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A numerical and analytical study of atmospheric undular bores 
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SUMMARY 
In this paper the formation and structure of an atmospheric undular bore is examined with the aid of a 

numerical model and theoretical analysis. The numerical model is first used to simulate a density current 
propagating into an unstratified environment. A detailed comparison of the model results with existing theory 
shows that for a given pressure head the current can travel at a greater speed than that predicted by irrotational 
theory. 

When the density current is allowed to propagate into a low-level stable layer it is found that for certain 
parameter regimes an undular bore forms ahead of the current. The results for two different types of stable 
layers are examined. For a layer with a step profile of potential temperature, comparison is made with both 
classical bore theory and the theory of density currents in two-layer fluids and encouraging agreement is found. 
When a linear profile is specified in the stable layer it is found that energy-conserving solutions can be obtained. 
The numerical fields are then compared with measurements of the morning glory, an undular bore observed 
in north-eastern Australia, and again agreement is good. 

Finally, preliminary results of model simulations with stratification above the stable layer are discussed. 

1. INTRODUCTION 

In the past few years there has been an increasing interest in a class of phenomena 
broadly described as atmospheric undular bores. Examples of this phenomenon are 
listed in Smith et al. (1982), the best documented being the ‘morning glory’ of north- 
eastern Australia. Common features are an oscillation in wind velocity and pressure and, 
most importantly, an increase in surface pressure of the order of 1 mb after the passage 
of the disturbance. Most occurrences of the morning glory have had associated cloud 
bands; however, examples of cloud-free glorys have been reported. In other examples 
of undular bores, for instance those reported by Kirk (1961) and Shreffler and Binkowski 
(1981), the presence of cloud has not been verified. 

The following discussion will chiefly be concerned with the formation and structure 
of the morning glory as this is at present the best documented example of an atmospheric 
undular bore. At the time of writing three mechanisms for the initiation of the morning 
glory have been suggested in the literature. Clarke (1972) suggested that the morning 
glory forms on the katabatic flow on the western side of a line of hills on Cape York 
Peninsula, the position of formation being the discontinuity of slope between the hillside 
and the plains further to the west. This suggestion was largely ruled out as the primary 
method of formation in the later paper by Clarke et al. (1981). In that paper a second 
hypothesis was put forward, that the sea breeze of the previous day from the east coast 
of Australia excites a disturbance when it meets the low-level nocturnal or maritime 
inversion over the Gulf of Carpentaria and surrounding area. 

A third hypothesis, put forward by Smith et al. (1982) to explain the glorys that 
move from the south, is that the same nocturnal/maritime inversion could be disturbed 
by a mesoscale front moving across Australia. 

The second and third suggestions are essentially equivalent, the difference being 
only one of scale. In one case colder fluid in the form of a sea breeze disturbs the stable 
layer, in the other the colder fluid is associated with a mesoscale front. That an intrusion 
of colder, denser, fluid into a stable layer can create undular-bore-type disturbances has 
been shown in laboratory experiments (Maxworthy 1980; Smith et al. 1982; Simpson 
* Present address: ECMWF, Shinfield Park, Reading. 
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1982). In the experiments of Smith et af. a long horizontal channel was filled with a thin 
layer of saline (density 1% greater than pure water) and then with a much deeper layer 
of pure water. Fluid of even greater density than that in the lower layer was then pumped 
at a constant rate into this two-layer system, the fluid propagating along the bottom of 
the tank in the form of a density current. After a certain time, depending on the pumping 
rate and density differences, a wave on the interface of the two-layer system would form 
above the current's head and then move ahead of the current. This process continued 
until about 3 or 4 waves had moved ahead of the current. 

These laboratory experiments, although effectively demonstrating a generation 
mechanism, did not lend themselves easily to quantitative measurements. In the present 
study a similar system is studied with the aid of a numerical model and a detailed analysis 
is carried out on the strength and velocity of the bores produced. 

2 .  THE NUMERICAL MODEL 

The numerical model used is a two-dimensional, non-hydrostatic, primitive equation 
model with pressure as a vertical coordinate. The model is based on that described in 
Miller and Pearce (1974) with the later modifications detailed in Moncrieff and Miller 
(1976) and Miller and Thorpe (1981). In the present study some additional changes to 
facilitate the modelling of a density current are made and these are described below. 

To simulate a density current in the model an inflow of cold air is specified at one 
end of the domain. The inflow is built up from rest over a period of approximately 60 
timesteps (see section 3(a)) according to a hyperbolic tangent function. At the end of 
this initial build up period the inflow velocity Ur(p) and the potential temperature 
deviation 0; (p) from a reference neutral state are of the form 

Q(p) = c(p - P I ) / @ I  of@) =26'(p -PI)/@I (1) 

where ApI is the pressure difference across the inflow and p I  is the pressure at the top 
of the inflow. As the density current tends to exhibit linear profiles of velocity and 
potential temperature in the domain, similar profiles are specified at inflow. As a further 
device for producing smooth inflow fields the velocity at the bottom of the inflow, 0, 
and the average potential temperature, @, are linked by the equation 

f 1 2  = Kg(8"'/~o)(API/gPo) (2) 

where 80 and po are surface values of potential temperature and density respectively. A 
value of K of approximately 1 was found to produce the smoothest fields at the inflow 
boundary. 

On the remainder of the lateral boundaries radiation conditions are specified as 
described in Miller and Thorpe (1981) with one important exception. At each timestep 
a correction to the height field at one end of the domain is made so as to keep the 
vertically integrated horizontal velocity constant. If this correction is not made then the 
integrated horizontal velocity tends to increase monotonically until all the fluid in the 
domain is flowing in the same direction as the density current. Since the model has 
impervious upper and lower surfaces this means that the fluid far upstream has acquired 
a finite velocity which is clearly incorrect in a model started from rest. A further discussion 
of this problem and an analytic form for the correction is given in appendix A.  

On the upper and lower pressure surfaces o = Dp/Dt is assumed to vanish. Thus, 
air cannot flow through the top and bottom surfaces of the domain. As pressure surfaces 
in the system under study only vary by a few metres in the horizontal, the assumption 
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is a representation, albeit approximate, of rigid impervious upper and lower surfaces. 
The validity of this assumption has been tested by analysing, theoretically, the flow 
through an undular bore in both pressure coordinates (with o = 0 on the top and bottom 
pressure surfaces) and in height coordinates (with the vertical velocity vanishing at top 
and bottom). The theoretical prediction for the speed of the bore is the same in both 
systems as long as the potential temperature (or density) deviations are small (see Crook 
1984). 

To parametrize turbulence, a simple Laplacian operator is used on the fields of 
velocity and potential temperature. The numerical results were found to be only weakly 
dependent on the size of the mixing coefficients. (For example, doubling the mixing 
coefficients resulted in a 2% reduction in the speed of the density current.) 

The stable layer is developed in the model by applying a cooling function to the 
lower layers of the domain. To allow the density current time to develop and move well 
into the domain the cooling function is not applied until after the initial build-up of the 
inflow. The stable layer is then formed just ahead of the approaching density current. 

(1) A step profile in which the potential temperature deviation is a constant 0” through- 
out. The results from these simulations will be compared with the analytic theory 
developed in Crook (1983). 
(2) A linear profile of the form O ’ ( p )  = 28”(p - pL)/ApL where pL is the pressure at the 
top of the stable layer and A ~ L  is the pressure difference across it. These simulations 
will be compared with observations of the morning glory on 4 October 1979 (Clarke er 
al. 1981). For simplicity the fluid above the lower layer is neutrally stratified in both 
cases. A definition sketch showing the density current and the stable layer and the 
notation to be used is given in Fig. 1. 

Two potential temperature profiles in the stable layer will be used. 

Figure 1. Definition sketch of density current and stable layer showing the notation to be used. The two 
profiles of potential temperature in the stable layer are also depicted. 
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To present the results from the numerical simulation and to simplify the analysis 
it is convenient to non-dimensionalize the fields. This requires that relevant dimensional 
scales be chosen. For the pure density current simulation the most suitable scales are: 

(1) pressure scale PS = Ap1, pressure difference across inflow 
HS = ApI/pog, the height of the inflow 
8i = 8 ,  the mean 8' of the inflow 
US = 6, velocity at the bottom of the inflow 

height scale 
8' scale 
velocity scale 
time scale Ts = Hs/Us .  

(2) New choices for the dimensional scales are permitted when a stable layer is included 
in the domain. In these simulations the characteristics of the inflow of the density current 
can be altered by the action of a gravity wave moving backwards along the current. For 
this reason the dimensional scales are taken from the characteristics of the stable layer 
and not from those of the density current. Thus, 

pressure scale 
height scale 
8' scale 
velocity scale 

Ps = ApL , pressure difference across stable layer 
Hs = ApL/pog, height of the stable layer 
8k = W ,  mean 8' in the stable layer 
US = (-g( ~ " / & ) H S ) ~ / ~ ,  the velocity of infinitesimal waves on the 

stable layer 
time scale Ts = Hs/Us. 

c 

" 

, , I I / / I I  I I I I I I  1 1  

D N 
Figure 2. The potential temperature deviation 0' for a density current propagating into a neutral environment 

at two times: (a) t = 48; (b) t = 96. 
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3. RESULTS 

( a )  Simulation of a density current 
Before presenting the results from an undular bore simulation it is interesting to 

examine the performance of the model in simulating a density current in a neutral 
environment. 

The model domain has 91 points in the horizontal and 40 in the vertical. The 
horizontal and vertical gridlengths are Ax = 0.5Hs, A p  = 0.2Ps and the timestep At = 
0.20Ts. In the first simulation to be examined (experiment 1) @ / O o  = -0.01 and 
ApI /ApT = Q (see Fig. 1). Figure 2 shows the deviation potential temperature field at 
two simulation times t = 48 and t = 96 and the streamfunction at t = 96. In calculating 
the streamfunction a speed equal to the propagation speed of the density current is 
subtracted to bring the current’s head to rest. As can be seen most of the observed 
features of density currents are reproduced in the simulation including the elevated head 
of the current and the flow towards the head at the ground and away from it above 
(Simpson 1969). 

Three further experiments were carried out with different values for the total depth 
of the domain. Figure 3 shows the dependence of the propagation speed of the density 
current U D  on the total depth of the model. 

In Fig. 3 the depth of the density current, D, is calculated in the following way. 
Firstly the integral of W ( p )  with height is determined from the model results and then 
equated to the integral that would result in a current with an assumed step profile of 

1 8  I 
BEN J A M I N  ’ S 
P R E D I C T  I O N  

.. 

Figure 3. Density current velocity against the total depth of the domain for four experiments. Extrapolating 
the results in the limit DT/D+ = gives U , / { ( - g f / & ) D ) *  = 1.65, which is greater than the g 2  predicted by 

Benjamin (1968). 
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W ( p )  of depth D and potential temperature deficit @. This method of analysis is justified 
by the fact that the driving force of the current is the hydrostatic pressure difference 
which depends only on the integral of potential temperature deficit (see Benjamin 1068). 
Benjamin showed that when a density current moves into an infinite expanse of fluid, 
energy must be lost. However, using Bernouilli’s equation around a circuit which avoided 
the turbulent head of the current, Benjamin was able to show that the ratio 
UD/{ -g(  @/&)D>;,  for a current in an infinite expanse of fluid, should be d2 ( D  is 
some mean depth in the turbulent wake region of the current). As can be seen from Fig. 
3 all of the ratios measured have a value greater than d2. Furthermore, a linear 
extrapolation back to DIDT = 0.0 (the case examined by Benjamin) gives a ratio of 1.65; 
thus for a given pressure difference the current travels approximately 16% faster than 
predicted. This, at first curious result. is due to the fact that Benjamin ignored the 
internal flow of the density current by setting the pressure far downstream (point D in 
Fig. 2(b)) equal to  that at the nose (point N ) ,  whereas in fact the pressure is slightly 
greater at the nose. Thus the pressure difference between the nose of the current and 
points far upstream is greater than that predicted by Benjamin (since the difference in 
pressure between points far upstream and D, which depends on the hydrostatic pressure 
difference only, remains constant for a given density current). Thus, a density current 
with an internal flow is able to propagate faster than a current without such a flow. 

It should be noted that Britter and Simpson (1978) have included the internal flow 
of a density current in a semi-empirical analysis. They calculate several Froude numbers 
based on different velocity and length scales in the flow. However, the scales that they 
use cannot be related directly to the hydrostatic pressure difference, and thus it is difficult 
to make compar@on with the present work. 

( b )  Density current and stable layer (step profile) 
In the previous section the influence of a density current on an ambient neutral 

environment was considered. When a stable layer is included the density current is able 
to modify far ahead the environment into which it moves. 

The simulation (experiment 2) to be examined has a step profile in O ’ ( p )  and the 
following values for the main parameters: 

Ap,/ApT = 0.125 8”/& = -0.01 

@/eo = -0.075 A ~ ~ / A P ~  = 0.075 
AX = 1.2Hs Ap = 0*2Ps At = 0.3Ts 

recalling that the dimensional scales are now taken from the stable layer. The domain 
has 145 points in the horizontal and 40 in the vertical. 

Since the timescale for development of the undular bore is greater than the time 
taken for the bore to cross the domain, a Galilean transformation is applied early in the 
simulation to keep the bore inside the model domain. In all of the following simulations 
the opposing velocity was applied just after cooling of the stable layer and had a value 
of -0.9. Figure 4 shows the deviation potential temperature field at t = 250 and t = 420 
and the streamfunction of the flow at t = 420 in a frame of reference in which the bore 
is at rest. As can be seen the stable layer is progressively smeared out as it moves from 
right to left. This smearing is caused by the vertical smoothing term in the potential 
temperature equation, which is included partly to counteract numerical dispersion but 
also as a representation, albeit crude, of turbulent mixing. 

In Figs. 4(a) and (b) the nose of the density current can be identified as the point 
where the isotherms intersect the lower boundary. It is clear therefore that a disturbance 
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has moved ahead of the density current. That this disturbance is indeed an undular bore 
is shown in the increase of the mean depth of the stable layer and consequently in the 
increase of the mean surface pressure. Furthermore the development of the bore follows 
a pattern similar to that observed in the laboratory experiments with waves forming 
above the density current and then moving ahead of it. By the end of the simulation 
three such waves have moved ahead of the current. 

To compare the speed of the bore with theory it is necessary to include in the 
existing analytic models the effect of a top boundary. For an infinite incompressible fluid 
the speed of a bore U B  of mean downstream depth d moving into a layer of depth DL 
is given by, 

U;/ (g ’&)  = ( d / 2 D  L ) ( 1  + d/DL) = F (3) 

where g’ = (p ’ / pO)g  (see for example Turner 1973). The same results follow for a 
compressible system with the exception that p’/po is replaced by -W/& and height 
differences by pressure differences. 

If the fluid is deep but not of infinite extent then it is straightforward to show that 
the speed of the bore is given by 

for DL/D.,  < 1, where F is the same as before and DT is the total depth. 
To evaluate d ,  a mean depth is calculated in the same way as for the depth of the 

density current and then averaged over one wavelength. This averaging is carried out 

1.4 . 

1 . 3  . 
(s”0, ) ¶  

1.2 ’ 

Figure 5. Speed of the bore against its depth for four simulations. The continuous line is the prediction of 
irrotational theory, Eq. (4). 
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as far from the leading edge of the bore as possible where the wave amplitude is small. 
As noted by Wilkinson and Bannon (1977) the equations for an undular bore should 
include a term involving the wave stress. However, the contribution of this term is small 
and is minimized by averaging in the region where the wave amplitude is least. 

Applying the above analysis to the bore in Fig. 4 a depth d is obtained of 1.93DL. 
Substituting this into Eq. (4) and using D L / D ~  = 4 we obtain UB/(g”DL)+ = 1.35 where 

In the numerical model the simulated bore moves at a speed UB given by 
UB/(g”DL)i = 1.32 ? 0.04, where the error bounds give an indication of the non-con- 
stancy of the bore’s velocity. As can be seen the degree of agreement between numerical 
and analytic model is very good. The above analysis has been carried out on a number 
of bores of differing strength and the results plotted in Fig. 5 .  

So far the bore has been examined in isolation. To determine if the depth of the 
bore produced agrees with the strength of the density current, the analytic model 
developed in Crook (1983) can be applied. The model uses the basic equations for a 
density current in a two-layer fluid (Holyer and Huppert 1980) but includes the possibility 
of a bore running ahead of the density current. Briefly, equation 2.12 of Holyer and 
Huppert, which describes the flow in the vicinity of the density current, is used and Eq. 
(4) of the present study for the flow through the bore. The two flows are linked by a 
suitable continuity equation and then for a given density current the speed of the bore 
produced can be calculated. 

It was originally felt that as long as the mass flux of the density current before it 
entered the stable layer was known, then the strength of the bore could be determined. 
However, when the current meets the stable layer large gravity waves not only move 
ahead of the density current but also propagate backwards along the current. These 
gravity waves can effect a change in the current’s mass flux. Thus, there is no guarantee 
that the mass flux of the current is the same after it enters the stable layer as it  was 
before. 

However, the analytical model can be used to determine if the strength of the bore 
produced agrees with the velocity of the density current after it has moved into the stable 
layer and pushed waves ahead of itself. 

In experiment 2 the average potential temperature deficit of the density current, 
after the waves have moved ahead, is Oh/@, = -0.0126 and that of the stable layer 
O ’ / &  = -0.010. Thus the parameter y (=dh/O“ - 1) in Holyer and Huppert is equal to 
0.26. The velocity of the density current, after the waves have moved ahead, is UD = 
1.04. Solving the system of equations the following parameters are determined: d = 
1.99 and UB = 1.37, which are to  be compared with d = 1.93 and UB = 1.32 ? 0.04 from 
the numerical model. 

As can be seen the analytical model slightly overestimates the depth and speed of 
the bore. Nevertheless, the level of agreement is encouraging when it is considered that 
the analytical model assumes irrotational flow and a homogeneous density current. 

The above method of analysis has been performed for two further simulations, and 
the results compared with the analytical model in Table 1. 

g ” =  - (w/e0)g .  

TABLE 1. COMPARISON BETWEEN NUMERICAL RESULTS AND THE 
ANALYTICAL MODEL OF CROOK (1983) 

UIJ Y d(ca1c.) d(num. model) 

1.07 0.20 2.11 1.94 
0.97 0.14 2.02 1.88 
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(c)  Stable layer with a linear profile of 8’ ( p )  
A step profile for the potential temperature in the stable layer, although facilitating 

comparison with analytic models, does not bear a close resemblance to the atmosphere. 
A more realistic profile and that observed on the morning glory expeditions (see Clarke 
et al. 1981) is a linear change of potential temperature in the stable layer. 

The numerical model was run with the same density current parameters as in 
experiment 2 but with a stable layer with a linear profile of 8’ ( p )  and a mean value of 
81/00 = -0.01. This simulation will be called experiment 3. The potential temperature 
fields at t = 250 and t = 350 are shown in Figs. 6(a) and (b). Since the potential tem- 
perature of the current is now no longer the lowest in the flow it is difficult to use it to 
define the position of the current. For this reason an additional variable is included: that 
of an inert tracer injected at the inflow of the density current. The 10% contour of this 
tracer fluid is indicated by the dashed lines in Fig. 6. 

One difference to note between experiments 2 and 3 is that the undulations in the 
latter experiment decay much more rapidly. For a bore on a step layer it is well known 
that energy must be lost downstream (see Turner 1973) and that in an undular bore this 
is accomplished by wave radiation. However, as shown in appendix B, an energy- 
conserving solution can be found for a bore on a ‘linear’ stable layer. Hence energy 
radiation is not required, and so the waves evanesce in the horizontal. 

It is interesting to compare the results from the numerical model with some of the 
measurements of the morning glory. The glory of 4 October 1979 will be used for 
comparison (Clark et al. 1981) since it is the best documented so far. 

The stable layer on that day had a depth of 630 m and a mean potential temperature 
deviation 81 of -4°C corresponding to a Brunt-Vaisala period of 5.1 minutes. A 
numerical simulation was chosen that produced a bore of approximately the same strength 
as on 4 October (where strength is defined as the pressure across the bore, -0.8 mb for 
the glory of that day). The wavelength and velocity for the simulated and observed bores 
are compared in Table 2. 

TABLE 2. COMPARISON BETWEEN NUMERICAL RESULTS AND THE MORNING 
GLORY OF 4 OCTOBER 1979 

Numerical model Observed morning glory 

Distance between 
1st and 2nd crest 
Velocity 10.9 m s-’ 

11.1 km 10.0 km 
11.2 m s-’ 

In Fig. 7 the streamlines for the flow through the bore at t = 370 minutes are plotted. 
An opposing velocity has been applied to bring the bore to rest. When this is compared 
with Fig. 13 of Clarke et al. the similarity in structure between the modelled and observed 
bores is quite evident. However, one discrepancy is that the closed streamlines that were 
observed on 4 October do not appear in the numerical simulations. However, the forward 
velocity in the leading wave increases monotonically and is in fact 90% of the speed of 
the bore at the end of the simulation, which suggests that a closed circulation might 
develop if the model was run for a longer time. If this is the case then any fluid that is 
advected with the bore could not have come from far downstream but is ‘picked up’ by 
the bore as it passes. This is supported by the fact that none of the tracer fluid in the 
density current can be seen in the bore in Fig. 6(b). 
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4. CONCLUDING REMARKS 

In the preceding simulations the fluid above the stable layer has been unstratified. 
This means that energy in the bore is trapped in the stable layer and cannot propagate 
away as it would in the real atmosphere. Nevertheless encouraging agreement has been 
found between the model results and the observed features of the morning glory. 

The model has been run with a stratified upper layer and the results will be reported 
fully in a later paper. Briefly though, if the ambient environment is unsheared, an 
internal gravity wave trapped by the upper and lower surfaces moves ahead of the 
density current and little or no disturbance appears on the stable layer. This behaviour 
occurs even when the very low values of static stability observed at Burketown ( B  = 
5 . 0 ~  10-‘m-’) are used. However, if the ambient environment is sheared in such a way 
that the flow at upper levels opposes, increasingly, the motion of the density current 
then this large-scale gravity wave becomes evanescent in the vertical and does not 
propagate ahead of the current. A disturbance at low levels does however move ahead 
and this shows many similarities to the observed structure of the morning glory. This 
behaviour agrees with the theory developed by Scorer (1949) which states that for energy 
to be trapped at low levels the Scorer parameter l2  = gB/( U - c ) ~  - U”/( U - c), where 
c is the wavespeed, must decrease sufficiently rapidly with height. It is also consistent 
with climatic data for the northern Queensland region which show that a strong westerly 
jet (i.e. in the sense to oppose glorys moving from the east) centred about 600mb 
develops in mid-winter and remains until about November which is the same period as 
that of maximum frequency of morning glorys (Clarke et al. 1981). 

APPENDIX A 

The continuity equation in the model is of the form 

aulax + aw/ap = 0 (-41) 
where w is the total rate of change of pressure. If this equation is integrated over the 
semi-infinite domain 0 < x < X ,  (where x, + m) then the following relation is obtained 

where the boundary conditions w = 0 at p = p ~ o p , p o  have been used. If at the com- 
mencement of the simulation the velocity u(x ,  p )  is identically zero throughout the 
domain and the flow is only perturbed in the vicinity of x = 0 then u ( x , p )  must remain 
zero at x = x, for all finite time. Therefore from Eq. (A2) 

for all time. To ensure that Eq. (A3) is satisfied, a relation between the pressure at the 
lateral boundaries and the velocity field must hold. This relation can be found by 
integrating the horizontal momentum equation, 

du/dt = -gdh’/ax + D (‘44) 
where D includes advective and smoothing terms. Integrating over the domain of the 
model the following equation is obtained, 
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gh' (x , )dp  - f o  gh'(0)dp = r x D d x d p  - r x u d x d p  (A5) c. p r o p  PTOP 0 at PTOP 0 

or in finite difference form, 
PO PO 

2 gh"(x,) Ap - 2 gh"(0) Ap 
PTOP P r o p  

where an explicit representation of the time derivative has been used. 
PO 

As shown previously from the continuity equation, 2 u ( x , p )  = F where F is a 
PTOP 

constant in x .  Therefore Eq. (A6) can be written 

(F' - F' - ") LAxAp D r - A r A p ~  - - (A7) 
PO PO 

2 gh"(x,)Ap - 2 gh"(0)Ap = 
PTOP PTOP At 

where L is the number of gridpoints in the horizontal. 
Now F' can be set as the vertically integrated velocity at the start of the simulation 

arrd hence all of the quantities on the right-hand side of Eq. (A7) are known at time 
t - At. Equation (A7) is therefore a relation that the height field at the lateral boundaries 
at time t must satisfy if the vertically integrated velocity is to remain constant. 

In the numerical simulation Eq. (A7) is implemented in the following way. At each 
timestep boundary values for h' are calculated from radiation conditions and then a 
correction, Ah', constant with height calculated from Eq. (A7) is added at one end. 
When this is done the integrated velocity is kept constant to within rounding error. 

DENS I TY 

-c  

D z = d  
VELOCITY 
PROFILE DENS I TY 

==DL A,-J--p----X PROI'ILE 

2 . 0  

Figure 8. Undular bore on a linear stable layer. 
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APPENDIX B 

The system to be examined is shown in Fig. 8. If the flow is incompressible then a 
streamfunction q can be defined such that 

where c is the constant upstream velocity. Hence far upstream q = z .  
Now for an energy-conserving solution the total head H = p + +pu2 + pgz is constant 

along a streamline. When this condition and the Boussinesq approximation is applied 
it can be shown (see Long 1953) that 

V 2 q ’  + K2q’ = 0 K2 = N2/c2 (B2) 

where q’ is the deviation of a streamline from its upstream position. 

becomes 
If the flow is assumed horizontal far downstream, then qx = 0 so that Eq. (B2) 

d2q’ /dz2  + K2q‘ = 0 (B3) 

which has the solution q’ = A sin Kz + BcosKz, therefore 

q = z + A sin Kz + B cos Kz. 

As there is a continuous streamline along the bottom of the flow B = 0. Similarly at the 
top of the stable layer far downstream ( z  = d )  q = DL. Therefore 

A = ( DL - d)/sin( Kd) . 
To close the system continuity of pressure across the interface must be used. If 

p = 0 far upstream at the interface then Bernoulli’s equation along the streamline 
A +  D gives 

k2 + gDL =PD/PO + 2 ~ ~ { ( d q / d ~ ) , = d } ~  + gd 

P D / ~ O  = g ( D L  - d )  + &c2[1 - (1 + (DL - d ) K  cotKd}*]. 034) 

From the circuit A + B -+ C + D, 

Equating pressure across the interface gives 

( CI - C)/C = ( D L  - d )  K cot Kd.  

Now if DT-, 00, c1- c by continuity, therefore cot(Kd) = 0, which has the solution 
Kd = ( 2 n  + l)n/2, n = 0,1,2,3, .  . . . 

Thus the fastest moving bore which conserves energy has a velocity c = 2Nd/n .  
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