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ABSTRACT 
This paper deals with fractional order systems parameters estimation by use of Co-evolutionary Particle Swarm Optimization (CPSO) 

method. in some cases such as fractional order systems identification in spite of existing different methods, it is difficult to obtain estimation 

of model structure parameters and generally it leads to solving the with constrained complex non-linear optimization problems and this 

topic is one of the identification challenges of these systems. Since some of systems are inherently fractional order and because of having 

special behavior in these systems which in its similar integer order systems are not found. There for necessity of fractional modeling is 

double for such systems. In this paper, at first, we assume that the measured out-input data exists and for approximation to reality is 

considered that these data has been corrupted with noise. Then considering model structure as the linear combination of fractional 

orthogonal basis functions by use of CPSO suitable algorithm leads to estimation of fractional order system parameters and related to the 

complexity level of master system, suitable or acceptable approximation is obtained. In finally, by simulating of physical-typical sample 

system in noisy conditions leads to system identification which gained results shows the effectiveness of presented method. 

KEYWORDS: Fractional Order Systems, Parameter Estimation, System Identification, Co-Evolutionary Particle Swarm Optimization (Cpso) 

Algorithms 

Although the mathematics of fractional calculations has a few 

hundred years old, but in the two decades ago, it has been 

attracted in research and applicable fields of various sciences. 

Also, it was seen that some of the real systems have inherent 

fractional order behaviour and for example we can refer to real 

systems such as: viscoelastic materials, cell diffusion processes, 

transmission of signals via strong magnetic fields and some 

systems with disturbance characteristics that they have inherent 

fractional order behaviour (Benchellal et al., 2006; Chen, 2006; 

Feliu-Batlle et al., 2007; Rossikhin and Shitikova, 1997; 

Tavazoei et al., 2008). 

One of the features of behaviour of fractional order 

systems is presence of non-periodic modes that they are decay in 

polynomial form and also a behaviour that it is called long 

memory that we can’t find its similarity in integer order rational 

systems (Aoun et al., 2004). So, if modelling, identification, 

controlling and other studies on these systems want to be 

accurate and close to reality, it should be based on fractional 

order model of these systems. Even in integer order systems, 

modelling in the form of fractional order mode or controller 

design with fractional model is also more effective, because of its 

more degrees of freedom and also the systems with integer order 

are special state of fractional order systems. This topic has been 

shown in several researches, therefore, the importance of 

fractional models and their synthesis is clear in practice (Chen, 

2006). 

Suitable estimation parameters of the processes for 

fractional or integer is the challenge that we are facing or 

confronting with in the field of systems identification (Ljung, 

1999; Das, 2008). Problem of parameters estimations by getting 

help from time domain or frequency domain data is more 

difficult for a fractional order systems by comparison with the 

integer order systems, due to be highest degree of non-linearity 

that it makes a new parameter that called fractional order (Das, 

2008; Aoun et al., 2007; Malti et al., 2004; Ghanbari and Haeri, 

2010; Dorcak, 2002; Hartley and Lorenzo, 2003; Poinot.and 

Trigeassou, 2004; Malti  et al., 2009; Valério and da Costa, 2009, 

Ghanbari and Haeri, 2011).  

In order to identify fractional order systems, an effective 

ideas is taking model structure into consideration as fractional 

order orthogonal basis functions linear combination (Aoun et al., 

2007; Malti et al., 2004; Ghanbari and Haeri, 2010; Ghanbari and 

Haeri, 2011; Heuberger et al., 2005; Ninness et al., 2000; Akçay, 

2008; Nazari et al., 2008) that use of it has been attracted much 

attention recently. Since in structure of each fractional 

orthogonal basis function. The adjustment parameters must be 

determined, so, some efforts have been done to estimate 

adjustment parameters that we can refer to some cases  such as: 

error and trial method used in (Aoun et al., 2007; Malti et al., 

2004; Ghanbari and Haeri, 2010; ) for determining parameters 

despite of non-optimal method, a great deal of calculations are 

needed, Parameters estimation method from system impulse 

response which is needed to have systems precise impulse 

response after a long time that under real condition with noise 

and disturbance, its application is ineffective (Nazari et al., 

2008), assistance method from bode diagram which is a creative 

and relatively graphical method (Ghanbari and Haeri, 2011) and 

use of intelligent algorithm method which has been considered 

(Deepyaman and Amit, 2008), for special systems. 

Many of engineering problems such as systems 

identification can be formulated as a constrained optimization 

problem (He Q. and Wang, 2007). The penalty function method 

is one of the method which has many fans in solving of 

constrained optimization problem that the principal advantages 

of this method are principles ease and performance disadvantages 
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of this method are setting and suitable preparing of penalty 

factors. 

Many of constraints management techniques for 

optimization algorithms have been presented so far (He Q. and 

Wang, 2007)one of the suitable and comfortable method is CPSO 

method by use of PSO and evolutionary thinking which penalty 

factors in that method is adapted by use of self-adjustment 

method (He Q. and Wang, 2007). In this paper, considering 

linear combination model structure of fractional order orthogonal 

basis functions, we consider model structure with assumption 

being dominant pole of studied systems as the first terms of this 

linear combination and by use of CPSO suitable algorithm, we 

give for estimating all or part of free parameters of model 

structure. 

The paper organized as follows: part 2, it consists of 

some introductions about fractional order system concept. In part 

3, CPSO and optimization algorithm is described. In part 4, 

fractional order system parameters estimation method with 

dominant pole is presented. In part5, typical sample and 

applicable system is introduced and their simulation to show 

effectiveness of expressed method is done and in the end, this 

paper will end with part 6 which its conclusion and deduction. 

FRACTIONAL ORDER SYSTEMS 

Evidently, the first description of fractional order 

derivative is presented by Riemann and Liouville in 19
th

 century. 

While a function ( )f t is placed at 0t =  means that the 

function and all its derivatives are equal to 0 for all 0t < , the 

Laplace transform of the described derivative ( )D f tα
 , 

α +∀ ∈R
 
 is gained as follows (Das S, 2008; Podlubny, 1999; 

Cafagna, 2007): 

( ( )) ( )L D f t s F sα α=                                 (1) 

 

The Grunwald-Letnikov description (Das, 2008; 

Podlubny, 1999; Cafagna, 2007). 

Resulted from Grunwald-Lentnikov description, the 

numerical calculation formula of fractional derivative could be 

obtained as follows: 

[ ]

0

( ) ( )

L T

t L t j

j

D f t h b f t jhα α−
−

=

≈ −∑
      (2) 

In which L is the length of memory. T, the sampling 

time usually substitutes while increase h during approximation. 

Weighting factor bj could be measured in return by: 

( )0 1

1
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j
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(3 

A linear time same fractional order system could be 

described by a fractional order differential equation as below: 
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                                                                                 (4) 

On the base of description for fractional derivative and 

its Laplace change in (1), transfer function of a system proposed 

by (4) would be: 
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Where
2( , )i ja b ∈� ,

2( , )i jα β +∈� , 0 Am
α α< <L , and 

1 Bm
β β< <L . Transfer function ( )H s is named a jointing 

transfer function at order α +∈ �  while all the distinct orders 

were precisely divisible by similar number (α ) (the greatest 

number is usually selected).
 

( )H s  May be proposed by a model form gained by 

partial fraction expansion: 

1

( )
( ) l

L
l

q
l l

A
H s

s α λ=

=
−∑ ,                                    (6) 

Where lq  is the multiplicity of eigenvalues (pole 

locator) lλ  and α  (a real number) is identified as common 

differentiation order. 

Transfer functions, for example 1/ s α  are not easily 

used for calculating objective. Simulations are always conducted 

by software created just to work with integer powers of 

s .Several methods used for finding such approximations. 

Permanent situation for commensurable fractional order 

transfer function is proposed by Matignon in (Matignon, 1998). 

Here, we present a reviewed version of the theorem (Aoun et al., 

2007): 

Stability theorem: A commensurate transfer function of 

orderα , 

( ) ( ) ( ) ( ) ( ) ( )H s N s D s N w Dw wα α= = =Η      (7) 

Where N  and D  are two coprime polynomials, is 

BIBO stable iff: 

0 2α< < ,                                                            (8) 

And for every w ∈�  such that ( ) 0D w = , 

arg( ) 0.5w απ> . (9) 

For a rational system, the stability condition guarantees 

that the related transfer function would belong to 2 ( )H +
� . 

However, in fractional order systems it is not so. In (Malti et al., 

2003), it is demonstrated that a stable fractional transfer function 

as defined in (5), belongs to 
2 ( )H +
�  iff its relative degree is 

greater than 0.5 : 
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0.5
B Am mβ α− > .                                            (10) 

CPSO ALGORITHM 

Within two recent decades PSO method which is a 

evolutionary calculation technique with individual improvement 

mechanism, teamwork and competition, has attracted much 

attention and successfully in several ways has been used 

specially in unconstraint continuous optimization problems 

(Malti et al., 2003). 

The CPSO method for with constraints optimization by 

making PSO and evolutionary thinking was presented in 

reference (He Q. and Wang, 2007) paper, which its short 

definition can be expressed as follows: 

 
Figure1. Schematic shows for CPSO. 

 

In CPSO two varieties of swarm is obtained with the 

mutual effect (according to figure 1) that an individual swarm, 

2swarm  with size M2 for suitable compatibility of penalty 

factors is used and the other variety of multiple swarms, 

1, jswarm  that each is used with size M1 to search of decision 

results parallelly. 

Each particle (
jB ) in 2swarm  is including the 

complex of penalty factors for particles into swarm1,j that its 

each particles is expressing a decision result. 

In each production the co-evolutionary process of each 

1, jswarm  with particle in (
jB ) in 2swarm as penalty factors 

by making use of PSO is obtained for the definite number of 

productions ( 1G ) for estimating the result, obtaining to the news 

1, jswarm .then the cost function, of each particle (
jB ) in 

2swarm is obtained. After that all particles is 2swarm is 

estimated, 2swarm by use of PSO with a production to obtain 

new 2swarm which is reagent of new penalty factor. 

The up co-evolutionary process repeats so much until 

the predefined stop criterion satisfies (for example the maximum 

value of productions 2swarm .) 

So in CPSO, not only the decision results is found as the 

evolutionary by 
1, jswarm  but also the penalty factors with self-

adjustment method has been adapted by 2swarm . 

PARAMETERS ESTIMATION OF FRACTIONAL 

ORDER SYSTEMS WITH DOMAINANT POLE  

An effective method which has a lot of advantages and 

usage in approximating and identifying usual systems and 

recently generalized in to fractional order systems, is using 

orthogonal basis functions (Aoun et al., 2007; Malti et al., 2004; 

Ghanbari and Haeri, 2010; Ghanbari and Haeri, 2011; Akçay, 

2008). In this method, model structure considered as linear 

combination of orthogonal basis functions (11 relation). That 

finally to identify, by assuming existence of time domain output-

input data leads to a linear regression and a convex optimization 

problem. 

0

ˆ ˆ( ) ( ) ( ) ( )
N

T

n n

n n

H s H s a s sθ
=

≈ = Ρ = Ρ∑ ,     (11) 

Classical Laguerre basis functions, Classical Legendre 

basis functions and Kautz basis functions is considered as the 

most applicable and popular integer orthogonal basis functions 

and fractional Legendre orthogonal basis functions and fractional 

order Laguerre orthogonal basis functions is implied as the most 

applicable and popular fractional orthogonal basis functions 

(Aoun et al., 2007; Malti et al., 2004; Ghanbari and Haeri, 2010; 

Ghanbari and Haeri, 2011; Heuberger et al., 2005; Ninness et al., 

2000; Akçay, 2008; Nazari et al., 2008). 

In this study, regarding to suitable features and 

sometimes orthogonal parameterizing unique, this method 

selected for system identification and in order to cover model 

structure fractional dimension systems as linear combination of 

fractional order orthogonal basis functions. 

The model structure of ( )H s  is described as a linear 

combination of the fractional order ORFs as below: 

0

( ) ( )i i

i n

H s sκ
∞

=

= Ρ∑ ,                                       (12) 

At ( )i sΡ  are fractional order Laguerre or Legendre 

orthogonal basis function that are linear combination of their 

equal generating functions ( nF ) described as below: 
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,n lA  And 
,n lB  are computed in a way defined in 

(Aoun et al., 2007; Malti et al., 2004; Ghanbari and Haeri, 2010). 

We consider model structure for fractional order 

systems with fractional order dominant pole as 

1( ) , 0 2, 0,
k

G s a k
s aα α= ∈ℜ

+
p p f  which prepares 

(8, 9) relation stability condition and the term of belonging to
 

2H . We follow three parameters of above model structure such 

as: α commensurate fractional order, a pole position, and k 

coefficient. In order to identify these parameters two procedure 

to a problem procedures followed by the help of CPSO method. 

Procedure 1: we obtain all three parameters by CPSO 

method. 

Procedure 2: at first all three parameters by CPSO 

method. Then we obtain k coefficient regarding to the existence 

of true system output-input data which is mixed with noise by the 

help of LS (the Least Square) method. 

A direct method to identify specifies this coefficient is 

measurement of parameters in model structure ˆ ( )H s  that is 

described as below: 

0

ˆ ˆ( ) ( )
N

i i

i n

H s sκ
=

= Ρ∑ ,                                        (14) 

The coefficients ˆ
iκ  are computed, therefore the 2L  

norm of the prediction error ( )tε  is reduced regarding to the 

following model structure: 

0

ˆ( ) ( ) ( ) ( )
N

i i

i n

y t p t u t tκ ε
=

= ⊗ +∑                    (15) 

This model structure is of linear regression kind that is a 

desirable feature of parameterization with ORFs. If one explains: 

0 0

0 0

1

1

ˆ ˆ ˆ

( ) ( ) ( ) ( ) ( ) ( ) ( )

T

n n N

T

n n Nt p t u t p t u t p t u t

θ κ κ κ

φ

+

+

 = 

 = ⊗ ⊗ ⊗ 

K

K

(16) 

Could be written as: 

( ) ( ) ( )Ty t t tφ θ ε= + ,                                      (17) 

The 2L norm of the prediction error ( )tε  is computed 

by the equation as below: 

22

1 1

( ) ( ) ( )
M M

T

t t

t y t tε φ θ
= =

= −∑ ∑                       (18) 

When reduction of this norm, leads to a facilitated least 

squares problem, the reduction quantity of parameters (θ̂ ) will 

be normal and usual solution of the equation as below: 

ˆ( ) ( )R M F Mθ =                                                (19) 

In which: 

1 1

1 1
( ) ( ) ( ) , ( ) ( ) ( )

M M
T

t t

R M t t F M t y t
M M

φ φ φ
= =

= =∑ ∑  (20) 

Above equation solution could be computed by standard 

numerical method that results leads to (Ljung, 1999). 

( ) 1ˆ T TR R R Fθ
−

=                                               (21) 

In all above procedures, for intelligent algorithm initial 

adjustments, we determine minimum and maximum limit for 

parameters and randomly we generate in this range number of 

determined particles in procedure 1 and 2 in a three dimensional 

space 

Also, in all above procedures, optimization algorithm is 

used for minimizing output error signal energy according to the 

following relation ((Ljung, 1999; Aoun et al., 2007; Malti et al., 

2004; Ghanbari and Haeri, 2010): 

2

identified model
[ ( ) ( )]

actual
F y t y t= −∑             (22) 

Where ( )actualy t is actual system output data and 

identified model ( )y t  is obtained model output data from estimation 

parameters. F  Is a criterion of identification process success 

and in position 0F =  the best identification that’s coinciding 

with identified model output on actual system output has been 

occurred. 

When identified actual model is not complicated, above 

optimization leads to actual values with a very good accuracy. 

Otherwise, it is obvious for complicated actual systems, 

considered model structure must have more terms (in the last 

position one term was considered) and number of increased 

parameters and the possibility to obtain parameter actual values 

could be a good accuracy but obtained values could be a good 

starting point for determining a range for parameters to reach free 

optimal parameters by the help of different methods such as trial 

and error. 

SIMULATION RESULTS 

In this part, to show proposed method effectiveness for 

physical system related to heat transfer and measurement by 

thermocouple (Das, 2008), complete process of estimating its 

model structure parameters will be brought. 

In this system, as a permanent stimulating input signal, 

(PRBS) pseudo random binary sequence will be used position. 
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Then output signal which corrupted by standing Gaussian white 

noise with zero average and the ratio of signal to noise 

SNR=13db used for estimation. 

In this sample, a fractional model is gained for a signal 

thermocouple junction system (Fig.2) (Das, 2008). A general 

heat flow equation relating the heat flux conducted through a 

semi-infinite conductor of heat to the temperature at the origin 

can be written as: 

0.5( ) ( )a t b

k
Q t D T t

α
=                                  (23) 

 
Figure2. Thermocouple junction for temperature (heat flux) 

measurement. 

 

When initial forcing conditions are zero, 
0.5

a tD  would 

be replaced by 
0.5 0.5/d dt . Here /k cα ρ=  (c  is the heat 

capacity (
1 1Jkg K− −

), ρ  is density (
3kgm −

), k  is the 

coefficient of heat conduction, (
1 1Wm K− −

)) is thermal 

diffusivity, and bT  (K ) is the body temperature at the junction 

point. Input heat flux to the thermocouple from the source 

temperature to the tip of the thermocouple junction is determined 

by ( ) ( ( ) ( ))i g bQ t hA T t T t= −  where h  (
2 1Wm K− −

) is the 

convective heat transfer coefficient and A  (
2m ) is the surface 

area. The input heat flux flows into two thermocouple wires ( 1Q  

and 2Q ) as shown in Fig. 2. Therefore: 

1 2

( )
( ) ( ) ( )b
i

dT t
m c Q t Q t Q t

dt
= − −

             

 (24) 

m  ( kg ) is mass of the thermocouple. 

Combining the given equations, the relation between 

input (
gT ) and output (

bT ) of this system can be represented by a 

commensurate fractional order transfer function (Das, 2008): 

0.51 2

0.5 0.5

1 2

( ) 1

( ) 1
1

b

g

T s

T s k kmc
s s

hA hA α α− −

=
   + + +  

   

 (25) 

 
Figure3. Output signal of the system in (28) for a 

pseudorandom input. 

As a practical case, the coefficients are taken values 

such that the following transfer function is obtained: 

1 2

0.5 0.5

1 2

1
0.005, ( ) 0.5

k kmc

hA hA α α− −
= + =  

1 0.5 0.5 0.5

( ) 200 2.08514 2.08514
( )

( ) 100 200 2.04168 97.9583

b

g

T s
H s

T s s s s s
= = = −

+ + + +
(26) 

This system has two pole locators far from each other. 

Fig. 3 shows the output signal of system 1H  for a 

PRBS input signal with magnitude { 1,1− }. A white Gaussian 

noise with SNR=13 dB has been added to the output signal. 

By having the cost function as error signal according to 

relation 22, we act for its minimization by use of described 

CPSO algorithm. 

Regarding to described steps, 1H  modeled as 

1( ) , 0 2, 0,
k

G s a k
s aα α= ∈ℜ

+
p p f . 

According to described procedure 2 in part 4 (two 

parameters estimation of fractional order (α) and estimation of 

pole condition (a) based on CPSO algorithm and estimation of 

gain coefficient (k) based on Ls method ) to obtain 11
ˆ ( )H s  

model and according to described procedure 1 in part 4 ( three 

parameters estimation based on CPSO algorithm) to obtain 

12
ˆ ( )H s  model and for showing effectiveness of new method we 

compare the obtained results by 13
ˆ ( )H s  that in paper (Ghanbari 

and Haeri, 2011) the author gained within a creative by use of 

system bode diagram. 

11 0.50576

12 0.50576

13 0.58

1.980070ˆ ( )
1.9781

1.9796ˆ: ( )
1.9781

2.698ˆ ( )
2.85

H s
s

Identified Model H s
s

H s
s

=
+

=
+

=
+

                 (27) 

In order to see success level in estimated models 

frequency domain, figure.4 shows actual system range Bode 
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diagram and estimated models. 

( )2 2

10 model
0 0

10 log ( ( ) ( ) / ( ) )
T T

J y t y t dt y t dt= −∫ ∫  (28) 

Also, in order to show estimated parameters values 

optimization with presented method, at first normalized remained 

described as relation (28) that's a conventional criterion for 

successful estimation ((Ljung, 1999; Aoun et al., 2007; Malti et 

al., 2004; Ghanbari and Haeri, 2010). For comparing the 

estimated model of normalized remainder ( J ) value (in table 1) 

is brought. Then by considering [ ] [ ]0.42,0.72 , 0.95,3.95aα ∈ ∈  

calculate. Normalized remained isocounters in relation (28) at 49 

points. ( ),aα  Fig.5 shows obtained isocounters from 

determined fractional model structure. It is seen that estimated 

parameter values, approached to optimal value very much, this 

matter confirm presented estimation process for reaching 

parameters optimal value. 

 
Figure4. Estimated models and 

1H  system range Bode 

diagram. 

 
Figure5. Obtained isocounters from determined fractional 

model structure. 

Table 1: Normalized Remained ( J ) of Estimated Model 

Normaliz

ed 

remained 

( J ) 

11

ˆ ( )H s Mod

el 

12

ˆ ( )H s Mod

el 

13

ˆ ( )H s Mod

el 

-10.8723622 -10.8723110 -10.0151334 

 

CONCLUSION 

Regarding to fractional systems application increase and 

unique features of this system behavior and necessity of their 

recognition in different process such as modeling and control, 

estimation of fractional models structure parameter attracted 

much attention. 

As the systems identification problem is a with 

constraints optimization problem too. So in this paper 

considering model structure as the first term, fractional 

orthonormal parameters by use of CPSO algorithm develops 

which in two varieties of swarm by use of PSO which has the 

mutual effect. From the input-output data which corrupted with 

noise, the suitable estimation obtains from parameters of this 

model structure. 

In order to cover fractional system with complicated and 

changing behaviors, must consider poles as different and 

incorporate ones. 

We are hopeful that in our future works we can identify 

more complex systems by use of suitable method of CPSO. 

REFERENCES 

Benchellal A., Poinot T., and Trigeassou J.C., 2006. 

Approximation and identification of diffusive interfaces by 

fractional models,” Signal Processing, pp. 2712-2727 

Chen Y.Q., 2006. Ubiquitous fractional order controls?, In 

Proceedings of the Second IFAC Workshop on Fractional 

Differentiation and Its Applications, Porto, Portugal. 

Feliu-Batlle V., Rivas P.R., and Sanchez R.L., 2007. Fractional 

robust control of main irrigation canals with variable dynamic 

parameters, Control Engineering Practice, 15: 673-686 

Rossikhin Y.A. and Shitikova M.V., 1997. Application of 

fractional derivatives to the analysis of damped vibrations of 

viscoelastic single mass system, Acta Mech., 120 : 109-125 

Tavazoei M.S., Haeri M., and Jafari S., 2008. Fractional 

controller to stabilize fixed points of uncertain chaotic 

systems: Theoretical and experimental study, Journal of 

Systems and Control Engineering, 222(I) : 175-184 

Aoun M., Malti R., Levron F., and Oustaloup A., 2004. 

Numerical simulations of fractional systems: An overview of 

existing methods and improvements, International Journal of 

Nonlinear Dynamics and Chaos in Engineering Systems, 117-

131 

Ljung L., 1999. System Identification: Theory for the User. (2
nd

 

Ed), Englewood Cliffs, NJ: Prentice-Hall 

Das S., 2008. Functional Fractional Calculus for System 

Identification and Controls, Springer Berlin Heidelberg New 

York 

Aoun M., Malti R., Levron F., and Oustaloup A., 2007. Synthesis 

of fractional Laguerre basis for system approximation”, 

Automatica, 43: 1640-1648 



MAHMOOD GHANBARIA ET AL.: PARAMETERS ESTIMATION OF FRACTIONAL ORDER SYSTEM WITH DOMINANT POLE… 

 

Indian J.Sci.Res. 2(1) : 69-75, 2014           75 

Malti R., Aoun M. and Oustaloup A., 2004. Synthesis of 

fractional Kautz-like basis with two periodically repeating 

complex conjugate modes,” First International Symposium on 

Control, Communications and Signal Processing, pp. 835-839 

Ghanbari M. and Haeri M., 2010. Parametric identification of 

fractional-order systems using a fractional Legendre basis, 

Proc. IMechE, Part I: J. Systems and Control Engineering, 

224 (I3), 261-274. DOI 10.1243/09596518JSCE833 

Dorcak L., Lesco V., and Costial I., 2002. Identification of 

fractional-order dynamical system,” arXiv: 

math.OC/0204187v1 

Hartley T. and Lorenzo C., 2003. Fractional order system 

identification by continuous order distribution,” Signal 

Processing, 2287-2300 

Poinot T.and Trigeassou J.C., 2004. Identification of fractional 

systems using anoutput-error technique, NonlinearDynamics, 

38:133-154 

Malti R., Raïssi T., Thomassin M., Khemane F., 2009. Set 

membership parameter estimation of fractional models based 

on bounded frequency domain data,” Communications in 

Nonlinear Science and Numerical Simulation, doi:10.1016 

/j.cnsns.2009.05.005 

Valério D. and da Costa J.S., 2009. Finding a fractional model 

from frequency and time responses,” Communications in 

Nonlinear Science and Numerical Simulation, 

doi:10.1016/j.cnsns.2009.05.014 

Ghanbari M. and Haeri M., 2011. Order and pole locator 

estimation in fractional order systems using Bode diagram,” 

Signal Processing, 91 : 191-202 

Heuberger P.S.C., Van Den Hof P.M.J., and Wahlberg B., 2005. 

Modeling and Identification with Rational Orthogonal Basis 

Functions, Springer Verlag London 

Ninness B.M., Gibson S., and Weller S.R., 2000. Practical 

aspects of using orthonormal system parameterizations in 

estimation problems,” In 12
th

 IFAC Symposium on System 

Identification 

Akçay H., 2008. Synthesis of complete orthonormal fractional 

basis functions with prescribed poles,” IEEE Trans. Signal 

Processing, 56: 4716-4728 

Nazari N., Haeri M., and Tavazoei M.S., 2008. Estimating the 

fractional order of orthogonal rational functions used in the 

identification”, ICCAS, Seoul, Korea, Oct. 14-17 

Deepyaman M., and Amit K., 2008. Approximation of a 

fractional order system by an integer order model using 

particle swarm optimization technique”, IEEE Sponsored 

Conference on Computational Intelligence, Control and 

Computer Vision In Robotics & Automation, CICCRA, 149-

152 

He Q. and Wang L., 2007. An effective coevolutionary particle 

swarm optimization for constrained engineering design 

problems,” Engineering Applications of Artificial Intelligence 

(Elsevier), 20 : 89-99 

Podlubny I., 1999. Fractional differential equations, Academic 

Press, New York 

Cafagna D., 2007. Fractional Calculus: A mathematical tool from 

the past for present engineers”, IEEE Industrial Electronics 

Magazine, doi 10.1109/MIE.2007.901479, 35-40 

Matignon D. 1998. Stability properties for generalized fractional 

differential systems. ESAIM Proceedings-Systèmes 

Différentiels Fractionnaires-Modèles, Méthodes et 

Applications, 5: 145-158 

Malti R., Aoun M., Levron F., and Oustaloup A., 2003. H2 norm 

of fractional differential systems, In Proc. of design 

engineering technical conferences and computer and 

information in engineering conferences, Chicago, Illinois, 

USA, New York: ASME. 

Kennedy J. and Eberhart R. C., 1995. Particle swarm 

optimization,” Proceedings of IEEE International Conference 

on Neural Networks, Piscalaway, NJ. pp. 1942-1948 

 


