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Resonance Response of Nonlinear Circular 
Plates Subjected to Uniform Static Load 
The axisymmetric resonant frequency response of static pressure loaded, nonlinear 
clamped, circular plates have been investigated analytically and experimentally. In 
the analysis, the set of nonlinear partial differential equations of motion and compati­
bility are solved by applying Galerkin's method with Dini-Bessel and Fourier-Bessel 
series expansions for the assumed solution forms. These expansions satisfy the bound­
ary conditions exactly. The equations are solved to yield a second approximation for 
the first mode response and a first approximation for the second mode response. Experi­
ments were conducted on a number of circular plates. The analytical and experimental 
results are found to be in good agreement for plates with @ ^ 57.3. The agreement was 
only fair for plates with 13 > 57.3. 

Introduction 

IN this paper the axisymmetric nonlinear resonant 
frequency response of clamped, thin, circular plates subjected to 
uniform static pressure resulting in large deflections and small 
oscillations was considered, Fig. 1. The small oscillations were 
induced by harmonic vibration of the clamped boundary; the 
displacement of the boundary being identical with that of an 
electrodynamic shaker head. 

Some resonant responses of clamped circular plates have been 
investigated previously. The linear solutions are well known and 
appear in textbooks by Timoshenko [ l ] . 1 The dynamic post-
buckling response of a plate has been treated by Herzog and 
Masur [2] among others. Yamaki [3] analytically determined 
the influence of large amplitudes on the first mode, zero static 
pressure response. 

Reismann [4] and his associates are conducting related work 
at the State University at Buffalo. 

A linear analysis does not yield a solution to the problem 
stated, and thus the nonlinear equations of motion and compati­
bility must be solved. An approximate method is used. A 
method that has been successfully applied to static [5] and 

1 Numbers in brackets designate References at end of paper. 
Presented at the Second Canadian Congress of Applied Mechanics, 

University of Waterloo, Waterloo, Ontario, Canada, May 20-23, 
1969. 

Discussion of this paper should be addressed to the Editorial De­
partment, ASME, United Engineering Center, 345 East 47th Street, 
New York, N. Y. 10017, and will be accepted until January 20, 1971. 
Discussion received after the closing date will be returned. Manu­
script received by ASME Applied Mechanics Division, March 14, 
1969; final revision, October 14, 1969. 
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Fig. 1 Plate configuration and boundary conditions 
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dynamic [6, 7] problems in the stability of thin shallow spherical 
shells is that of expressing the unknown functions in terms of 
truncated Fourier and Dini-Bessel series expansions. In this 
paper, a similar method was applied to the clamped circular 
plate. 

Experiments were conducted to test the validity of the theory, 
and to describe the experimentally observed phenomenon, if 
any, which may be absent from the behavior of the analytical 
model. 

Analysis 
Basic Equations and Boundary Conditions 

The equations governing the nonlinear axisymmetric response 
of thin circular plates subjected to uniform pressure P 0 * which 
result in large deflections are 

Boundary condition (3d) with equations (2a) and (26) yields a 
boundary condition in terms of the stress function, F(r, t) 

F F 
a 

(4) 

Introducing the following dimensionless quantities: 

r w F 
x = —; T = wt; w = —; / = —r-

a' ' h' J Ehs 

C = ,; X2 pa'w 
; Po 

P0*a4 

V4F = 
—Ehw , 

w,r 

DVhu ( * > „ ) „ + phw,tl - P„* = 0 

(la) 

(16) 

where 

12(1 - v*)' Eh* ' Eh4 

The differential equations ( la) and (15) become 

CxV4w - (f,xw,x\x + \>xw,TT - Pox = 0 

where 

1 

(5a) 

(56) 

V2 
(*( ).,)., 

V2 = - (r( ) , r) , 
r 

Nr and Ne are the membrane forces per unit length, and u the 
radial displacement of the plate at the middle surface; thus 

with the boundary conditions (3a)-(3c) and (4) rewritten as 
follows: 

1 Eh I 1 v \ 
r = — P., = : , 1 U.r + TT W.r + _ U I 

r 1 — v1 \ 2 r / 
I u v \ 
I — + vu,r + — wj) No = F 

1 - v* \ r 2 

The clamped boundary conditions are, Fig. 1: 

•w = 0 for r = a 

il\r = 0 for r = a 

wiT = 0 for r = 0 

u = 0 for r = a 

(2a) 

(26) 

(3a) 

(36) 

(3c) 

(3d) 

w = 0 for x = 1 

w,x = 0 for x = 1 

wiX = 0 for x = 0 

/ , „ - vf.x = 0 for x = 1 

(6a) 

(66) 

(6c) 

(6d) 

Integrating (5a) and (56) once with respect to x, and using bound­
ary condition (6c), we obtain 

x(^f),x + i (to.,)' = 0 (7a) 

cx(Vhv),x - ~ P 0 - fixW<x + \i | S W r r f J s = 0 (7b) 
J o 

-Nomenclature-
Po = dimensionless static 

Po*a< 
pressure, Po = ^rrr 

N„ N$ = in-plane forces 
io(r, t) = transverse midsurface 

displacement 
u(r, t) = in-plane midsurface 

displacement 
F(r, t) = stress function 

w(x, T) = dimensionless trans­
verse displacement: 

lB(f, t ) 
W(X, T) = : 

h 
f(x, r ) = dimensionless stress 

function: f(x, T ) = 
F(r, t) 

Ehs 

fflm(r)> fr»(T) = coefficients of expan­
sion of wiX (x, T) and 
/ , * (» , T) 

fin, fm = second mode axisym­
metric natural fre­
quencies, experimen­
tal, two-term theo­
retical, respectively 

X2fiXz2( = second-mode dimen­

sionless axisj'm-
metric natural fre­
quencies, experi­
mental, two-term 
theoretical, respec­
tively 

Amo, A,,a — coefficients of time ex­
pansions of am(r) 

j8 = dimensionless geome­
try parameter @ = 
a/h 

x = dimensionless radius: 
x = r/a 

T = dimensionless t ime: T 
= uit 

am = zeros of Bessel func­
tion Ji{am) = 0 

Y„ = zeros of ynJi.x(yn) = 

vJi(yn) 
fiE — first-mode, experimen­

tal, axisymmetric, 
natural frequency 

fm — first-mode, one-term 
theoretical, axisym­
metric, natural fre­
quency 

( ) , 

( ) , 

Gni(Amo, 
Po 

*"l2! 

X 

XrE 

Xll( 

Xl2i 

x! \ ),r 

Ut \ ) • 

AM,\ 

, P i ) i 
C 

= first-mode, two-term 
theoretical, axisym­
metric, natural fre­
quency 

= dimensionless natural 
frequency, X2 = 

pa4ui2 

386-E/i2 

= first-mode, experimen­
tal, dimensionless 
natural frequency 

= first-mode, one-term, 
theoretical, dimen­
sionless natural fre­
quency 

= first-mode, two-term, 
theoretical, dimen­
sionless natural fre­
quency 

= partial derivatives with 
respect to radius 

= partial derivatives with 
respect to time 

algebraic forms in res­
onant responses 

= 1/12(1 - v1) 
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Solution 
Assume solutions for equations (7a) and (76) of the form: 

( iv,x(x, T) = E am(T)Ji(a,„.x) (8a) 
Vl= 1 

TO 

fjx, r) = E 6 , ( T V I ( 7 ^ ) (86) 
>i = l 

where .A is Bessel function and a „ are zeros of Bessel functions, 

i.e., 

Ji(t*J = 0 (9a) 

and y„ are zeros of the following expression, 

7 , A s ( Y „ ) - vJi(yn) = 0 (96) 

Equation (8a) defines a Fourier-Bessel series [5] on a segment 
[0, 1], where 

E E am(r)bn(r)H2 

m = 1 n = 1 

" * X V . ( « J P. ' 
9 " 2 / (Cont.) m= 1 
2am r)H" (126) 

.H5) are defined as integrals of 

am(r) = 

I sJi(afi 

Jo 
,s)wjs, r)ds 

JiK«J 

Equation (86) defines a Dini-Bessel series [5] on a segment [0, 1], 
where 

bn(r) = 
Jo 

27„2 sJ1(7ns)fJs, T)ds 
Jo 

(7„2 - l ) ^ i 2 ( 7 j + 7»Vi..*(7») 

where the coefficients (Hi 
Bessel functions. 

Substituting (12a) in (126) we have second-order, nonlinear, 
temporal differential equations of the form 

M M a (T) 
C E «*(T)a„.*ffi + X» E ^ ~ f ^ 

m = 1 m = 1 m 

I M M M M jjjj 

+ 7 E E E E "-(Tja^r^cT) —-' 
^ m = l i = l 3 = 1 ?i=j = 1 i 7 4 

Po X2 ^ nm(T),rr T i \tr a ti<i\ + — # 3 = — V Jo(am)H3 = 0 (13) 

Since we are concerned with a static deformation and periodic 
external excitation, the approximate steady-state responses 
am(r) are assumed to be of the form am(r) = Ama + Am\ 
cos T, where Am0 is the static response and Ami cos T is the 
dynamic response. Am\ is considered small especially in compari­
son with the static term Am0, and thus the higher-order terms are 
omitted. 

Substituting am(r) into equation (13) and applying the princi­
ple of harmonic balance we have 

In this paper, M-term approximations are used in the Fourier-
Bessel (8a) and Dini-Bessel (86) series solutions. Thus the un­
known functions are represented as 

where 

Ono(A,„o, 0, Po) = 0 

G,a(Am0, AmU 0) = 0 

M 

(14a) 

(146) 

M 

w,x(x, r ) = E " . W ^ ' f e ) 
m = 1 

M 

/ . . (» , T) = E K(r)Ji(ynx) 
n = l 

(10a) 

(106) 

G„o(Am0, 0, Po) = C E a-nWiA 
m— 1 

1 M M M M 

i = l m = l g = I j = « = l * 

- " H3 = 0 

Using known differential relationships of Bessel-functions [5] 
and substituting (10a) and (106) into (7a) and (76) we get 

M i U M 

E 6„(r)7„Wi(7„x) - - E E o«(T)«,(r) 
? i= l i = l j = l 

X JiicitXWdap) = 0 (11a) 

M 3-2 

C E om(T)«m2^^i(a»,*) + -^- -Po 
m = l A 

M M 

+ E E a m ^ n W l C c v V ^ n Z ) 
n = 1 m = 1 

X» £ a„,(T),TT 

~ IT E —r.— »2^o(a„.) 

il/ M £ 

GnMmO, Aml, 0) = C E «m2.£M.»l ~ ^2 E ^ T ffl 

?/i = 1 m = 1 "* 

j AT Af .If M 

+ V E E E E [ ^ ^ m l + A,„ô flo-4iI 
i = 1 m = 1 g = l ; = n = 1 

HzHs 
+ Am0Ai0Agl] 

Hi 

» XV.(«J 

2 m = l a»» 

Equations (14a) and (146) constitute the set of equations relating 
the static pressure to the natural frequency in the clamped circu­
lar plate. 

In this paper, solutions were obtained for the one and two-
term approximations of w,x and/ i a . . 

The one-term solution gives a first approximation to the first-
mode resonant response, Xn, while the two-term solution yields 
a second approximation to the first-mode resonant response, Xi2, 

+ *2 E ajj),-. xJi(a„,x) = 0 (116) 
m = l "> 

Applying Galerkin's method, that is, multiplying equation 
(11a) by Jiiy^dx, j = 1, 2; . .M; equation (116) by Ji(a^) 
dx,h = 1, 2,. . .M; and integrating from 0 to 1; we obtain non­
linear temporal equations of the form 

M i M M M 

E 6,.(T).ff4" - E E E «t(rK<r)H' (12«) 
»=> = ! i — \ q = \ n=j = l 

I M M a (T) \ 

(c E »>W + ̂ ! E ^^T)^ 
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Fig. 2 Schematic of experimental apparatus and setup 
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and a first approximation on the second-mode resonant response, 
X22. Results are shown in Figs. 4-9. 

The values of «i and a2, 7i and y2 for v = Vs are found to be 

«! = 3.8317, a2 + 7.0156 

7 ! = 1.545, 72 = 5.2665 

Experimental Work 
The experimental setup is shown in Figs. 2 and 3. The plate 

specimen (PL) positioned between two mounting rings was sub­
jected to a uniform static pressure P0* within the pressure cham­
ber (PC). The pressure Pa* was controlled by a valve on the 
vacuum reservoir (VB) and monitored by a water manometer 
(M). 

The plate was boundary driven, through the mounting rings 
and chamber walls, by the shaker head (SHH). 

The digital counter (DC) monitored the oscillator frequency, 
which was the sinusoidal input signal to the shaker. Grains of 
fine sand were placed on the plate specimen (PL) to indicate the 
plate response and modal shapes. 

The specimens were prepared from rigid polyvinyl chloride 
plastic sheets, with Poisson's ratio, v = Vs and a Young's modu­
lus, E, ranging from 4.8 to 5.3 X 106 psi. PVC was chosen be­
cause of workability and a relatively high proportional limit. 
The vinyl sheets were of different ages and the laboratory tem­
peratures varied slightly from day to day; consequently Young's 
modulus was determined for each specimen immediately after the 
experiment was completed. The modulus was found to be a 
function of age, temperature, and to a slight extent, frequency. 
A simple cantilever beam analysis [8] was performed on a beam 
segment of the actual specimen with the aid of a small shaker. 
The modulus variation with frequency is shown for a typical 
specimen in Fig. 10.* This small variation was ignored in the 
calculations; its inclusion would improve the agreement between 
experimental and theoretical resonant frequencies. 

The boundary conditions were executed by a number of differ­
ent methods. The initial method was that of clamping rings. 
The clamping rings were faced off on the lathe to insure parallel 
clamping surfaces. However it was noted that the clamping bolt 
torque influenced the plate response. The clamping rings caused 
the plate to deform slightly, due to the induced radial compressive 
stress. This resulted in a lower resonant frequency. 

Another method attempted was that of casting the boundaries 
with a Hysol plastic. This method did not prove satisfactory 
because the plastic contracted as it cured, inducing a radial stress 
at the boundary and deforming the plate. 

The method finally adopted was that of securing the plate to 
the upper clamping ring with epoxy to prevent plate slippage 
under pressure. Then, with the aid of a sealing silicon grease on 
the lower ring, the two rings were bolted together with a torque 
just sufficient to insure a seal. The resulting boundary, while not 
completely stress free, was superior to the other methods at­
tempted. 

The experimental procedure consisted of sweeping the fre­
quency scale at each static pressure and noting the first and 
second mode axisymmetric resonant frequencies. The excitation 
amplitude was then decreased and each resonant frequency was 
determined at least three times. The repeatability of this aver­
age measuring method was found to be within 1 percent, after 
some pati ent practice. This repeatability indicated that material 
creep was not a significant factor in the experiment. 

2 . 3 1 9 IN. 

2 In some materials, the modulus is highly dependent upon fre­
quency. The modulus of acrylic plastic (Plexiglas), for instance, 
ranges from B = 5 X 10 psi at 20 cps to E = 7.5 X 10 psi at 1000 
cps. This phenomenon was experimentally demonstrated in the 
summer of 1967 in the Applied Mechanics Laboratory at Syracuse 
University by Dr. C. Stevens of Ohio State University. 
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Fig. 3 Pressure chamber 
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Fig. 4 Comparison of experimental and theoretical first-mode resonant 
frequencies 

During the course of the experiments it became evident that an 
unpredictable interaction between the plate and the pressure 
chamber existed. The existence of this interaction was indicated 
by plate responses unrelated to plate geometric parameters. 
The pressure chamber was shown to be the cause of these inter­
actions by holding other factors constant while changing the 
chamber's geometric configuration. The effects of this interaction 
were greatly reduced by making the pressure chamber sufficiently 
large. 

1046 / DECEMBER 1 9 7 0 Transactions of the ASME 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



550 -
EXPERIMENTAL 
ONE TERM APPROXIMATION^ 
TWO TERM APPROXI 
MAT I ON 

h = .059 IN. 
a-= 2.319 IN. 

p= .0496/386 LB.-SEC7 
IN.4 

E = 5.3X105 LB/IN.2 

0 0.2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 8 2 0 

STATIC PRESSURE, P£ (P.S.I.) 

Fig. 5 Comparison of experimental and theoretical first-mode resonant 
frequencies 
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Fig. 7 Comparison of experimental and theoretical second-mode reso­
nant frequencies 
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Fig. 8 Comparison of experimental and theoretical first-mode dimension-
less resonant frequencies 
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Fig. 9 Comparison of experimental and theoretical second-mode dimen­
sionless resonant frequencies 

Results 
Theoretical Results 

Representative analytical results for the effect of static pres­
sure P0* on clamped, circular plate resonance are presented in 
Figs. 4-9. In Figs. 4 and 5, the one and two-term theoretical 
solution predictions for the first-mode axisymmetrio "resonant 
frequencies, as a function of the static pressure P0*, are pre­
sented. Figs. 6 and 7 depict the effects of static pressure on the 
theoretical second spatial mode axisymmetrio natural frequen­
cies. 

The first-mode dimensionless theoretical natural frequencies 
are presented as a function of the dimensionless pressure P 0 in 
Fig. 8. Fig. 9 depicts the theoretical dimensionless second-mode 
responses versus the dimensionless pressure P0. 

Experimental Results 
Figs. 4 and 5 present the first-mode experimental resonant fre­

quencies as a function of the static pressure, P0*. Figs. 6 and 7 
depict the effects of static pressure on the experimental second-
mode natural frequencies. 

The first-mode dimensionless experimental natural frequencies 
are presented as a function of the dimensionless pressure Po in 
Fig. 8. Fig. 9 depicts the experimental dimensionless second-
mode resonance versus the dimensionless static pressure P0. 

Conclusions 
The following conclusions can be drawn from the analysis and 

the experiments: 

1 Analytical method used yields results which are in good 
agreement with experimental results. The one and two-term 
solutions yield good approximate predictions of the first and 
second-mode resonant responses for /3 «* 120. They yield ex­
cellent agreement for p" ^ 57.3. 
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Fig. 10 Young's modulus variation of vinyl polyethylene with oscilla­
tion frequency 

2 Zero static pressure (linear problem) of the approximate 
theoretical solutions compare well with exact solutions; see 
Timoshenko [1]. 

3 Experimental observations suggest that thin plates (large) @ 
are extremely sensitive to initial imperfections. 

4 The theoretical analysis is applicable for the higher modes. 
The inclusion of additional terms in an assumed solution forms 
should result in bettter agreement with the experimental data. 
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