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Introduction

The value of a share represents the current value of the future cash flows

that it ensures. It is anything but certain: who issues a share doesn’t make a

commitment against those who subscribe it, if not to get them to participate

in the profits of a business activity.

Therefore it is easy to understand that the evaluation of the shares is a matter

of great complexity. Investors and financial analysts usually rely on models

that can explain the trend value of shares.

In these analysis advanced models are often used: they are based on stochas-

tic differential equations in which the uncertainty of financial market is rep-

resented by a random process.

Through these models, in absence of arbitrage, the operators try to outline

the prices of derivatives linked to an underlying entity traded on the market

(e.g. Options) and develop techniques in order to reduce the risk in such

investments.

In these models, the volatility represents a fundamental factor for the

price evaluation of financial primary assets as well as of financial derivatives.

The well-known formula of Black & Scholes (1973) is frequently used for the

evaluation of European options but the disadvantage of this formula relies

on the assumption of a constant volatility like a constant parameter with re-

spect the time. This formula is also used to evaluate the underlying volatility

(called implied volatility) observing option prices. Unfortunately, the implied

volatility observed on the market changes significantly in time. Thus, models

describing time-varying volatility are suitable for realistic applications.

This problem has been investigated in several research contributions:

Scott (1977) created an econometric model to estimate the volatility pa-

rameter in its stochastic process; Johnson and Shanno (1987) used Monte

Carlo methods to simulate the underlying asset price (St) and the volatil-

ity processes; Heynen and others (1994) analyzed many econometric models

(ARCH(1), GARCH(1,1) and EGARCH(1,1)) for the volatility dynamics;

Xu and Taylor (1994) used un AR(1) model and a Kalman filter technique

in order to understand the volatility behavior through the implied volatility.
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In many research papers the use of mean-reverting random processes has

been highlighted. In fact, there is an empirical evidence that this kind of

dynamics represents a good driver for asset volatility dynamics.

Moreover, empirical analyzes reveal that large part of financial time series

have probability distributions very different from a normal distribution. This

probability distributions assigns a higher probability to events far from the

mean (fat tail). Leptokurtosis is compatible with variance variability of asset.

In this thesis we address the problem of parameter estimation in one of

the most popular stochastic volatility model: the Heston’s model (1993).

This model assumes that the price of the asset is described by a geomet-

ric Brownian motion with stochastic variance. The variance is driven by a

square-root stochastic differential equation. This last derives by Cox Ingersoll

Ross model (1985), a well known model for the evolution of interest rates.

We propose a new approach for the estimation of the parameters in gen-

eral stochastic volatility models. Then, in order to establish the validity of

our technique, we apply our method to the Heston case, and we present nu-

merical comparisons with existing techniques.

Heston Stochastic Volatility Model

We suppose that the stock price S and its variance v satisfy the following

SDEs:

dS(t) = µS(t)dt+
√
v(t)S(t)dW 1(t) (1)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dW 2(t) (2)

(3)

where W 1(t) and W 2(t) are standard BM with instantaneous correlation

ρ ∈ [−1, 1], i.e. Cov(W 1(t),W 2(t)) = ρt, and µ ∈ R is the instantaneous drift

of stock price returns. The stochastic process that describes volatility is an

example of square-root process introduced by Cox, Ingersoll and Ross in 1985

to describe the interest rate. Its deterministic component κ(θ−v(t)) produces

an oscillation around the parameter θ > 0, called long-term volatility. For

this reason we say that the process is mean-reverting, and the parameter
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κ > 0 is called reversion speed. In the stochastic term σ
√
v(t)dW 2(t), the

constant σ > 0 is called the volatility of volatility and it gives the intensity

of the noise generated by W 2(t).

For the volatility process to remain strictly positive, the parameters κ > 0,

θ > 0 and σ > 0 must also verify a fundamental constraint, the Feller

condition [54]:
2κθ

σ2
> 1. (4)

One of the reasons for the popularity of the Heston model is that it

provides a closed-form solution for pricing of vanilla options. This is of great

benefit in particular when calibrating against market prices. In this section

we will derive the closed-form for the price of a Call option according to

the Heston model following Heston’s original 1993 approach. In the Black-

Scholes case, there is only one source of randomness – the stock price S =

S(t)- which can be hedged with stock. In the present case, random changes

in volatility also need to be hedged in order to form a riskless portfolio.

Financial Market Modeling with Random Parameters

In the Chapter 3 of this thesis, we will propose a new mathematical frame-

work to price financial instruments derivatives, where the underlying stochas-

tic model depends on some random parameters governed by a pre-defined

probability law. For a fixed parameter value, we consider a stochastic Ito

process driven by a Brownian motion on the same probability space for the

assets dynamics in the market.

The motivation for the introduction of this new point of view in financial

modeling is mainly based on the fact that the price of a call option obtained

in the framework of a stochastic volatility model depends on the value v0, the

initial volatility, that unfortunately acts like an hidden stochastic variable.

The most simple approach adopted to resolve the estimation of this hid-

den variable, is considering v0 as an additional parameter in the calibration

procedure.

In fact, in valuing financial derivatives, the no-arbitrage price of a

European-type derivative can be found by a representation formula, where

the price is given as a conditional expectation under a risk-neutral probability
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measure. In our approach, we extend that framework, by proving a new

version of the fundamental theorem of asset pricing (Harrison Kreps (1979))

for processes depending on random parameters.

This allows to state a no arbitrage pricing formula similar to the classical

one, without conflict with classical theory.

Although the application of this new arbitrage context is related to a

specific stochastic volatility model, the theoretical results presented in this

work, exhibit a much more general significance in financial modeling.

Random Parameters Modeling

Let q : (Ω0,F0) → (Rp,B(Rp)) a random variable defined on a complete

probability space (Ω0,F0, f0) with a probability law µ0 defined as follows:

µ0(B) = f0({ω0 ∈ Ω0 : q(ω0) ∈ B}), ∀B ∈ B(Rp). (5)

Let (Ω̃0, F̃ , (F̃t)t∈[0,T ], P̃0) be the product probability space:

1. Ω̃0 := Ω× Rp and Ω̃0 3 ω̃ = (ω, q)

2. F̃t := Ft ⊗ B(Rp)

3. P̃0 := P⊗ µ0

(Ω,F , (Ft)t∈[0,T ],P) is a complete probability space where is defined a d-

dimensional BM W (t) which usually represents stock prices in a market.

We consider a d-dimensional market with a set of risky non-dividend-

paying assets, with price at time t given by Sqi (t), i = 1, . . . k, and a riskless

asset, a bond, with price at time t given by S0(t). They verify the following

q-depending stochastic differential equations, for every fixed q ∈ Rp:{
dSqi (t) = µi(t, q)S

q
i (t)dt+

∑d
j=1 σi,j(t, q)S

q
i (t)dWj(t),

Sqi (0) = sqi > 0, for t ∈ [0, T ]

(6)

and {
dS0(t) = rtS0(t)dt,

S0(0) = s0 > 0 for t ∈ [0, T ].
(7)
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In particular we focus on interest rate rt that is a real-valued progressively

measurable process and, without loss of generality, we assume that s0 = 1

so that S0(t) = exp(
∫ t

0 rudu). We assume that the initial prices are known,

given q ∈ Rp.

Portfolio and Arbitrage

An essential feature of market modeling is based on the absence of arbitrage

opportunities. This assumption can be interpreted as a market equilibrium

condition.

Now we introduce the notion of Portfolio and Arbitrage in the market (6)-(7).

Definition 0.0.1. A portfolio in this market is a progressively measurable

process θ(t) with values in Rk+1. The value of this portfolio at time t will be

given by 〈θ(t), Sq(t)〉.

Definition 0.0.2. The porfolio θ(t) is a self-financing portfolio if θ ∈ Λ(S)

and its value verifies

〈θ(t), Sq(t)〉 = 〈θ(0), S(0)〉+

∫ t

0
θ(s)dSq(s) (8)

for all 0 ≤ t ≤ T , P̃0 almost surely.

Definition 0.0.3. A portfolio θ ∈ Θ(Sq) is an arbitrage if

〈θ(0), Sq(0)〉 ≤ 0 ≤ 〈θ(T ), Sq(T )〉, P̃0-a.e.

and

P(〈θ(T ), Sq(T )〉 > 0) > 0, µ0-a.e

In absence of arbitrage there is a proportional relationship between av-

erage rate of security prices variation and risk related to the same security

values volatility. This concept is expressed by the following result. We define

V q(t) := Sq(t)
S0(t) and Ṽ q(t) := (V q

1 , . . . , V
q
k ).

σṼ and µṼ are respectively the diffusion process and the drift of Ṽ q.
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Theorem 0.0.4. Let the financial market represented by V q be arbitrage

free. Then, there exists a Rd-valued progressively measurable process λ with

respect to (F̃t)t, such that for almost every (ω̃, t) ∈ Ω̃0 × [0, T ], it holds

σṼ (t, q)λ(t, q) = µṼ (t, q) (9)

q-Depending Risk Neutral Probability Measures

By Girsanov theorem, we define a probability measure Q̃0 ∼ P̃0 on the

product space Ω̃0 by its Radon–Nikodym derivative:

dQ̃0

dP̃0

|F̃t
= δλ0 (t, q) = e−

∫ t
0 λ(s,q)dWs− 1

2

∫ t
0 |λ(s,q)|2ds, (10)

where λ is given by Theorem 0.0.4. Thus, given a product set A×B, where

A ∈ Ft and B ∈ B(Rp), Q̃0 acts as follows

Q̃0(A×B) =

∫
B

∫
A
δλ0 (ω, q)dP(ω)dµ0(q) =

∫
B
Qq(A)dµ0(q) (11)

Qq is obviously a probability measure on Ω which is equivalent to P, µ0-a.e.

Therefore we have the following mapping:

Rp → {Probability measures equivalent and absolutely continuous with respect to P}

q 7→ Qq, Qq(A) = EP[1Aδ
λ
0 (ω, q)]

Given the discounted price process on Ω̃0, Ṽ q, the following relation holds

true:

EQ̃0 [Ṽ q(ω, T )] = EP̃0 [
dQ̃0

dP̃0

Ṽ q(ω, T )] =

=

∫
Rp

dµ0(q)

∫
Ω
δλ0 (ω, q)Ṽ q(ω, T )dP(ω) =

=

∫
Rp

EQq
[Ṽ q(ω, T )]dµ0(q)

{Ṽ q(ω, t)}t∈[0,T ] is a stochastic process µ0-a.s. and a martingale under the

measure Qq, i.e.

EQq
[Ṽ q(ω, T )|Ft] = Ṽ q(ω, t) ∀t < T, ∀q, P− a.s. (12)
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In this thesis we prove that {Ṽ q(ω, t)}t∈[0,T ] is a martingale under Q̃0, that

is:

EQ̃0 [Ṽ q(ω, T )|F̃t] = Ṽ q(ω, t) ∀t < T, P̃0 − a.s. (13)

In this framework, the extended no-arbitrage theorem and the contingent

claim price represent by 13 is consistent with classical theory and, in this

context, the range of implied prices is increased with respect to the case

where q is a constant parameter.

In order to prove 13, we use the following:

Definition 0.0.5. Let Ω be a nonempty set, and let D be a collection of

subsets of Ω. Then D is a Dynkin system if

1. Ω ∈ D

2. if A ∈ D, then Ac ∈ D

3. if A1, A2, A3, . . . is a sequence of subsets in D such that Ai ∩ Aj = ∅

for all i 6= j, then
∞⋃
n=1

An ∈ D

Theorem 0.0.6 (Dynkin’s π-λ Theorem [74]). If P is a π-system and D is

a Dynkin system with P ⊆ D, then σ(P ) ⊆ D.

Averaged call price for the Heston’s stochastic volatility model

We apply the theoretical framework described in the Chapter 3 of the thesis

to the case of the Heston stochastic volatility model. In addition, we state

rigorous results in order to derive a closed-form formula for vanilla options

(called Averaged call price formula).

Furthermore, we show how our extended version of the Heston pricing model

is in fact more effective in the calibration of option prices in comparison with

a traditional procedure often used in practice. In particular the estimation

method as been applied to a real dataset of option prices written on the

S& P500 index. Stochastic dynamics of stock prices is commonly described

by a geometric (multiplicative) Brownian motion, which gives a log-normal
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probability distribution function (PDF) for stock price changes (returns).

However, numerous observations show that the tails of the PDF decay slower

than the log–normal distribution predicts, see Bouchaud and Potters (2001).

There is empirical evidence and a set of stylized facts indicating that

volatility, instead of being a constant parameter, is driven by a stochastic

process. Due to the apperant contradiction of constant volatility assumption

of the Black-Sholes model as illustrated by the volatility skew observed in

practice, the stochastic volatility models were proposed and applied to the

option pricing problems. We consider the simple stochastic volatility model

proposed by Heston (1993).

The choice of Heston’s model is motivated by the fact that it has a closed-

form expression for the characteristic function of its transitional probability

density function from which options can be efficiently priced, a feature of

Heston’s model that has received considerable attention in the literature.

Heston’s model is the most popular one because of its three main features:

it does not allow negative volatility, it allows the correlation between asset

returns and volatility and it has a closed-form pricing formula.

The calibration of the Heston model faces at least three difficulties. First,

because volatility is random, an exact likelihood function cannot be com-

puted, which means that the standard econometric method cannot be applied

to estimate the underlying asset return diffusion process. Second, the data

are observed at discrete times, but the model is built under a continuous-

time framework. There must be a map between the continuous-time diffusion

process suggested by the theory and the discrete time estimation used in prac-

tice. Third, in pricing options under stochastic volatility, the market is not

complete; one needs to know the volatility risk premium before pricing the

option.

In a time-series analysis, the fitting of stochastic volatility models to in-

dex returns is a well established field of research. For example, Ait-Sahalia

and Kimmel (2007), (2010) develop closed-form approximations to the log-

likelihood function; Eraker (2001), (2004), Eraker, Johannes and Polson

(2003) Jacquier, Polson and Rossi (2004) propose the use of MCMC meth-

ods. Instead, filtering methods are used by Bates (1996), Johannes, Polson

12



and Stroud (2009), Christoffersen, Jacobs and Mimouni (2010) and Hurn,

Lindsay and McClelland (2012). The ability to combine a long time series

data on the underlying’s price with the available options with the aim to

estimate the dynamics of a stochastic volatility model is, however, not new.

See for instance Ait-Sahalia, Wang and Yared (2001), Jones (2003) and Er-

aker (2004). Expecially particle filter methods are implied for the unobserved

state (volatility) and integration over the unobserved states is achieved by

Monte Carlo integration Johannes, Polson and Stroud (2009). Unfortunately,

the computational complexity of this approach is driven by the requirement

that each particle in the filter must be used to price all the required options.

Since volatility is not a tradable asset, the option pricing formula for any

stochastic volatility model will involve a volatility risk term. Therefore, in

this chapter we describe and implement an estimation technique where the

price of an option is based on the extended version of the market illustrated

in Chapter 3. The advantage of this method is that the initial volatility,

which is usually incorporated in the parameter set, is now considered as a

random parameter driven by a suitable probability distribution function. All

the model risk-neutral parameters, including those involved in the distribu-

tion of the initial volatility, can be identified by calibration procedure from

cross sectional option prices. Actually, the question remains open whether

the implied parameters truly reflect the original information contained in the

underlying asset return distribution. As Bates (1996) points out, the major

problem of the implied estimation method is the lack of an associated statis-

tical theory. The implied methodology solely based on option prices is thus

purely objective driven.

It should be stressed that the Heston model is used only as a specific

example to allow the econometric methodology to be fully developed. Our

technique itself is, not limited to any particular model and the extension to

other models, eventually involving jumps, is a matter of detail alone and

requires no further significant conceptual development. The method is illus-

trated using the S&P 500 Index from – to – and options written on the index

over that period. All the parameters of the Heston’s model of stochastic
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volatility are estimated with good precision.

Heston model Calibration

The Heston model has essentially six parameters that need estimation: κ,

θ, σ, ρ, µ and v0. Research contributions have shown that the implied pa-

rameters that produce the correct vanilla option prices and their time-series

estimate counterparts are different [5]. So one cannot just use empirical es-

timates for the parameters.

This leads to a complication that plagues stochastic volatility models in gen-

eral. A common solution is to find those parameters which produce the

correct market prices of vanilla options. This is called an inverse problem,

as we solve for the parameters indirectly through some implied structure.

The most popular approach to solve this inverse problem is to minimize the

error or discrepancy between model prices and market prices. This usually

turns out to be a non-linear least-squares optimization problem. More specif-

ically, the squared differences between vanilla option market prices and that

of the model are minimized over the parameter space, i.e., we evaluate

min
Ω
F (Ω) = min

Ω

N∑
i=1

ωi

(
CModel
i (Ti,Ki; Ω)− CMarket

i (Ki, Ti)
)2

(14)

where Ω is a vector of parameter values, CModel
i (Ti,Ki; Ω) and CMarket

i (Ki, Ti)

are the ith option prices from the model and market, respectively, with strike

Ki and maturity Ti, N is the number of options used for calibration, and the

ωi’s are weights (the choice of these weights will be discussed later).

The minimization above is not as trivial as it would seem. In general,

F (Ω) is neither convex nor does it have any particular structure. This poses

some complications:

• Finding the minimum of F (Ω) is not as simple as finding those param-

eter values that make the gradient of F (Ω) zero. This means that a

gradient based optimization method will prove to be futile.

• Hence, finding a global minimum is difficult (and very dependent on

the optimization method used).
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• Unique solutions to (14) need not necessarily exist, in which case only

local minima can be found. This has some implications regarding the

stationarity of parameter values which are important in these types of

models.

This is therefore an inverse, ill-posed problem termed the calibration problem.

There are several calibration methods that have been experimented. The

regularization method involves adding a penalty function, p(Ω), to (14) such

that

min
Ω

N∑
i=1

ωi

(
CModel
i (Ti,Ki; Ω)− CMarket

i (Ki, Ti)
)2

+ αp(Ω) (15)

is convex. The parameter α here is called the regularization parameter. Since

we cannot hope to determine the exact solution to our problem because of

its very nature, we attempt to find an approximation which is as close to

the true solution as possible. To achieve this we are moved to replace our

problem with one which is close to the original, but does not possess the

ill conditioning which the makes the original intractable. For a detailed

discussion refer to Chiarella et al. [47]. When applied to a given set of market

prices, these methods yield a single set of model parameters calibrated to

the market but also require the extra step of determining the regularization

parameter [48].

Hidden State Variable Estimation

The price of a call option obtained in the framework of a stochastic volatility

model depends on the value v0, the initial volatility, that unfortunately acts

like an hidden stochastic variable. The most simple approach adopted to re-

solve the estimation of this hidden variable, is considering v0 as an additional

parameter in the calibration procedure. An alternative approach can be per-

fomed with at-the-money implied variance, based on the results of Gatheral

[26].

We propose a new method where v0 is considered as a random variable

with a given probability density function Π, satisfying suitable assumptions.
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Consider the actual price of a call option with maturity Ti and strike Ki

obtained in the framework of the Heston model that we denote here as

CHi (Ω, v0) = CH(S, Ti,Ki; Ω, v0), (16)

where Ω = (κ, θ, σ, ρ) are the Heston’s model parameters. Averaging over

volatility, we can express the actual call price as

EΠ[CHi (Ω, v0)] =

∫ +∞

0
dv0C

H
i (Ω, v0)Π(v0). (17)

By the above expression, we remark that if we consider v0 to be a positive

constant and we replace Π(v0) with the Dirac delta function δ(v−v0) centered

at v0, then (17) simplifies:∫ +∞

0
dvCHi (Ω, v)δ(v − v0) = CHi (Ω, v0). (18)

Thus, the case of a constant initial volatility can be loosely seen as a special

case of considering v0 a random variable when the latter has the delta dis-

tribution. We wonder which approach yields the best approximation result

of the model against option prices observed in the market.

To this end, we consider the set of probability density functions (pdf).

Precisely, let P be the set of all non-negative Lebesgue-integrable functions

f : R −→ R such that f(x) = 0 a.e. for x ≤ 0, and∫ ∞
0

f(x)dx = 1. (19)

Given a basket of N call option prices related to different strikes and matu-

rities {(Ki, Ti)}i=1,...,N , let P ′ be a non-empty subset of P and define

J(Ω, v0) :=

N∑
i=1

ωi|CMi − CHi (Ω, v0)|2, (20)

J ′(Ω, f) :=

N∑
i=1

ωi|CMi − Ef [CHi (Ω, v0)]|2. (21)

Let , ′ be respectively the infimum of J over (Ω, v0), with v0 ∈ (0,+∞) and

the infimum of J ′ over (Ω, f), where f belongs to P ′.
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We remind that the parameters in Ω are still supposed to verify the condi-

tions: κ, θ, σ > 0, ρ ∈ (−1, 1) along with the Feller condition 4.

The following result states that if P ′ includes a sequence of densities

weakly converging to the Dirac delta centered at an arbitrary v̄ ≥ 0, then

the calibration obtained through the v0-averaged call price improves the value

of the objective functional.

Theorem 0.0.7. If P ′ ⊆ P is such that for every v̄ > 0, there exists a

sequence {fn}n ⊂ P ′ satisfying

lim
n→∞

∫
R
fn(x)g(x)dx = g(v̄) (22)

for all bounded, continuous functions g : R→ R. Then ′ ≤ .

We remark that (22) is equivalent to the weak converge of {fn}n to δ(·−v̄)

In light of Theorem 0.0.7 and inspired by the work of Dragulescu and

Yakovenko [51], we put our attention on the subset G ⊂ P of the pdfs asso-

ciated with the Gamma distribution:

G =

{
gα,β ∈ P : gα,β(x) =

βα

Γ(α)
xα−1e−βx1x>0, α, β > 0

}
. (23)

It is easy to see that G satisfies the condition (22) of Theorem 0.0.7. Indeed,

let v̄ ≥ 0 and gn ∈ G be given by

gn(x) = gαn,βn , αn = n, βn =
n

v̄
. (24)

The characteristic function of gn is

φn(t) =

(
1− ıt

βn

)−αn

=

(
1− ıtv̄

n

)−n
, (25)

for all t ∈ R. gn converges weakly to δ(· − v̄), since φn(t) → eıtv, for any

t ∈ R, where

φ(t) =

∫
R
eıtxδ(x− v̄)dx = eıtv̄, (26)

which is the characteristic function associated to the delta function.
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Thus, Theorem 0.0.7 states that  ≥ G , where

G = inf
(Ω,α,β)

N∑
i=1

ωi|CMi − Eg[CHi (Ω, v0)]|2. (27)

The calibration is simply achieved by adding to the set of parameters that

characterize Heston model two real parameters α, β > 0 that describe the

distribution of the initial volatility v0.

The Averaged Call Price Formula

When Π is the pdf of the initial volatility v0, the averaged call price at time

t = 0 of a call option is given by

C̃(Ω,K, T, r) = EΠ[CH(Ω,K, T, r, v0)] =

∫ +∞

0
dv0C

H(Ω,K, T, r, v0)Π(v0).

(28)

The theoretical results presented in Chapter 3 show that formula (28)

represents a no arbitrage price in the extended market defined by the product

probability space Ω × R, endowed with the physical measure which is the

product of the original probability P and the probability law related to Π. In

Chapter 4, we prove two representation theorems that give simplified forms

for the average call price above, both reducing the expression of C̃(Ω,K, T, r)

to a single integration. This simplification will be of great convenience for

numerical computation. The result makes use of Heston’s original call price

formula.

Theorem 0.0.8. (The Averaged Call Price Formula) If Π ∈ P satisfies

EΠ[v0] <∞, then the call price in (28) the following

C̃(Ω,K, T, r) = S0Q1(T, S0)− e−rτKQ2(T, S0) (29)

where

Qj =
1

2
+

1

π

∫ ∞
0
<
[eCj(T,φ)+ıφ log(

S0
K

)MΠ

(
Dj(T, φ)

)
ıφ

]
dφ (30)

for j = 1, 2, with MΠ given by:

MΠ(z) =

∫ ∞
0

ezv Π(v) dv, (31)
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Estimation Results

In order to see whether the new model can survive from the volatile market,

the data set of option prices is used from SPX index at the close of market

form September 01, 2010 to September 30, 2010. It is considered only the

call options that verify the no arbitrage condition. Moreover we only test

the model with call option prices, which has 0.9 < M < 1.1 where M is

the moneyness defined by K
S0
. Overall we considered 8315 call prices divided

into 21 starting dates and 9 expiry dates. In Figure 1 is shown the prices

5 10 15 20 25 30
0

50

100

150

P
r
i
c
e

 

 

Real

Standard Heston

Average Heston

Figure 1: Call price value for a data set with starting date September 07,

2010 and expiry date June 18, 2011

obtained from the standard Heston pricing formula and from the averaged

call price formula. The parameters estimated for both models is reported in

Table 1.

To evaluates the performance of the two pricing methods, we use four

error estimators: average prediction error (APE), average absolute error

(AAE), root mean-square error (RMSE), and average relative pricing error

(ARPE), reported in Table 2, where:
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AAE =
N∑
i=1

|VModel(S, Ti,Ki; Ω)− VMarket
i |

N
, (32)

APE =

N∑
i=1

|VModel(S, Ti,Ki; Ω)− VMarket
i |

VModel(S, Ti,Ki; Ω)
, (33)

ARPE =
1

N

N∑
i=1

|VModel(S, Ti,Ki; Ω)− VMarket
i |

VModel(S, Ti,Ki; Ω)
, (34)

RMSE =

√√√√ N∑
i=1

(VModel(S, Ti,Ki; Ω)− VMarket
i )2

N
. (35)

k θ σ ρ v0

Heston 0.0252 4.4944 0.4599 -0.6062 0.0024

k θ σ ρ α β

Averaged Heston Formula 0.1178 0.9404 0.4567 -0.6057 0.0016 2.7953

Table 1: Model parameters estimated for a data set with starting date

September 07, 2010 and expiry date June 18, 2011

APE AAE RMSE ARPE

Heston 2.1905 16.0666 0.5182 3.5480

Average Heston 2.1878 15.9517 0.5145 3.5478

Table 2: Error estimator for a data set with starting date September 07, 2010

and expiry date June 18, 2011
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Conclusions and future directions

The model of Heston (1993) is a mathematical tool still widely used as a ba-

sis for the valuation of financial derivatives. In this thesis, we have described

a new method for the calibration of the Heston model in order to improve

the effectiveness of such model. Thus, we have introduced a pricing method

based on a market model where some parameter are defined by random vari-

ables. In Chapter 3, we have established theoretical results that allow to

derive a new no arbitrage pricing relation in that extended market context,

the application of these results to the Heston model being given in Chapter

4. Our method overcomes the problem of the non-observability of the initial

volatility and it is inspired by a previous work of Dragulescu and Yakovencko

[51] for the estimation of the historical probability density function.

In particular, these authors propose a probabilistic model for the initial

volatility which is based on the stationary distribution associated with the

volatility process. We formalize a generalization of this insight in a rigorous

way in order to reduce the estimation error of the parameters on both the

historical estimate and on the calibration of option prices. Thus, our results

improve the descriptive ability of the Heston model.

Among the directions of future research, we aim investigate two feautures

related to stochastic volatility models. The first concerns the construction of

a new filtering technique for the volatility process. This issue has been widely

discussed in the literature but has not yet provided exhaustive answers. In

order to address this problem, we will propose a technique based on an

integration between a polynomial filter and the methodology presented in

Chapter 4. The second problem concerns with the application of the method

illustrated in Chapters 4 to the extensions of the Heston model based on the

use of jump stochastic processes as, for example, in the Bates model [6].
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