spec (R) is open for each overring 7' of R (resp., for each such T which
is a finite-type R-algebra; resp., for each T of the form T = R[u], » € K). Letting
FTO and SC denote «finite-type open » and «simple open », respectively, we know
(ef. [Pa, page 19]) that

open domain = FTO-domain =- 80-domain = GD-domain;

and that the first of these implications cannot be reversed, even if B is quasi-semilocal.
It is not known whether the other two implications may be reversed in general.
As Papick [Pa, Corollary 3.37] has shown, they are reversible if R is quasi-semilocal.
We contribute another instance of reversibility in Theorem 3.3: the case of integrally
closed B with Noetherian spectrum. A key step is taken in

PROPOSITION 3.1. — f, is an open map if and only if R is an FTO-domain.
Proor. ~ For each finite subset {zy, ..., #,} of K, there is a commutative diagram

By, oony®n) —> X(R)

L

Spec (B[#1, ..., #,]) —=> Spee (R)

in which the fop horizontal map is the inclusion, » is given by the Spee functor, and
the left-hand vertical map is the (surjective) restriction of f. If R is an FTO-domain,
the image of any such v is open in Spec(R). Hence f sends each basic open subset
of X(R) to an open set, and so f is an open map.

Conversely, assume that f is open. To show that B is an FTO-domain, a basic
fact about the Zariski topology [B, Corollary, page 101] reduces us to proving that
the image, say Y, of the composite

Spee (B, -.-, Yy s11) — Spec (Ryy, ..., ¥nl) — Spec(R)

is open for each finite subset {yy, ..., yn} of K and nonzero element s € Bly;, ..., Yml-
However, taking {#, ..., @,} = {#1; +..,; Ym, s 1}, We see from the above diagram that
Y = (B, ..., #,)). By the hypothesis on f, Y is therefore open in Spec (R), complet-
ing the proof.
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The following material will be helpful. For an ideal I of R, let V(I)=
= {PeSpec(R): Ic P} and D(I) = Spec(EN\V(I), as usual. For xe K, set (R: o) =
= {re R: r2 C R}. Here iz the main ingredient: an amenable set (over R) is, by
definition, a subset of Spec(R) of the form

6 (D(R: ;) N V(R: «7Y))

i=1

arising from a finite subset {@,, ..., z,} of K\ {0}. A final piece of notation: Spec (R),
denotes the set Spec(F) endowed with the constructible topology, in the sense
of [EGA]. (This coincides with the result of applying the pateh topology construction
[H, page 45] to the Zariski topology on Spec(R).)

LEMMA 3.2. ~ Let B be integrally closed. Then:

(a) For each finite subset {w,...,»,} of K, the complement in Spec(R) of
f(B(@, ..., %,)) is an amenable set over R.

(b) Let ¥ be the amenable set constructed via {z, ..., 2.} c K\{0}. Then
the following two conditions are equivalent:

(i) ¥ is closed in Spec(R);

(ii) F is closed in Spec(R), and the image of Spec (R[zi, ..., 2,]) — Spec (R)
is stable under generization.

(¢) The following five conditions are equivalent:
(i) f, is an open map;
(ii) For each » € K, the set {P e Spec(R): v PRy} is closed in Spec(R);
(iii) Each amenable set over R is closed in Spec(R);

(iv) The image of Spec (R[#, ..., z,]) — Spec (R) is stable under generization
for each {w, ..., %,} c K and each amenable set is a constructible set;

(v) R is a GD-domain and each amenable set is a construetible set.

Proor. — (a) Without loss of generality, each z; is nonzero and n>1. Evidently,
Spec (RNJ(B(#y, ..., ®,)) is just

I
Y= |J {PcSpec(R): #,¢ V for each V& X(R) such that V dominates Ry} .

i=1

We claim that Y coincides with

Z = |J {PeSpec(R): 57> e PR,} .
i=1
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To see this, note first that if P e Z\ Y, then there exists an index ¢ and a valu-
ation ring (V, M) dominating R, such that «;' ¢ PRy and s,€ V. Then a;'e MV, =M
and 1 = o', MV = M, the desired contradiction. Convergely, suppose that
Pe Y. Then for some index j, #;* is in the maximal ideal of each valuation over-
ring V that dominates R,. By [G,, Corollary 19.9], the intersection of all such V
is R,, which ig just R, since we have assumed that B = R'. As a;¢ R, and ;'€ Ry,
it follows that #;* € PRp; that is, P e Z. This proves the claim.

For each xe K\{0}, the set {P € Spec(R): ¢ PR,} may be expressed as
{PeSpec(R): € Rp} N {P e 8pec(R): 471 ¢ Ryp}; that is, as D((R: )) N V((R: 277)).
Accordingly, 7 is the amenable set cons‘mueted via {®,, ..., Z.}.

(b) By appeal to [DFP, Lemma 2.5(b)], it is enough to prove that I' is stable
under specialization if and only if the image, say W, of Spec (R[»,, ..., #,]) — Spec (R)
is stable under generization. The former condition is equivalent to Spec(BEN\F
being stable under generization; that is, by the explicit caleculation in (a), equivalent
to f(E(wy, ..., #,)) being stable under generization. However, we have seen from the
commutative diagram in the proof of Proposition 3.1 that f(E(x, ..., z,)) coincides
with W.

(¢} (i) <= (ii) <= (iii): Since E(2,, ..., #.), With {®,, ..., #,} ¢ K\{0}, is a typical
basic open subset of X(R), the desired equivalences follow from the proof in (a)
that Spec(B)\f(E(s, ..., %,)) = Z is the amenable set constructed via {z,, ..., z,}.

Next, a general observation: each amenable set F is open in Spec(R),. By the
nature of the closed sets in Spec (R), (cf. [DFP, page 559]), this may be seen by recal-
ling, for 7 constructed via {@i,...,».} C E\{0}, that Spec(R)\F is the image of
Spec (R[zy, ..., 2,]) — Spec(R). Accordingly, by [EGA, 7.2.12(ii), page 337], I is
a constructible set if and only if F is closed in Spec(R),.

(ifi) <> (iv): Combine the preceding observation with (b).

(v) = (iv): Trivial. '

(iii) = (v): Bince (iii) implies both (iv) and (i), it is enough to invoke Proposi-
tion 3.1 and the fact that each FTO-domain is a GD-domain. The proof is complete.

THEOREM 3.3. — Let R be integrally closed, such that Spec(R) is a Noetherian
space. Then the following conditions are equivalent:

(i) f; is an open map;
(ii) R is a GD-domain;
(iii) R is an FTO-domain;
(iv) B is an SO-domain;
)

(v) The image of Spec (R[z,, ..., #,]} — Spec(R) is stable under generization
for each subset {wy,...,,} of K.
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ProoF. — Since Spec (R) is Noetherian, constructible sets may be characterized
as the finite unions of locally closed sets {[Mat, page 39]). It is therefore clear that
each amenable set is a constructible set. Lemma 3.2(¢) thus yields (v) = (i). In
addition, Proposition 3.1 and the above remarks give (i) = (iii) = (iv) = (ii) = (v).
The proof is complete.

REMARK 3.4. ~ (¢) By Proposition 3.1 and the remarks preceding it, f, is an open
map for each quasilocal going-down ring E. In particular, if B is a pseudo-valuation
domain, then f, is an open map. (Recall that an integral domain R is called a pseudo-
valuation domain [DF] if R has a valuation overring V such that Spee(R) = Speec (V)
as sets.) Thus, the ring F -- M introduced in Remark 2.8(a) admits an open f,
although F + M does not satisfy the riding hypotheses in Theorem 3.3.

(b) There exists an integral domain B such that (i) B is integrally closed;
(ii) Spec (R) is Noetherian; (iii) f, is an open map but not 2 homeomorphism; and (iv)
R is not an open domain. To indicate such a construction, let ¥ ¢ L be distinet fields,
with F algebraically closed in L. Let V = L + M be a valuation domain (with
maximal ideal M) such that, as a partially ordered set under ineclusion, Spec(V)
is isomorphic to {0} U {1, %, %, ...} with the natural order inherited from Q. Then
R = F - M has the asserted properties.

Indeed, by the lore of the D + M construction (ef. [Gy]), B = R’ is not a valu-
ation domain and Spec(R) = Spec (V) as sets. In particular, R is not an i-domain
and so, by Proposition 2.2, f is not a homeomorphism. Bince Eis a pseudo-valuation
domain, (a) shows however that f is an open map. Moreover, V has ascending chain
condition on prime (radical) ideals. Spec(V) is therefore a Noetherian space, as
must be its homeomorphic copy Spec(R). Finally, since the partially ordered set
Spec(R) is not well-ordered, (iv) follows from the criterion in [Pa, Theorem 3.16].

(¢) In view of Theorem 3.3 and (b), it seems useful to record an example in
which R = R’, Spec(R) is Noetherian, and f, is open but not a homeomorphism.
For this purpose, it is enough to consider the ring B in Example 2.8(¢). (More mun-
dane examples abound via, for instance, the D 4 M-construction.) Indeed, since B
is one-dimensional (hence, a G-D-domain) and gquasilocal, it is easy to see that B
is an open domain (cf. [Pa, Theorem 3.16]). In particular, R is an FTO-domain;
80, by Proposition 3.1, f is open. Moreover, Proposition 2.2 assures that f is not a
homeomorphism since B is not an ¢-domain. The remaining assertions are clear.

4. — Abstract Riemann surfaces are spectral spaces.
Following [H], we say that a topological space X is a speciral space in case X

is homeomorphic to Spec(4), with the Zarigki topology, for some commutative ring 4
(not necessarily an integral domain). A continuous map X — Y between spectral
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spaces is called a spectral map in ease inverse images of arbitrary quasi-compact
open subsets of Y are quasi-compact. We may now state our main resulf.

THEOREM 4.1. — X(R) is a speetral space and f,: X(R) —> Speec (R) is a spectral map.

The proof of Theorem 4.1 must await some definitions and preliminary resuits.

For each finite subset {ui,...,%,}, let B(w,...,x,) denote the closed subset
X(BR)\E(w4, ..., ®,) of X(R). For each subset § of K, let A (8) denote ;the closed
subset (] {B(#): #€ KNS} of X(R). For each subset ¥ of X(R), let G(Y) denote
the subset |J {V: Ve Y} of K. Note in general that

YcA(GD) ={WeX(R): WcU{V:VeT}}.
Finally, we shall say that a subset ¥ of X(R) is saturated in case A\ (G(Y)) =Y.

LEMMA 4.2. — Let Y be an irreducible closed subset of X(R). Then:
() Y is saturated.

(b) Let x,y € K and set I =) {Mé-f: (V, M,)e Y}. Then if zy € I, either we I
or ye L.

PrOOF. — (@) If not, then there exists B = B(yy,...,¥,) such that Y c B and
B(x) ¢ B for each v KNG(Y). If n =1, then y = 4, € G(Y), there exists Ve ¥
such that y € V, and so .V ¢ B(y), confradicting Y c B. Hence n>>2. By the above
reasoning, Y ¢ B(y,) for each i. Now, since B = (J B(y,), we may decompose Y as
U (Y N B(y,)), a union of finitely many proper closed subsets, contradicting irre-
dueibility of Y.

. (b) Suppose not. As ¢ I and the elements of ¥ are valuation domains, one

readily verifies that #~* € W for some W € Y; thus, Y ¢ B(z1). Simﬂaﬂy, Y ¢ B(y™Y).
As wyel, each Ve Y is such that either 71 ¢ V or y~1¢ V; that is, ¥ ¢ B(w1) U
U B(yY). Acecordingly, ¥ decomposes as the union of Y N B(z') and ¥ N B(y™)
contradicting irreducibility, to eomplete the proof.

If (V, M)e X(R), then the fact that f is continuous and closed (Lemma 2.1 and
Theorem 2.5) assures that f sends the closure of {V} to precisely the closure of {3}.
To some extent, this suggests

ProOPOSITION 4.3. — Each irreducible closed subset ¥ of X(R) has a generic point.

‘ProoF. — Fix We Y and set I = \{M,:(V,M,) Y} By Lemma 4.2(b),
8§ = W\J is a multiplicative subset of W, and so V,= Wy is a valuation overring
of W. It suffices to prove that the closure of {V,} is ¥ (as Y will then have generic
point V,).

If el and ye W, then Lemma 4.2(b) assures that asye I (lest y*elc My
and 1 = y~'y € My, a contradiction). Thus I is a (prime) ideal of W. Consequently,
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the maximal ideal of V, is IW,=1. As I>({Mr: Ve X} and each V is a valu-
ation domain, one readily verifies that V;cJ{V: Ve ¥} = G(Y). Put differently,
Ve /\(G(Y)), and so Lemma 4.2(a) yields V, e Y. It now suffices to show that the
closure of {V,} contains each V e Y; that is, to show that V¢ V, for each Ve Y.
Sinee M, > 1, this follows directly from [G,, Theorem 17.6(¢c)], and the proof is
complete.

Proor of TEEOREM 4.1. — Spectral spaces have been characterized by HoCHSTER
[H, Proposition 4] as the quasi-compact Ty-spaces X such that X has a quasi-compact
open basis closed under finite intersection and each irreducible closed subspace of X
has a generic point. By Proposition 4.3 and the remarks in the first paragraph of
section 2, X(R) satisfies these conditions of Hochster and, accordingly, is a spectral
space. Moreover, to see that f; is a spectral map, it is enough to recall from the
proof of Lemma 2.1 that /%X, U..UX, )= U E(r;Y) is a quasi-compact open,
for each finite subset {ry,..., 7.} of B\{0}. The proof is complete.

REMARK 4.4. — (a) Of course, each saturated subspace of X(R) is closed. In view
of Lemma 4.2(a), it is therefore interesting to note that a saturated subspace need
not be irreducible. To see this, let {V4, ..., V,,} be a finite collection of #>2 pairwise
incomparable valuation overrings of E. It is well-known that if W e X(R) satisfies
WcV,U..UV,, then WcV, for some index ¢ (The point is that My > My,.)
Consequently, if we put Y =U{V,}, it follows that A (G(Y))= {We X(R):
WclUVv)i=U{WeX(R): WcV}=Y; that is, ¥ is saturated. It iy evident
that ¥ is not irreducible.

(b) We next record a point of contact with the condition mentioned in
Remark 2.8(a), (o). Namely, if each valuation overring of & is a finite-type E-algebra,
then each closed subspace of X(R) is saturated. To see this, it is enough to show,
for any (possibly infinite) subset {Voc} of X(R), that ¥ = J {_f,:} is saturated. To
this end, consider any W e A (G(Y)). By hypothesis, W = R[»,, ..., #,] for some
finite subset {«;, ..., #,} of K. For each 4, 1<i<n, choose an index «, so that x, € Vi :
this is possible since WclJVa. As Wc Vs U ..U ¥y, the result recalled in (a)
supplies §, 1<j<n, such that Wc V,. Then Wem;}c Y, so that Y is indeed
saturated, as desired.

(¢) In view of Theorem 4.1, [H, Proposition 10] assures that X(R) is (homeo-
morphic to) an inverse limit of finite T,-spaces. This is striking since X(R)\{K}
is the inverse limit of the complete models [ZS, Theorem 41, page 122].

(d) Here is an application of the full force of Theorem 4.1: by invoking [H,
Proposition 15], we recover the implication (ii) = (i) in Proposition 2.2.

Finally, we make X(—) a functor and thereby obtain a categorical formulation
of Theorem 4.1. ’
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COROLLARY 4.5. — Let D be the category whose objects form the class of all
integral domains and whose morphisms are the inclusion maps. Let Z be the category
of all abstract Riemann surfaces of integral domains, viewed as a full subecategory
of the category S of spectral spaces and spectral maps. Then:

(#) The object assignment E +— X(E) extends to a contravariant funector
X:D—Z.

(b) Let I: Z — S be the inclusion functor. Then {fz: B e Ob (D)} gives a na-
tural transformation from IX to Spee, viewed as contravariant functors I} —S.

Proor. — (a) Consider integral domains R c T (where, as usual, K denotes the
quotient field of R). If Ve X(T), it is well-known that ¥ N K € X(R). (Cf. [G,,
Theorem 19.16{a)]. Note that the corresponding assertion fails if one excludes K
by definition from membership in X(R), since easy examples exist with Kc V
quotient field of 7.) Thus, if ¢: B — T i the inclusion map, we may define a
function X(i): X(T) — X(R) by V>V N K. It is evident that X(¢) is continuous
since, with self-explanatory notation, we have X (i)=Y Ha(ty, ..., #.)) = Hpl(try, ..., @)
As a quasi-compact open subset of an abstract Riemann surface is just a union of
finitely many basic open sets, this equation also shows that X (¢) is a spectral map.
Now (a) follows easily.

(b) We must show, in the above notation, that

IX(T) I Spec(T)

IX(’i)l lSpee(i)

IX(R) —5 Spec (R)

is a commutative diagram. Observe first that if (V, ¥)e X() then NN K is the
maximal ideal of V N K. Thus fx(IX(i)) sends V to (NN K)NR=NNZR. As
(Spec(i)) f, sends V. to (NN T)N R = N N R, the proof is complete.

We close with a categorical remark: Spec is not invertible on the category of
abstract Riemann surfaces. This means (ef. [H, pages 43-44]), in the above nota-
tion, that there is no contravariant functor F from Z to the category of commuta-
tive rings such that 7 is naturally equivalent to (Spec)F. For a proof, apply the
criterion in [H, Proposition 3(a)] to Z: it is enough to choose R ag any integral domain
other than a field and to observe that K, the image of X(K) — X(R}, is a non-
closed point.
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