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Abstract

Background: Dimethylnitrosamine (DMN), a potent hepatotoxin, administered to rats, provides a convenient model for toxic

liver injury. Indicators of early liver injury are important clinically, for surveillance, for screening new drugs that are potentially

hepatotoxic and for identifying drugs that protect against liver injury. Both cirrhosis and wound healing culminate in deposition

of fibrous connective tissue and scarring. Increased hyaluronan (HA) occurs in the earliest stage of wound healing.

Hyaluronidase, the enzyme that degrades hyaluronan, is also elevated whenever rapid turnover of hyaluronan occurs. We test the

hypothesis that elevated levels of circulating hyaluronan and hyaluronidase could provide indicators of very early liver damage.

Methods: Dimethylnitrosamine was administered to adult male albino rats by intraperitoneal injections for 7 consecutive days.

Results: Increased serum hyaluronan levels observed on day 2 reached a maximum on day 4. Hyaluronidase was elevated on the

first day and reached a maximum on day 2 that was 30-times control levels. Hyaluronan-specific staining in liver sections was

maximal on day 7, occurring predominantly in portal triads and in sinusoidal spaces. Individual hepatocytes were slightly

enlarged and contained intracellular hyaluronan, which was not evident in control sections. Though circulating hyaluronan levels

had decreased after day 4, continued hyaluronan staining persisted in liver sections through day 21. Conventional indicators of

liver injury, such as serum aminotransferase enzymes, did not reach a peak until day 7. Conventional gross and histopathological

changes, including severe centrilobular congestion and hemorrhagic necrosis, were observed only after day 7. Both hyaluronan

and hyaluronidase are indicators of very early liver damage in the dimethylnitrosamine-treated rat, occurring well before

conventional indicators appear, or before overt histopathologic changes of liver damage can be seen. However, levels are

increased only transiently, indicating that serial assays are necessary. Conclusions: Measures of circulating hyaluronidase activity

may be used to assess liver damage.
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1. Introduction

Dimethylnitrosamine (DMN) administered to rats

provides a convenient and highly reproducible animal

model for acute liver injury. Well known as a carcin-

ogen and a mutagen, it became recognized as a potent
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hepatotoxin [1] following an industrial accident [2].

Hepatotoxicity is mediated by reactive intermediates

rather than by the parent compound. They target

primarily the liver which contains the necessary

enzymes for this metabolic conversion. The micro-

somal membrane-bound enzyme, cytochrome

P450IIE1, is responsible for activation and degrada-

tion of DMN [3–5]. Metabolism of DMN produces

formaldehyde, methanol and alkylating intermediates

that react with nucleic acids and proteins to form

methylated macromolecules. The liver is particularly

vulnerable to these compounds.

Hyaluronan (HA) is a straight-chain glycosami-

noglycan polymer of the extracellular matrix (ECM)

and is increased whenever rapid tissue growth and

repair occur. Hyaluronan occurs in many forms,

circulating freely in the blood stream and in the

lymphatic system, loosely associated with the ECM,

tightly intercalated in the ECM where it aggregates

with proteoglycans, or bound to cell surfaces by

specific receptors [6,7]. Normally, low concentra-

tions of HA circulate in the blood. Increases in

tissue-bound and circulating HA occur very early

in wound healing and during periods of rapid cell

turnover following tissue injury [7–11]. Rapid

increases in circulating HA also occur in response

to major stress, such as blood loss, shock, septicemia

[12,13], following massive trauma, major surgical

procedures and extensive burns [14–16]. Hyaluronan

takes on a large volume of water of hydration, up to

1000 times the original polymer volume [17]. It is a

stress-response-molecule, rapid increases occurring

in response to inflammatory cytokines such as IL-1

and TNFa [18,19]. The increased HA functions as

an intravascular volume expander that prevents cir-

culatory collapse. Clearly, increased HA provides a

rapid response survival mechanism following major

injuries, among which is acute liver damage. Mea-

sures of serum HA are often used clinically to assess

liver function [20–28]. Increased HA is also one of

the earliest indicators of rejection following liver

transplantation [29–32].

In the liver, HA is synthesized mainly by the

stellate cells present in the sinusoidal areas [33,34].

The major portion of circulating HA is removed by

sinusoidal endothelial cells of the liver [35,36]. Ele-

vations precede capillarization of sinusoids, the ap-

pearance of basement membrane in the space of Disse
and decreased fenestrae of endothelial cells that lead

to hepatic fibrosis [26,28].

Hyaluronidases, the catabolic enzymes involved

in degradation of HA, are now recognized to be a

family of enzymes with high sequence homology.

There are six hyaluronidase-like sequences in the

human genome [37], Hyal-1 (hyaluronidase-1) being

the only such enzyme in the mammalian circulation

[38,39]. The turnover of HA is extraordinarily rapid,

2–5 min in the blood stream [40]. Increases in HA

production and turnover are often associated with

increases in hyaluronidase levels. However, measures

of hyaluronidase levels have not been used previ-

ously in assessing liver damage. The enzymes that

synthesize HA, the synthases [41] do not circulate

freely. Activities of the HA synthases presumably

precede the peak of their HA product. The assump-

tion is that hyaluronidase also precedes the appear-

ance of HA, and that measure of hyaluronidase

activity in serum may provide a very early indicator

of liver damage.

In the rat model, DMN administration causes

severe necrosis and the deposition of ECM macro-

molecules, particularly collagen [42–44], the hall-

mark of the fibrous deposition in the liver associated

with cirrhosis. A detailed investigation of the tem-

poral pathophysiological changes in the liver, the

glycoprotein metabolism and other biochemical ab-

normalities have been carried out following the

sequential administration of DMN [45–49]. Howev-

er, a study of HA metabolism in the liver following

DMN administration has not been carried out

previously.

There are many parallels between cirrhosis and

wound healing, both processes culminating in depo-

sition of fibrous connective tissue and scar formation.

In wound healing, HA increases early on, and returns

to normal levels within the first week [50–52]. The

peak of HA reflects an early step in the cascade of

events that ends in fibrous deposition. Here, we test

the hypothesis that an increased level of HA is one of

the earliest events in toxic liver injury. We examined

HA and hyaluronidase levels at early time points

following DMN administration. These markers have

the potential for use clinically for detecting the earliest

changes following liver injury, for screening drugs, as

well as means of identifying agents that protect

against liver injury.
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2. Materials and methods

2.1. Materials

Ethyl alcohol, formaldehyde and p-dimethylamino-

benzaldehyde were from E. Merck (Darmstadt, Ger-

many), and ethylene glycol monomethyl ether (methyl

cellosolve) from Fluka, Switzerland. Trichloroacetic

acid, potassium sodium tartarate and Folin-Ciocal-

teau’s phenol reagent were the products of Loba

Chemie, Bombay, India. Human umbilical cord HA

was from ICN, Costa Mesa, CA. COVALINK-NH

microtiter plates were from NUNC (Placerville, NJ).

o-Phenylenediamine (OPD) was from Calbiochem, La

Jolla, CA, and the avidin–biotin complex (ABC kit)

from Vector Lab. Burlingame, CA. Dimethylnitrosa-

mine and all other reagents were from Sigma (St.

Louis, MO).

2.2. Animals and treatment

Three-month-old male albino rats of the Wistar

strain weighing between 180 and 200 g were used,

bred andmaintained in an air-conditioned animal house

with commercial diet (Hindustan Lever, Bombay, In-

dia) and water available ad libitum. They were housed

in polypropylene cages with a wire mesh top and a

hygienic bed of husk.

The DMNwas injected intraperitoneally in doses of

1 Al (diluted 1:100 with 0.15 mol/l sterile NaCl)/100 g

body weight for 7 consecutive days. Control animals

received the same volume of 0.15% sterile NaCl.

Animals were injected without anesthesia. Animals

were observed for morphological and behavioral

changes. Treated animals were sacrificed each day

for the first week, and also on days 14 and 21 from

the beginning of exposure. Control animals were

sacrificed at the beginning of the experiment, and on

days 7, 14 and 21. The controls and the experimental

group for each of the first 7 days were comprised of 6

rats each time point, while the 14th and 21st day group

consisted of four rats each. All rats were anaesthetized

with diethyl ether before sacrifice.

2.3. Handling of tissues

The body and liver weights of the animals in each

group were measured. Body weight was measured only
after removal of the ascitic fluid. Blood was obtained

from the tail vein of rats. Blood was allowed to clot and

the overlying serum collected following centrifugation.

Immediately after sacrifice, the livers were rapidly

removed and rinsed in cold saline. A portion of liver

was fixed for histopathology using formalin fixation.

2.4. Biochemical analyses

Hyaluronan and hyaluronidase levels in serum were

measured using a well described competitive HA

ELISA-based microtiter plate procedures [53,54].

The serum alanine aminotransferase (ALT) and aspar-

tate aminotransferase (AST) activities in serum were

measured as a measure of hepatic injury. The days on

which samples were taken for these determinations are

given in the respective tables.

2.5. Statistical analysis

Arithmetic mean and standard deviations were

calculated for the biochemical data. The results were

statistically evaluated using one-way analysis of var-

iance (ANOVA). The control mean values were com-

pared with the treated mean values using the least

significant difference method. A P < 0.01 was consid-

ered statistically significant.

2.6. Procedures for histopathology

Fixed liver samples were embedded in paraffin

blocks and sections of 5 Amwere prepared. The degree

of hepatic injury was evaluated histopathologically by

both hematoxylin and eosin (H&E) and by Masson’s

trichrome staining. Staining for HA uses a specific

biotinylated HA-binding peptide, prepared as de-

scribed [55], coupled to an avidin-peroxidase enzyme

staining reaction [56,57].
3. Results

3.1. Observations of animals

There were no morphological or behavioral changes

up to the 10th day following the initiation of DMN

treatment. Treated animals then began exhibiting

behavioral changes.Grooming no longer occurred. Food



Table 1

Serum AST and AST levels during DMN-induced hepatic injury in

rats

Days Serum ALT (IU/l),

meanF S.D.

Serum AST

(IU/l), meanF S.D.

Control 104.00F 14.11 190.62F 24.17

1 127.66F 18.66 180.66F 27.21

2 160.00F 24.32 265.66F 44.66

3 261.66F 32.78* 1347.33F 220.36

4 288.00F 36.34* 1515.66F 315.21

5 362.00F 64.14* 1672.33F 325.66

6 1221.66F 226.90* 3241.33F 514.26

7 1665.00F 315.17* 5523.66F 914.31

14 169.00F 30.21 231.50F 31.21

21 127.00F 19.62 224.50F 28.32

*P < 0.001 by ANOVA when compared with control.
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and water intake was much decreased. Extreme lethargy

and prostration were observed in the later time periods.

A significant decrease in the mean body weight of

DMN-treated animals was documented on days 14 and

21, with a 36% decrease recorded on day 21.

3.2. Observations of tissues

An increase in the liver weight was recorded on

days 4, 5 and 6 after the start of DMN administration

with a maximum increase on day 5 (45.6 mg/g body

weight). On days 14 and 21, liver weight decreased

significantly, about 55% (17.7 mg/g body weight)

being observed on day 21. The livers of the animals

on day 21 were hard and granular with diffuse hyper-

emia. The lobes were partially fused with strictures and

nodulation. The mean liver weight of the control

animals was 39.4 mg/g body.

The degree of hepatic fibrosis was assessed by

H&E as well as Masson’s trichrome staining. On day

3 after the start of DMN administration, several foci of

spotty necrosis were present with marked dilatation of

central veins. On day 5, extensive necrosis and hem-

orrhage was noted. There was marked neutrophilic and

mononuclear cell infiltrates with severe centrilobular

congestion. Mild bile duct hyperplasia was also ob-

served. Massive hepatic necrosis and collapse of the

liver parenchyma were observed on day 7. On day 14,

there was well-developed fibrosis. Bridging necrosis

was present in certain cases. Fibrosis with thick

collagen fibers was observed by day 21.

Masson’s trichrome staining was performed to

study fibrosis, to examine the accumulation of blue

collagen fibers with DMN administration. Trichrome

staining demonstrated slight pericentral fibrosis by

day 3. On day 5, abundant bridging fibrosis was

documented with the deposition of collagen fibers.

There was a blue circular staining pattern around

central veins on day 7. The lobular architecture was

distorted. By day 14, focal fibrosis and early cirrhosis

occurred, with abundant blue collagen fibers clearly

visible. All specimens by day 21 had well-developed

fibrosis and early cirrhosis.

3.3. Hyaluronan staining

Staining for HA in liver sections using the specific

HA-binding peptide was detected on day 4, reaching a
maximum on day 7. Staining occurred predominantly

in hepatocytes near the portal triad as well as in

sinusoidal lining cells. Intracellular HA was detected,

particularly in enlarged hepatocytes (data not shown).

No intracellular HA-staining could be detected in

control sections.

3.4. Serum aspartate and alanine aminotransferase

The AST activities in the serum are shown in

Table 1. Levels were significantly increased on days

3 –7, with the maximum increase (� 30-fold)

recorded on day 7. The AST levels decreased to

normal values on day 14. Significant increases in

serum ALT levels were recorded on days 2–14.

The maximum increase was also observed on day

7, 16-fold higher compared to control values. Serum

AST levels decreased to normal activities by day

21.

3.5. Serum hyaluronan levels

Blood was collected at daily intervals in the first 7

days, and on days 14 and 21. The measure of HA

concentrations in rat serum was performed using a

competitive ELISA-based microtiter plate procedure,

as described under Materials and methods. Serum

levels on day 1 were indistinguishable from those

observed in control animals. Increases were evident

by day 2 and reached a maximum on day 4 that was

more than 20-fold higher than controls. Circulating



Fig. 1. Levels of HA in the serum of rats following DMN administration. The HA concentrations were assayed using a microtiter-based ELISA

assay. The HA levels are shown as a function of the days after the beginning of DMN treatment. Serum levels in control animals were

indistinguishable from those observed on day 1. Increases were evident by day 2 and reached a maximum by day 4. Concentrations of HA

decreased thereafter. The arithmetic means and standard deviations are shown. Six rats were used for controls and at each time point from days 1

through 7, while the 14- and 21-day time points utilized four rats each in all experiments shown in Tables 1 and 2, and in this figure.
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levels decreased thereafter, reaching control levels by

day 14 (Fig. 1).

3.6. Serum hyaluronidase levels

Blood was collected as described in Section 2 and

levels of circulating hyaluronidase activity examined.
Table 2

Levels of circulating serum hyaluronidase activity following

initiation of DMN treatment in rats

Hyaluronidase activity

Days rTRU/ml, meanF S.D.

Controls 30F 4

1 195F 2

2 1060F 15

3 1024F 8

4 910F 10

6 40F 5

14 18F 3

21 25F 2
Control levels of enzyme activity in untreated animals

was approximately 30 rTRUs/ml serum, about twice

that found in human serum [54]. Activity was in-

creased to 195 rTRUs by the first day, with a peak of

1060 units by day 2 (Table 2). This was 35-times

control levels. On day 2, 1024 units of activity were

observed. Hyaluronidase then decreased, reaching

control levels by day 6.
4. Discussion

Hyaluronidase and HA both appear to be very early

circulating indicators of acute liver injury in this rat

model system. Hyaluronidase levels were elevated in

the serum sample obtained on the first day following

the start of DMN treatment. A peak of enzyme activity

that was 35-times control levels was observed on the

second day, with only a slight decrease on the third

day. Samples of blood were obtained every 24 h. Very
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rapid changes were occurring during those first 2–3

days and, conceivably, an actual peak level may have

occurred in an intervening interval. Circulating HA

levels peaked on day 4, which was 20-times higher

than controls. These parameters of HA metabolism are

among the very earliest indicators of acute liver

damage, occurring well before more conventional

parameters of liver damage, such as aminotransferase

activities. The latter activities increased only gradually

and had peaks on day 7.

Administration of DMN to rats provides a valuable

animal model for the study of toxic liver injury. It is a

potent hepatotoxin, with doses as small as 20 mg/kg

causing massive liver necrosis and death [58]. Lower

doses cause subacute and chronic liver injury with

varying degrees of fibrosis [59]. The carcinogenicity

of DMN is also well established [59–61]. The histo-

pathological changes observed in rats following DMN

administration correlated well with alterations ob-

served in the human following liver injury, particularly

alcoholic cirrhosis. An increase in liver weight is

observed in the model, reaching a maximum at day 7

[49], the same time point that liver function tests

reached their peak levels in the present experiments

(Table 1). This also corresponded with the time that the

greatest levels of HA deposition in liver tissue oc-

curred (data not shown). But this occurred well after

the time that maximum levels of circulating HA were

observed.

This increased weight and swelling of the liver may

reflect tissue deposition of HA and its associated water

of hydration. The swelling within individual hepato-

cytes can also be attributed to intracellular HA

detected by histological localization. Hyaluronan is

usually associated within the ECM. However, other

reports of intracellular HA are now documented

[62–64], including situations of severe stress [65].

Because of its highly charged nature, HA takes on an

enormous volume of water of hydration, capable of

expanding its solvent domain up to 1000 its actual

polymer volume. The edematous swelling associated

with organ transplantation is also attributed to the

accumulation of HA [29–32]. A significant decrease

in liver weight then follows, observed both clinically

and experimentally [48,66].

At 21 days, massive centrilobular necrosis was

observed with well-developed fibrosis surrounding

central veins and occasional bridging. Increased
portal pressure, decreased liver blood flow, ascites

and a high mortality rate are also reported following

DMN administration in rats [42,49]. Late stage liver

weight reduction may occur because of decreased

protein synthesis, massive cell necrosis and collapse

of the liver parenchyma. Relative starvation may also

contribute to the decreased liver weight in these

animals.

Endothelial cells are sites of uptake and degradation

of HA in the liver, attributed to specific HA receptors

[35,67]. The HA deposition occurred in the areas of

periportal fibrosis and around the sinusoidal wall,

where fibrosis was developing. The HA is localized

particularly around Ito and sinusoidal endothelial cells

prior to the deposition of fibrous components [68].

A conundrum arises from the results of the present

studies. Increasing levels of circulating HA following

toxic liver injury can be attributed to failure of the

liver to remove HA from the blood. Dysfunction of

the sinusoidal endothelial system and its receptors

[69,70] can be invoked as the mechanism of increas-

ing levels of circulating HA. However, if this were the

case, levels of circulating HA should continue to

increase, rather than falling to normal levels, as is

observed.

The liver is the major source of degradation of

circulating HA, followed by the kidneys. When the

hepatic or renal arteries are ligated, there is an imme-

diate increase in circulating HA [71]. The ability of

HA to return to normal levels in the present experi-

ments might be explained by the ability of the kidneys

to compensates for the liver failure, performing the

entire function of HA removal.

The decrease in serum transaminase levels to ap-

parent normal levels is also seen clinically in patients

with liver injury. Following rises in enzyme levels, a

fall in activity indicates complete absence of liver

function. The peak and then decrease in HA and

hyaluronidase enzyme activity to baseline levels fol-

lowing liver injury appear to be similar, but the

mechanisms for decreasing levels may have an entirely

different mechanism.

Much information regarding the somatic hyaluro-

nidases is accumulating rapidly [37,72,73]. Increased

hyaluronidase activity often occurs whenever there is

rapid in HA deposition, a reflection of the rapid

turnover of the polymer. The acid-active hyaluroni-

dase, referred to as Hyal-1, is the only hyaluronidase
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present in serum and urine. As expected, increases in

circulating HA occurred very early following liver

injury, with an even earlier detection of increased

hyaluronidase activity. Enzymatic synthesis and deg-

radation, a reflection of increased turnover preceded

the actual increased steady state deposition of HA.

Increased hyaluronidase activity was detected on the

first day after the beginning of DMN administration.

The present studies represent the first time that levels

of Hyal-1 activity have been used in a study of liver

disease. The increased enzyme activity may be the

earliest possible indicator of acute liver insults and

may become an important clinical tool for assessing

hepatic damage.

Circulating levels of HA rise rapidly in response

to stress, following infection, in septicemia [12,13],

shock and in patients with extensive burns [14–16].

Such increases in HA, together with the ability to

take on a vast volume of water of hydration may

function as a survival mechanism, providing a natu-

rally occurring volume expander to prevent or delay

imminent intravascular collapse. The turnover of

circulating HA is remarkably rapid, with a t1/2 of

2–5 min [40].

In conclusion, in the DMN-induced liver injury

model, an increase in circulating hyaluronidase can be

detected within a day, with a peak of activity occur-

ring on day 2 that was 35-fold greater than controls.

Maximum circulating HA was observed on day 4 that

was 20-fold increased over controls. Hyaluronidase

and HA levels may be the very earliest markers for

toxic liver injury, occurring well before the peaks of

conventional serum markers.

The mechanism by which HA-associated serum

markers become elevated in response to liver damage

is not known. Many questions remain regarding HA

turnover in somatic tissues. The increased HA may be

a function of decreased degradation. Necrosis of liver

cells and release of enzymes such as hyaluronidase

into the circulation may account for the observations

made here. However, a 35-fold increase over control

levels makes this unlikely. Much work is required

before a comprehensive mechanism can be posited for

the present data. Towards this end, a putative catabolic

scheme for HA has been formulated recently [74] that

provides a framework for further experiments. Corre-

lations with clinical laboratory data may validate such

a scheme.
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