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Abstract
We show a simple model that computes the magnetoconduction in a two-dimensional electron
system (2DES) where the spin is another degree of freedom in the system. The 2DES is
confined in a quantum well (QW) immersed in a heterostructure, where the Rashba spin–orbit
interaction is present. When an external magnetic field is applied to the system, the
competition between the spin–orbit interaction and the Zeeman effect on the
magnetoconduction of the 2DES is analysed, in the cases where one or two sub-bands are
occupied in the QW. In the model different spin-oriented 2DES can be treated independently,
with a spin current associated with each system. The model has been tested with experimental
results obtained from a 2DES formed in an InGaAs layer.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The advances in the fabrication of mesoscopic systems with
few impurities and defects lead to the macroscopic observation
of microscopic quantum effects, such as the quantum Hall
effect (QHE) and Subnikov–de Haas (SdH) oscillations [1].
These phenomena are related to the magnetoconductance
of charged particles in a two-dimensional electron system
(2DES), where the spin of the charge carriers plays a relevant
role, and is responsible for the appearance of even and odd
plateaux in the integer QHE. It is also possible to manipulate
not only the charge current in the devices, but also the spin
of the carriers by means of magnetic and/or electric fields.
In fact, in 1990, Datta and Das [2] proposed a spin-polarized
field effect transistor (FET). The gate electrode on the top of
the FET device is used to control, by means of an electric
field, the spin of the electrons. This electric field induces a
spin–orbit interaction (SOI) that breaks the spin degeneration
of the energy states in the 2DES. Even without any external
magnetic/electric field, the carriers of the 2DES are also
spin polarized by the internal built-in electric field due the
structure inversion asymmetry (SIA) of the semiconductor

heterostructure. The first theoretical study of this effect was
made by Rashba [3] in 1960 (the SOI due to SIA is called the
Rashba effect). In 1989 Das et al obtained evidence of spin
splitting carrier populations at zero magnetic fields in InGaAs/
InAlAs heterostructures [4]. Additionally, zinc-blende-type
semiconductors have bulk inversion asymmetry (BIA). Due
to this asymmetry the local electric field varies along the
crystal directions and therefore the SOI [5] (Dresselhaus
effect). More recent devices are proposed by Schliemann
et al [6] and Nitta et al [7], both based on the spin manipulation
by means of an electric field. Schielemann has proposed a
spin-field-effect transistor based on SOI of both SIA and BIA
types, where the spin-independent scattering processes have
no influence on the spin transport, and also showed how the
interplay between SIA and BIA can lead to k-independent
spin wave functions. Nitta has proposed a device based on the
interference of spinning currents guided in narrow wire rings.

This work analyses the electrical magnetoconductance
(magnetoresistance) behaviour of a 2DES confined in a
heterostructure quantum well (QW), under QHE conditions,
and with Rashba SOI effect (at low temperature) using a
simple model based on semiconsiderations and taking into
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account the spin orientation degree of freedom. From the
theoretical point of view several attempts to understand SdH
magnetoconductance oscillations and the integer QHE have
been published. The most accepted one is based on the
‘gendanken’ experiment thought up by Laughlin [8], where
the 2DES-localized states due to ionized impurities and defects
play a crucial role to explain the plateaux of the Hall affect and
the SdH oscillations of the magnetoconductivity, with minima
values close to zero. However, experimental evidence shows
that the measures made on the 2DES with higher electron
mobility (materials with few defects and impurities) provide
better plateaux precision. The model that we proposed does
not use localized states to explain the QHE and SdH effects,
but a simple one-electron theory with two assumptions: first,
the existence of a flow of carriers from/to the QW to/from
the heterostructure where it is immersed (the heterostructure
behaves as a ‘source/drain’ of charges), and where long
relative variations in the 2DES carrier concentration occur
with negligible variations in the 3D carriers density of the
environment; second, external magnetic fields and/or SOI lifts
the spin degeneration, splitting the 2DES into two independent
2DESs, one with parallel spin and the other with antiparallel
one [9, 10]. The first assumption indicates a constant value
of Fermi level in the 2DES when the 2D carrier concentration
changes when the applied magnetic field varies. The second
assumption leads us to consider the electron system as the sum
of two 2DES independent spin subsystems.

In the present work we consider a QW where two
sub-bands are filled; hence we consider four 2DESs (two
subsystems in each sub-band according to the two spin states).
In order to obtain the magnetoresistivity of such a system, in
section 2 we compute the energy of the carriers immersed in an
external magnetic field perpendicular to the 2DES plane, and
subject to SOI. Then we develop the density of states (DOS)
corresponding to the four 2DESs confined in the QW described
above. In section 3 we calculate the whole density of carriers
and the corresponding at the Fermi level in every 2DES.
Adding the four magnetoconductivities we determine the
total magnetoconductivity and hence the magnetoresistivity.
This model also determines accurately the integer QHE [10],
obtaining the plateaux and zeros of the Hall and diagonal
magnetoresistances respectively.

2. Density of states

The Hamiltonian of a 2DES confined in the (x, y) plane, when
an external magnetic field is applied, and taking into account
the SOI, can be written as [11, 12]

H = (p + eA)2

2m∗ +
1

2
g∗μBB + α(σxky − σykx)

+ β(σxkx − σyky) (1)

where k is the electron wave vector, p the generalized
momentum, A the magnetic potential vector, B the external
magnetic field, g∗ the effective g-factor, μB the Bohr magneton
and σi=x,y,z are the Pauli matrices. The parameter α is related
to SIA spin–orbit interaction (Rashba parameter), and β is
a parameter related to the intrinsic BIA spin orbit coupling

(Dresselhaus parameter). The Rashba effect dominates in
the 2DES formed in semiconductors with lower gap energy
[13–15]. It can find measured values of α between 2 ×
10−12 eVm and 5 × 10−11 eVm for a 2DES confined in
InGaAs/InAlAs heterostructures [16, 17] (alloys where it
takes higher values). Also in the 2DES formed in MOSFET
devices α can be tuned with the gate voltage [18]. The
Dresselhaus β parameter varies strongly with the crystal
directions and with the width of the QW, obtaining values
of 1.4 × 10−13 eVm for a 20 nm wide InGaAs-QW [13].
In QW and heterostructure devices made of InGaAs/InAlAs
systems the SIA effect has more relevance than BIA, obtaining
spin-split energies of the order of meV at Fermi level. Recent
work shows a large Rashba spin splitting of 200 meV in a
2DES confined in a metallic surface-state band on Pb/Ge
(111) at room temperature [19], opening new technological
developments in semiconductor spintronic applications. We
will focus this work on the 2DES only affected by SIA spin–
orbit interaction, which is controlled by an external electric
field and hence the α parameter.

If the 2DES is confined in a QW with subbands’ energy
levels Ei(i = 1, 2, . . .), the eigenvalues of (1), assuming only
the Rashba effect, are given by the expression [3, 11]

Es
iNL

= Ei + h̄ω

⎡
⎣NL + s

1

2

√(
1 − |g∗| m∗

2m0

)2

+
γ

B
NL

⎤
⎦ (2)

with s = ± for NL = 1, 2, 3, . . ., s = + for NL = 0, γ =
8α2m∗2/h̄3e, m0 is the free electron mass and ω = eB/m∗.
The states given by (1) are highly degenerate [11], with a
degeneracy of (2πl2)−1, where l = √

h̄/(eB) is the magnetic
length. In the limit of large magnetic fields the Zeeman term
dominates the spin splitting, obtaining �Espin = g∗μBB.
In the opposite limit when B → 0, �Espin = 2αkF at the
Fermi energy, where kF = √

2πn0 is the Fermi wave vector
and n0 the total 2DES carrier concentration. If we compare
equation (2) with the spin-up and spin-down energy states
associated with a conventional Landau level NL, this
corresponds to the E+

NL
and E−

NL+1 states, i.e. �Espin =∣∣E+
NL

− E−
NL+1

∣∣.
At zero magnetic field, the SIA spin-split energy of a

2DES is E±(k) = μck
2 ± αk where μc = h̄2/2m, and the

density of states (DOS) of the spin-split branches at zero
temperature has the form [12]

D±(E) = 1

4πμc

[
1 ∓ α√

4μcE + α2

]
, E � 0

D−(E) = 1

2πμc

α√
4μcE + α2

, E < 0.

(3)

The DOS converges to the constant value D0 = m∗/πh̄2 (no
spin degeneration is considered) when α is zero. In a QW with
two filled subbands with energies E1 and E2, the 2DES can be
considered as the sum of four 2DESs, everyone related to the
E1↑, E1↓, E2↑ and E2↓ states. Hence the whole DOS of the
four subsystems is computed by the expression

D(E) =
∑

s

∑
i

Dis(E). (4)
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Figure 1. Density of states of a 2DES with Rashba SOI at zero
external magnetic field. The whole DOS (black line) is the sum of
the contributions of the two filled subbands with energies E1 and
E2. Also each Ei subband is split into two spin systems, with DOS
D(Ei)+ and D(Ei)−. EF is the Fermi level.

Figure 1 shows the DOS of the 2DES confined in a QW
with two subbands (with energy leves E1 and E2). The whole
density of states is considered as the sum of the four DOS
independent related to the four 2DESs.

The DOS of a 2DES under the application of a magnetic
field normal to the system has a shape like a ‘comb’, where
the pinned ‘teeth’ are related to the Es

NL
values, and can be

modelized with an ‘ad hoc’ Gaussian shape function [20]:

D(E)is = (eB/h)
∑

s

∑
NL

[
(π/2)	2

NLs

]−1/2

× exp
{−2

(
E − Es

iNL

)2
/	2

NLs

}
. (5)

The level broadening 	NLs is strongly dependent on the
range of the scattering potentials. For short-range scatters
	2

NLs depends on the strength of the magnetic field. The
broadening due to long-range potentials is proportional to the
fluctuations of the local potential energy ((V (r) − 〈V (r)〉)2,
and can be considered negligible in samples where the
impurities are far from the 2DES. Then, we consider only
short-range scatters and use the expression [20] 	NLs =
	0 +κ

√
(2h̄2/π)(ω/τ), where 	0 and κ are fitting parameters,

and τ is the relaxation time that takes into account the transport
and spin relaxation processes. We assume the Dyakonov–
Perel relaxation mechanism [21, 22] which describes the spin
relaxation of free electrons.

Figures 2(a)–(f ) show the evolution of the DOS presented
in figure 1 when an external magnetic field is applied and exists
the Rashba effect. To model the DOS we have used a Rashba
parameter of α = 0.7 × 10−11 eVm and an effective g-factor
g∗ = 4. In order to compute the width of the Gaussian function
of energy levels, we use the fitting parameters 	0 = 0.01EF ,
κ = 1. The relaxation time is τis = 10−12 s given by Burg
et al [23].

Figures 2(a) and (b) show the oscillations and nodes of
the DOS. The maxima and minima values of the oscillations
occur when there is coincidence of the energy levels of the

different spin 2DES, i.e. D(E) have a maximum value when
E = E±

NL
= E∓

N ′
L
, (NL �= N ′

L) in every subband, and also
when there is coincidence of the energy levels of the maxima
values of the DOS in the two subbands, and at the same time
the coincidence of the minima values in the oscillations. The
nodes occur when there is no coincidence of energy states
[9] in the DOS, i.e. when E = E±

NL
�= E∓

N ′
L
. The number

of nodes and their position depend on the energy balance
between Rashba and Zeeman terms. The Rashba term grows
with the momentum, and hence with the energy, while the
Zeeman term remains constant. The lower the magnetic field
B, the larger the number of levels NL, and more nodes can
occur.

Figures 2(c) and (d) show with clarity the energy levels
in both subbands. In figure 2(c) there is an overlapping
of the E+

iNL
and E−

iNL
levels in the DOS in each subband

and when both subbands are added. In figure 2(d) there
is coincidence of energy levels of different spin in each
subband, i.e. E±

iNL
= E∓

iN ′
L
, (NL �= N ′

L), but there is no
overlapping of the levels of the two subbands. Figures 2(d)
and (f ) show the DOS at high magnetic fields (8 T and 12 T

respectively). The height of the DOS levels depends again on
the coindicence of levels intrasubband and the overlapping of
levels intersubbands. As we will see below this DOS behaviour
and its value at Fermi level explain the magnetoconductance
of the 2DES.

3. Magnetoconduction

When the applied magnetic field increases, the energy levels
Es

NL
move to the Fermi level (EF ), and the conduction occurs

when each level crosses EF , providing the SdH oscillation
in the magnetoconductivity. The minimal values of the SdH
oscillations occur when there is no coincidence between Es

NL

and EF , and the maximal values occur when Es
NL

= EF . On
the other hand, when two kinds of carriers are present in the
system the SdH oscillations show a beating pattern behaviour.
In a 2DES confined in semiconductor heterostructures the
SdH beating pattern arises from the existence of two different
2DES, spin-up and spin-down electrons systems respectively
[4].

In order to obtain the magnetoconductivity of the 2DES,
formed in the semiconductor heterostructure, we have to
calculate the density of carriers. Assuming that the 2DES
is confined in a QW with two filled subbands, each subband
energy level can be considered as a pocket that contains two
independent 2DES, with spins parallel and antiparallel to the
magnetic field. Therefore, the whole carrier concentration
confined in the QW is given by the sum of the four 2DES
concentrations:

n =
∑

s

∑
i

nis (6)

where again i = 1, 2 refers to each subband Ei , and s refers
to each spin orientation, and the carrier concentrations are
obtained by the expressions nis = ∫ ∞

−∞ f0(E)Dis(E) dE. On

3
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Figure 2. (a)–(f ) show the evolution of the density of states of a 2DES when the magnetic field increases. The electron system is confined
in a QW with two filled subbands.
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Figure 3. (a) Variation of the 2DES concentration with the magnetic field. (b) Variation of the 2DES carrier concentrations at Fermi level
with the magnetic field. The red-dotted line and blue line are related to spin-up and spin-down orientations respectively. The black thin lines
are related to carrier concentration at levels E1 and E2, and the black bold line is related to the whole 2DES carrier concentration.

the other hand the total carrier concentration N at Fermi level
EF is given by the expression

N =
∑

s

∑
i

Nis (7)

where Nis = ∫ ∞
−∞ (−∂f0/∂E)Dis(E) dE.

If the carrier concentration at zero external magnetic
field is known, the Fermi level of the system is determined
from equation (6). To compute the magnetoresistance we
use experimental data obtained by Can Min Hu et al [24].
The 2DES is formed in a 20 nm thick In0.53Ga0.47As layer
where the two subbands levels are filled. The electron
concentration at zero magnetic field is n0 = 3.6 × 1016 m−2

and the carrier concentrations of the subbands are n1 =
2.8 × 1016 m−2 and n2 = 8 × 1015 m−2. The calculated
Fermi level is EF = 0.172 eV and the computed subband
levels are E1 = 0.038 eV and E2 = 0.134 eV. The
effective mass is 0.05m0. Figure 3(a) shows the evolution of
the total carrier concentration in the whole 2DES (n) when
the external magnetic field increases, the evolution of the
two subbands’ carrier concentrations (n1 and n2), and the
evolution of the spin up/down 2DES that forms each subband
(n1+, n1−, n2+, n2−).

Figure 3(b) shows the evolution of the carrier
concentration N computed at Fermi Level in the whole
2DES, in the two subbands (N1 and N2), and the evolution
of the spin up/down 2DES that forms each subband
(N1+, N1−, N2+, N2−). The values of N1 and N show a beating
pattern with a node near to 2.2 T. The nodes occur when there
is no coincidence of the levels E+

NL
and E−

N ′
L
, at Fermi level.

The N value also shows an envelope modulation created by
the sum of the N2 value.

Consider a competition between Zeeman and Rashba
effects. Both effects cancel each other when E+

NL
= E−

NL+1 =
EF [10, 17]. In this case there is a coincidence of the

value of the spin-up and spin-down carrier concentrations at
Fermi level, i.e. the spin split energy is zero. We can see in
figure 3(b) that this occurs at values of the magnetic field close
to 3 T for the 2DES confined in the E2 subband and 6 T for the
2DES confined in the E1 subband, where Ni+ = Ni− in both
subbands.

In the semiclassical approximation, when an electric field
is applied (normal to external applied magnetic field), the
carriers move with velocity v = vd + vc, where vd is the
drift velocity and vc the cyclotron one. We assume that the
mean value 〈vc〉 = 0 when the carriers move in the system
and we use the Boltzmann distribution function for carriers
perturbed by an electric and magnetic field [25, 26]. Taking
into account the previous assumptions and using the linear
relationship j = [σ ]E, where E is the applied electric field and

[σ ] =
∑

s

∑
i

[σ ]i,s (8)

which is the magnetoconductivity tensor, with components

σxx = σyy =
∑

s

∑
i

{(e2Nisτis/m
∗)/(1 + (ωτis)

2)} (9a)

σxy = −σyx =
∑

s

∑
i

{(e2nisτis/m
∗) · ωτis/(1 + (ωτis)

2)}

(9b)

the current density for the two subband problem can be
expressed:

j = [σ ]E = (j1 + j2)↑ + (j1 + j2)↓. (10)

The magnetoresistivities are obtained by the relationship
between tensors [ρ] = [σ ]−1, with components ρxx = ρyy =
σxx/

(
σ 2

xx + σ 2
xy

)
and ρxy = −ρyx = σxy

/(
σ 2

xx + σ 2
xy

)
.

We reproduce the value of the magnetoresistivity given in
reference [24] when the whole 2DES carrier concentration
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Figure 4. (a) SdH oscillations beating pattern of the magnetoresistivity, with a visible node in the region between 2 T and 2.5 T. (b) Detailed
plot of the SdH oscillations that shows a clean node at 1.1 T, and another in the 0.7 T–0.8 T interval.
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Figure 5. (a) Magnetoconductivity |σxy | of the whole 2DES and magnetoconductivities |σxyi | of the subsystems related to each filled
subband versus the external applied magnetic field. (b) Magnetoresistivity of the 2DES versus the external applied magnetic field.

is 3.6 × 1016 m−2 and two energy subbands in the QW
are filled. Figure 4(a) shows the SdH oscillations of the
magnetoresisitivity with a visible node near to 2.2 T, and
figure 4(b) shows a detailed plot in the interval 0.6 T–
1.5 T of the magnetic field, where two more nodes at values
near 0.75 T and 1.1 T respectively are also shown. As we
said before, the nodes occur when there is no coincidence
between energy levels at EF , i.e. when E+

NL
�= E−

N ′
L

at Fermi
level. The appearance and definition of the nodes depend
on the overlapping and the width 	NLs of the DOS energy
levels.

Figure 5(a) shows the calculated Hall magnetoconduc-
tivity (σxy) of the whole 2DES and the Hall magnetocon-
ductivities (σxy1, σxy2) related to the two subbands (obtained

with the experimental data [24] used above to compute the
SdH oscillations). The behaviour of σxy1 and σxy2 correspond
to the pattern of the integer quantum Hall effect each one,
with plateaux that have values of magnetoconductivity equal
to νe2/h, ν = 1, 2, 3, . . .. This is the result that we expect
because each 2DES is treated independently, and the model
reproduces the integer QHE in the case of only one filled
subband [10]. The total Hall magnetoconductivity σxy is the
sum σxy1 and σxy2 and also has plateaux with values νe2/h,
although with less definition. Figure 5(b) shows the Hall
magnetoresistivity of the 2DES, where one can observe
plateaux with values of magnetoresistivity equal to h/(νe2).
In both figures we have selected the interval of the magnetic
field from 5 to 25 T in order to show well-resolved plateaux
at low filling factors ν.

6



Semicond. Sci. Technol. 26 (2011) 105016 R Cangas and M A Hidalgo

4. Conclusions

In conclusion, we have developed a simple semiclassical
theory that reproduces the magnetoconduction of a 2DES
confined in a QW when two subbands are occupied and
when the competition between Rashba and Zeeman effects
is significant. Then, in the model that we use, the spin plays
an important role in the magnetoconduction. The model starts
with the whole carrier concentration at zero external magnetic
field, that establishes the Fermi level. When two subbands
are occupied, the carrier concentration of each subband is
obtained from the value of the subband energy level with
respect to Fermi level. Each subband is considered as the sum
of two independent 2DESs with different spin polarizations
due to the Rahsba effect. Therefore, we consider the whole
2DES confined in a QW as two filled subbands, and hence
four independent 2DESs. The evolution of the DOS with the
external applied magnetic field explains the SdH oscillations
and the integer QHE. The model can be generalized to systems
with more than two filled subbands.
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