
JJMIE 
Volume 5, Number 4, Aug. 2011 

ISSN 1995-6665 
Pages 353 - 357 

Jordan Journal of Mechanical and Industrial Engineering  

 Modeling of the MEMS Reactive Ion Etching Process Using Neural 
Networks 

M. Ashhab*,a, N. Talatb 
aDepartment of Mechanical Engineering, The Hashemite University, Zarqa 13115, Jordan 

bMechanical Engineering Department, University of Jordan, Amman 11942, Jordan 

                                                           
* Corresponding author. e-mail: sami@hu.edu.jo 

 

Abstract 

Reactive ion etch (RIE) is commonly used in microelectromechanical systems (MEMS) fabrication as plasma etching 
method, where ions react with wafer surface substrate in plasma environment. Due to the importance of RIE in the MEMS 
field, two prediction models are established to predict the wafer status in reactive ion etching process: back-propagation 
neural network (BPNN) and principle component analysis BPNN (PCABPNN). These models have the potential to reduce 
the overall cost of ownership of MEMS equipment by increasing the wafer yield, and not depend upon monitoring wafers or 
expensive metrology rather it will enable inexpensive real-time wafer-to-wafer control applications in RIE. The artificial 
neural net (ANN) is trained with historical available input-output process data. Once trained, the ANN forecasts the process 
output rapidly if given the input values. 
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1. Introduction 

Micro-Electro-Mechanical Systems (MEMS) is an 
emerging technology, which uses the tools and techniques 
that were developed to build microscopic machines, 
sensors, actuators, and electronics. MEMS enable 
expanding the space of possible designs and applications 
of nearly every product category on a common silicon 
substrate through microfabrication technology. MEMS 
devices are manufactured using batch fabrication 
techniques similar to those used for integrated circuits. The 
fabrication of modern semiconductor products requires 
thousands of processing steps. A key element in achieving 
high yields during semiconductor fabrication is to 
minimize the amount of defected wafers. Therefore, 
detecting the defected wafers is a very important issue. 

Neural networks have seen an explosion of interest 
over the last few decades. They have been utilized to study 
the possibility of designing control techniques to 
significantly improve the performance of the RIE process 
[1]. Optical emission spectroscopy data were used to 
construct neural network models of plasma etch process in 
[2]. A virtual metrology system for MEMS is proposed in 
[3] that fulfills real-time quality measurement of each 
wafer and detects the performance degradation of the 
corresponding machines from the information of 
manufacturing processes. Neural networks are being 
successfully applied in microfabrication inspection 
systems [4-8]. The major reason for adopting neural 
networks is because neural networks have potential 
capability in modelling and control of non-linear systems. 

Moreover neural networks have the ability of learning 
arbitrary nonlinear mappings between noisy sets of input 
and output data. Back-propagation neural network (BPNN) 
is currently the most popular learning rule used in 
supervised learning, which is also known as feed forward 
neural network and multilayer perceptron (MLP). 

Back propagation is a very powerful tool with 
application to solve the problems of prediction, 
optimization, control, and diagnosis in the MEMS 
manufacturing processes [9-12]. Most of the literature 
adopt BPNN because it has the advantages of an easier-
comprehended theory, faster recalling speed and higher 
learning accuracy. However, the determination of the 
structure architecture and the parameters under this 
network is difficult.  

 Many researchers have studied pattern classification 
by using BPNN for the automatic inspection system in the 
MEMS industry [13-15]. Zoroofi et al. [13] used curve 
recognition to detect the contamination on a wafer surface 
during semiconductor production. Three conventional 
classification models: a back-propagation technique, a 
minimum distance algorithm and a maximum likelihood 
classifier, were used and the performance of these three 
models was compared. The results showed that the back-
propagation classifier has a better classification 
performance. Su et al. [14] proposed a neural-network 
approach for semiconductor wafer post-sawing inspection. 
BPNN, radial basis function network (RBFN), and 
learning vector quantization (LVQ) were employed in the 
inspection models. The inspection results showed that both 
BPNN and LVQ have excellent prediction results with 
100% accuracy. Chen et al. [15] used BPNN in the etch 
semiconductor process to identify and classify endpoint 
curves. By real-time monitoring of changes in the endpoint 
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curve, the abnormalities of products can be detected 
immediately. The system can reduce the uncertainty in the 
process curve classification and provide machine shut-
down suggestion immediately when necessary. In this 
respect, back propagation neural network is utilized to 
identify the wafer status during reactive ion etching, RIE, 
which is an important MEMS fabrication process. 

2. Reactive Ion Etching 

Reactive ion etching (RIE) is a very difficult process to 
control, since the physical mechanism of this process is not 
well understood. Consequently wafer defect occurs in RIE 
when there is a sudden change in the etching behavior. 
This change can happen due to operator errors or machine 
errors, such as gas leak, power fault, and pressure fault. 
The main defect in oxide RIE is un-open etch. This defect 
costs 10%-20% yield loss in a factory. Un-open etch 
signify the inadequate etching space in the wafer surface 
as shown in Figure 1. 

 
Figure 1: Wafer surface shape before and after etching process. 

 
A silicon dioxide film etching without any errors is a 

complex task. One of the significant detractive defect in 
this process is un-opened etch. Predicting wafer status in 
RIE is important to enhance yield, quality, and efficiency. 
Towards this end, thorough analysis has been done to get 
improved prediction models with the purpose of providing 
valuable benefits. One of the attractive prediction models 
is artificial neural networks. Data preparation for neural 
networks has been discussed and applied in different ways. 

3. Case Study: Oxide RIE 

The advanced reactive ion etching equipment used in 
the factory is 2300 Exelan Flex made up of two chambers 
as shown in Fig. 2. The main etching chamber is 
configured inside the vacuum RIE chamber for optimal 
efficiency, where these two chambers are separated by 
quartz confinement rings. The RIE chamber consists of 
two parallel plates, RF power supply and pumping system. 

 
Figure 2: Sketch of the main etching chamber inside the RIE 
chamber. 
 

Forty different signals were collected from 2300 
Exelan Flex equipment for the reactive ion etching 
process. Twenty two signals are carefully chosen from all 
the signals. The chosen signals directly impact the wafer 
status. Table 1 provides more elaborations about RIE 
factors. 

 
Table 1: RIE factors and their clarification. 

 

4. Data Preparation 

This section explains the details of the data preparation 
performed in this study. Fig. 3 presents the percentages of 
the training and test wafers where the total number of 
wafers is one hundred twenty. The wafers were collected 
from the 2300 Exelan Flex machine. The ratio of the 
number of training wafers to the number of test wafers is 
three. Fourteen wafers (12%) from the ninety training 
wafers (75%) stand for unopened etch defected wafers, 
and five wafers (4%) from the thirty test wafers (25%) 
stand for unopened etch defected wafers. 

 
Figure 3: Percentages of the training and test wafers. 
 

Data preparation techniques are used to obtain good 
prediction results. Three different data preparation 
techniques are suggested: raw data, sampling data and 
statistical summary data. 
• Raw data preparation: one hundred eighty four data 

points is the minimum number of data points from the 
collected data. Thus the first one hundred eighty data 
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points are suggested as raw data inputs for offline 
prediction models and twenty data points are 
suggested as raw data inputs for online prediction 
models. 

• Sampling: non-symmetric sampling is the second 
suggested preparation technique, which has ability to 
cover all etching steps, at the same time focusing on 
the main three etching steps (step 4, step 5 and step 
10). Table 2 shows the number of captured samples in 
each step, where two samples are captured from 
stabilization steps (steps 1, 2, 3, 7, 8, and 9) and two 
from plasma ramp down steps (steps 6 and 11). More 
than half of the samples are captured from the main 
etching steps (steps 4, 5, and 10). As a result thirty-
four captured samples cover all the etching steps. 
These thirty-four captured samples are used as inputs 
for offline prediction models. 

 
Table 2: Number of suggested sampling for each step in the 
sampling technique. 

 
 

Figure 4 illustrates the position of captured samples, 
where the first data point of each step is captured, and the 
suggested sampling rate for the main etching steps is five 
whereas it is equal to three for other steps. These samples 
include the first data point of each stabilization step. 

 
Figure 4: The position of captured samples. 
 
• Statistical summary preparation: the last suggested 

preparation technique depends on mean and standard 
deviation values. Since many samples have no data for the 
sixth step it became out of interest. This means ten steps will 
be statistically summarized and applied in prediction 
models. 

5. Principal Component Analysis 

Principal component analysis (PCA) is an important 
analysis technique in multivariate statistics. It was first 
suggested in 1901 by Pearson [16], and formally 
developed by Hotelling [17]. The main idea of principal 
component analysis (PCA) is to represent a number of 
correlated variables into a smaller number of uncorrelated 
variables called principal components. The first principal 
component (PC) accounts for the variability in the data as 
much as possible, the second PC is the linear combination 
with the second largest variance and orthogonal to the first 
PC, and so on. There are as many PCs as the number of the 
original variables. For many datasets, the first several PCs 
explain most of the variance, so that the rest can be 
disregarded with minimal loss of information. The 
objectives of using PCA are to reduce the dimensionality 
of a data set and to identify new underlying variables that 
are now orthogonal. 

To enhance performance of the prediction model in 
this study, PCA is suggested to represent the RIE factors, 

since simple neural networks with few nodes and 
connections tend to have better generalization capability. 
In this section, PCA technique automatically extracts three 
principle components (PCs) from all RIE factors (twenty 
two factors). It is important to treat each etching step 
separately in PCA, because each step has different inherent 
physical/chemical characteristics. Considering the overall 
process characteristics and the objective of model 
simplicity, it was decided that utilizing one PCA for each 
of the eleven steps would yield a better solution than 
utilizing a single PCA for the entire process. In this paper, 
principal component analysis was utilized for 90 training 
wafers. The principle components are found by computing 
the sample covariance matrix and selecting its 
eigenvectors (loading vectors) for the largest eigenvalues. 

6. Architecture of Prediction Models 

As stated before, this study combines back propagation 
neural network (BPNN) and principle component analysis 
(PCA) to construct the two prediction models. Prediction 
models are concerned with all etching process steps to 
predict the wafer status at the end of the etching process.  

The BPNN in this study consists of three layers of 
neurons: the input layer, hidden layer, and output layer. 
The input layer receives external information such as RIE 
processing factors or principle components. From the 
output layer, predictions are produced with binary values 
to represent the wafer status. Since the network output is 
between zero to one, the zone that is smaller than a 
minimum threshold value is set to zero and the zone that is 
greater than a maximum threshold value is set to one. If 
the network output value is equal to one that means the 
wafer status is good, and otherwise it is defected. When 
the network output value is between the minimum and 
maximum values, then the network fails to predict the 
wafer status. 

The BPNN also incorporates hidden layers of neurons, 
which do not interact with the outside world, but assist in 
performing nonlinear feature extraction on the data 
provided by the input and output layers. The number of 
hidden layers was set to one in this application. Training 
matters have to be settled with respect to the description of 
the BPNN network structure. 
 
6.1. Training: 
 

During training, the network is trained to associate 
outputs with input patterns. This principle is referred to as 
supervised learning. The training is continued until the 
training reached the maximum number of epochs or 
training neural network has MSE (mean square error) less 
than 10-6. The maximum number of epochs used during 
training the networks is set to 10000. 

After training, the prediction performance of the 
models is evaluated with two test sets. In the first test set 
computation of the prediction error for new data points is 
performed. Data of twenty-five good wafers and five-
defected wafers stand for the test data set. Two types of 
errors are obtained in the first test: type І prediction error 
occurred when good wafers are predicted as defected 
wafers, and type П prediction error occurred when 
defected wafers are predicted as good wafers. 

The second test set depends on the recognition / 
rejection rate. The recognition rate is the percentage of test 
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samples recognized correctly and the output value is 
located outside the range between the minimum and 
maximum threshold values. The rejection rate is the 
percentage of input samples that could not be assigned to 
any particular class; because the output value is located 
somewhere between the minimum and maximum threshold 
values. The minimum and maximum values are 
determined for every prediction model after testing the 
training wafers, where the minimum value is the highest 
output value for a defected wafer, and the maximum value 
indicates the lowest value for a good wafer. 

7. Evaluation of Prediction Models 

The major aspect in this section is to evaluate the 
performance of the prediction models, and decide the best 
prediction model with respect to a constraint. The same 
training and test samples are used for all prediction 
models. The experimental data examined were collected 
from reactive ion etching of silicon dioxide thin film. 
 
7.1. BPNN prediction model: 
 

Figure 5 illustrates the offline BPNN prediction model, 
where the five significant factors (bias voltage, He inner 
flow, He outer flow, pressure, and reflect power 2MHZ) 
are the model inputs. The number of input neurons of the 
BPNN is different for each of the three data preparation 
techniques described above. When the raw data 
preparation technique is applied in the offline BPNN the 
number of input neurons is nine hundred, whereas it is one 
hundred seventy when captured sampling is applied, and 
one hundred for the statistical summary preparation 
technique. 

 
Figure 5: BPNN prediction model. 
 

The raw data preparation technique does not prepare 
data as well as other data preparation techniques, even if it 
has good performance for predicting the wafer status by 
using two factors (He outer flow and bias voltage). In 
addition, the raw data preparation technique has no ability 
to cover all etching steps. Table 3 illustrates the offline 
prediction model performance by using sampling and 
statistical summary preparation techniques. Both data 
preparation techniques assist the offline BPNN prediction 
model to achieve zero error and 100% recognition rate. 
Recognition rate represents the percentage of test samples 
recognized correctly and the corresponding output values 
are located outside the range between the minimum and 
maximum threshold values, namely, 0.1 and 0.9, 
respectively. 

Table 3: The performance of offline BPNN prediction model. 

  
BPNN Characteristic 

Sampling Statistical summary  

Recognition rate 100% 100% 

Training MSE 1.94311E-07 1.47594E-06 

Testing MSE 5.12016E-09 7.46886E-07 

# of input neurons 170 100 

Error prediction 0% 0% 

 
7.2. PCABPNN prediction model: 
 

To construct offline PCABPNN prediction model the 
principle component analysis (PCA) and back propagation 
neural network (BPNN) are combined together. First, the 
PCA is adopted to extract valuable information from the 
twenty two RIE factors for each step. Then the extracted 
principle components for all the steps are combined 
together and prepared by the three different data 
preparation techniques described earlier in this paper. The 
neural network is trained afterwards by the prepared PC 
data of 90 training wafers and tested for prediction 
accuracy by the prepared PC data of 30 test wafers. 

Figure 6 illustrates the offline PCABPNN prediction 
model. Principle component analysis is applied in this 
model to extract the input parameters for the neural 
network. Moreover the required time to find the principle 
components is much less than the required time to find the 
significant parameters.   
 

 
Figure 6: Offline PCABPNN prediction model. 
 

One hundred eighty data points for each principle 
component parameter are prepared by the raw data 
preparation technique. Totally, there are five hundred and 
forty neuron inputs for the three PCs. Since the raw data 
preparation technique covers the first one hundred eighty 
data points of the PCs, the rest of data points are ignored. 
The ignored points of PCs may contain important 
information. Three defected wafers are incorrectly 
predicted as good wafers by using the raw data preparation 
technique.  

In order to reduce the input data size one hundred and 
two captured samples from the three principle components 
are trained and tested using the BPNN (see Table 4). Four 
samples out of thirty tested samples were clamped between 
0.1 and 0.9 (the minimum and maximum threshold values) 
by applying the captured sampling in the offline 
PCABPNN prediction model. Applying the statistical 
summary data preparation technique yields no samples in 
the failure zone, due to high accuracy (100% recognition 
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rate) of the prediction model. In general, the statistical 
summary data preparation technique has the best ability to 
enhance the accuracy of the offline PCABPNN prediction 
model. 
 
Table 4: The performance of the offline PCABPNN prediction 
model. 

  
PCABPNN  Characteristics 

Raw PC Sampling Statistical 
summary  

Recognition 
rate 96.67% 86.67% 100% 

Training MSE 1.29021E-06 2.4213E-05 4.52214E-06 

Testing MSE 0.101489096 0.041548198 4.05693E-05 

# of input 
neurons 540 102 60 

Error 
prediction 10.00% 3.33% 0% 

8. Conclusion 

Two prediction models for etching of silicon dioxide 
thin film in the MEMS fabrication process reactive ion 
etching were developed to predict the wafer status 
correctly by using statistical summary preparation 
techniques. Back propagation neural network (BPNN) is 
the first prediction model and is the backbone for the 
second prediction model, namely, the principle component 
analysis BPNN (PCABPNN). The two models achieve the 
objective of achieving fast and robust predictions. This 
paper describes the potential of these prediction models to 
reduce the overall cost of MEMS equipment, to achieve 
high yields and throughput during MEMS fabrication. The 
two prediction models do not depend upon monitoring 
wafers or expensive metrology rather they will enable 
inexpensive real-time wafer-to-wafer inspection 
application.  The results from the evaluation of the 
prediction models indicate that robust, accurate and stable 
predictors have been constructed.  Furthermore, a greater 
accurate performance of prediction models has been 
achieved by online BPNN prediction model. 
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