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Abstract While a number of experimental studies and models have examined the foraging behaviour of single clonal genets, 
very few investigations have focussed on the dynamics of ramet recruitment in established clonal monocultures. This 
contribution discusses modelling the spatial structure of density-dependent clonal populations using Markovian spatial­
inhibition rules. Markovian dependence refers to situations where local conditions (interactions with neighbours) determine the 
outcome of a process. An example is presented in which the Markov spatial-inhibition model is successfully fitted to observed 
ramet spatial patterns in the clonal herb Aralia nudicaulis L. (wild sarsaparilla). 

Introduction 

A large number of clonal plant growth models have 
been described in the literature (Waller & Steingraeber 
1985, Cook 1985). Deterministic, stationary models 
are generally based on averaged values of field­
measured divergence angles, internode lengths, and 
daughter module fates (e.g. Smith & Palmer 1976, Bell 
& Tomlinson 1980). Because such models focus on 
idealized clonal growth designs, they implicitly as­
sume that genet architecture is adaptive, and that selec­
tion favours precise clonal organization. However, field 
studies indicate that natural variation and stochastic 
processes can produce ramet patterns that cannot be 
predicted by simple architectural rules. While clonal 
growth rules are under developmental control (making 
the description of modular branching relatively 
straightforward), the modelling of ramet interaction is 
considerably more problematic (Bell 1986). 

More realistic clonal growth models can be obtained 
by using so-called 'non-stationary' rules (Waller & 
Steingraeber 1985). In non-stationary models, ramet 
initiation is a function of the local environment en­
countered, as well as internal factors such as branch 
order and apical dominance (Sutherland & Stillman 
1990; compare the 'sighted' models of Bell 1986). By 
varying growth rules independently, these models can 

produce a variety of potential clonal growth forms 
(Callaghan et al. 1990). Mechanistically, clonal plant 
architecture is under physiological control: important 
factors include apical meristem longevity, the position, 
abundance and activity oflatera1 meristems, branching 
angles and phenotypic plasticity. It has been suggested 
that morphological (developmental) plasticity in 
clonal plants is highly adaptive (e.g. Waller & Stein­
graeber 1985; Hutchings & Mogie 1990). 

Clonal growth models have also been used in simula­
tions of foraging behaviour in clonal plants (recently 
reviewed by Hutchings & de Kroon 1994). Foraging 
models investigate the effects of parameters such as 
spacer length and branching intensity on the placement 
of ramets within simulated 'patchy' environments. 
These iterative simulations generally follow a single 
clone through time (e.g. Oborny 1994). Unfortunately, 
very few of these clonal growth models have been 
tested against real populations. The flourishing clonal 
growth observed in simulation models (and controlled 
experiments) is generally not seen in well-established 
(density-dependent) clonal populations (Sutherland & 
Stillman 1990). 

Many clonal species form extensive, persistent 
monocultures in which ramet production is density­
dependent. The most obvious are 'consolidating' 
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species such as Phragmites australts, Typha latifolia, 
Solidago canadensis (de Kroon & Schieving 1990), 
but the potential to form dense monocultures is by no 
means restricted to this group. It has often been ob­
served that clonal plants develop a more branched 
structure, and a high density of ramets, in favourable 
habitats (Hutchings & Mogie 1990). In such situations, 
the '-3/2 self-thinning rule' operates to effectively 
regulate ramet density (Hutchings 1979). Pitelka 
(1984) hypothesized that most clonal populations 
avoid self-thinning by controlling meristematic ac­
tivity. A likely mechanism is a decrease in bud activity 
in response to decreased light quantity and changes in 
light quality; such a mechanism operates regardless of 
whether the population consists of a single genet, or 
many genets (de Kroon & Schieving 1990). Such con­
trol ensures that ramet density in a population is high 
enough to effectively exploit the space (and to prevent 
other species from invading), while remaining low 
enough to minimize inter-ramet interactions. 

In dense clonal monoclutures, the spatial arrangement 
and packing of ramets determine the overall efficiency 
of resource capture (Harper 1985). In order to respond 
quickly and efficiently to changes in resource space 
(e.g. death of a ramet), clonal growth must be highly 
dynamic. Localized or Markovian inter-ramet interac­
tions are critical in this regard (Waller & Steingraeber 
1985); sensitively to local conditions (neighbours) en­
sures that daughter ramets are placed outside the 
'resource depletion zones' of existing ramets. Conse­
quently, a locally regular spatial pattern oframets (the 
result of ramet-to-ramet inhibitory interactions) should 
develop and be maintained. However, very few studies 
have examined the spatial pattern of natural clonal 
populations for evidence of spatial regularity. 

In this paper, I discuss the importance of localized 
(Markovian) ramet interactions in modelling clonal 
growth. In particular, I discuss the utility of Markov 
spatial inhibition processes for modelling the spatial 
structure and dynamics of established, density-depen­
dent clonal populations. An example of fitting the 
model to observed spatial patterns of the clonal herb 
Aralia nudicaulis L. (wild sarsaparilla) is presented. 

Spatial Inhibition Processes 

Matern (1960) developed a series of spatial inhibition 
process models based on the simple rule that no two 
individuals (ramets) can be less than a distance 0 apart. 
Such processes, which are collectively referred to as 
'hard-core' models (Ripley 1977), produce patterns of 
high local spatial regularity. Matern process models 
assume that there is complete inhibition up to a dis­
tance 0, and no interaction outside this bound. Given 
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that orgamsms are morphologically and physiological­
ly plastic, such 'hard-core' models are probably too 
restrictive (Cormack 1979). A more realistic alterna­
tive makes it unlikely, but not impossible, for two (or 
more) individuals to occur in close proximity (Cor­
mack 1979, Diggle 1983). Markov point processes 
(Strauss 1975, Ripley & Kelly 1977) are spatial-inhibi­
tion models that quantify spatial interactions in this 
'non-strict' way. Markovian dependence is implied 
whenever local conditions (e.g. resource depletion 
zones) determine the outcome of a process at a given 
location. 

Biologists are most familiar with Markov processes in 
the context of Markov chains, which are formally 
defined as stochastic processes for which the condi­
tional distribution of event X", given a set of past 
events, depends only on the last observation in the set 
(Bhat 1982). A similar property for random fields (in 
our case, stochastic processes in the plane) requires 
definition of an analogue of the local dependence con­
dition (ideas of 'past' and 'future') that underlies the 
one-dimensional case (Adler 1982). Ripley & Kelly 
(1977) define local conditionality in terms of 
'neighbourhoods', where individuals (ramets) are 
'neighbours' if they are less than a distance 0 apart. 
Markovian dependence is implied since the prob­
ability density of a ramet occurring at location X 
depends only on local conditions. Since conditional in­
tensity depends only on the configuration in the 
'neighbourhood' of X, the process is said to be 
'Markov of range 0' (Diggle 1983). The basic Marko­
vian model generates an entire process of locally 
regular point patterns. 

The Strauss Process 

The basic Markovian process model was developed by 
Strauss (1975) and modified by Ripley and Kelly (1977). 
The conditional density of the process is given by: 

f(X) = (J( WyS (1) 

a = normalizing constant.
 
~ = indicator of intensity of the process (~ > 0).
 
y = descriptor of interaction between neighbours
 

(0::; y::; 1). 
s =number of ramets in population X less than a 

distance 0 apart. 
n = total number of ramets. 

Varying the interaction parameter y results in a spatial 
process. Specifically, y = 0 produces a Matern 'hard­
core' process of range 0, while y = 1 results in a Pois­
son random pattern. Intermediate values (0 < Y< 1) 
produce a continuum of 'non-strict' inhibition proces­
ses; the larger the value of y , the less 'strict' the 
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process. Examples of resulting point patterns are given 
in Upton & Fingleton (1985: 21), Diggle (1983: 66) 
and Baddeley & Moller (1989: 92). 

Generating Strauss Processes 

A straightforward point-deletion algorithm for ge­
nerating the Strauss process is described by Ripley 
(1979). One begins with an initial (say, random) con­
figuration of n points (ramets). A randomly-selected 
point Xl is then deleted, retaining Xn- l points. For the 
neighbourhood model described above, new random 
coordinates for Xl are produced and this 'replacement' 
ramet is accepted with probability p(X1) = y\ where s 
is the number of ramets within a distance 0 of ramet XI 
(Kenkel 1993). Repeating the deletion-replacement 
step many times results in convergence to a Strauss 
process; Ripley (1979) suggests that 4n such steps are 
adequate in practice. A toroidal correction should be 
implemented to account for edge effects. 

Alternative definitions of the Strauss replacemenl 
probability p(Xl ) are possible. Diggle (1983: 65) sug­
gested models in which the replacement probability is 
a function of local inter-ramet distances. Baddeley & 
Moller (1989) develop models in which the concept of 
'neighbourhood' is context-dependent (rather than 
being a fixed distance 0). Of particular interest to 
biologists is a model that defines interactions between 
nearest neighbours. where 'neighbours' are defined 
using the Dirichlet tessellation (see Kenkel et at. 1989 
for an application of tessellation analysis to biological 
patterning). 

Application to Clonal Plant Populations 

Despite the acknowledged importance of localized in­
teractions in developing clonal populations, very few 
studies have investigated the spatial pattern of clonal 
ramets. If localized spatial inhibition is indeed impor­
tant, regular spatial patterns of ramets should be ob­
served in nature. In mapping populations, it is essential 
to select environmentally uniform sites so as not to 
obscure patterns developed through biotic interactions 
(Hutchings & Barkham 1976, Kenkel 1988). A locally 
regular pattern offers strong empirical evidence, but 
not proof, of inhibitory biotic interactions (Antonovics 
& Levin 1980). 

Kenkel (I993) modelled Markovian dependence in 
two populations of wild sarsaparilla (Aralia nudicaulis 
L., Araliaceae) growing in the understory of a mature 
oak-ash gallery forest in southern Manitoba, Canada. 
The species is a clonal, acaulescent herb with long­
lived, perennating rhizomes that produce numerous 
dormant meristems. Ramets are produced approxi­
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mately every meter or so. Each ramet is a vegetative 
shoot consisting of a single doubly compound leaf 
having a distinctive 'umbrella' shape. Natural popula­
tions are often extensive monocultures consisting of a 
complex interdigitation of genets. 

Two populations (5 x 5 m plots) were selected (based 
on perceived uniformity of site conditions) and the 
position of each ramet mapped. One plot contained n= 
533 ramets, the other n= 580 ramets. Second-order 
spatial analysis (Ripley 1977) indicated a trend toward 
spatial regularity at local spatial scales (10-25 cm 
radius range) in both plots. This is consistent with a 
Markovian model of inter-ramet interaction: since 
competitive interactions are by definition inhibitory, 
minimal overlap of resource depletion zones is ex­
pected, resulting in a locally regular spatial pattern of 
ramets. I fitted Strauss process models to the observed 
patterns by iteratively varying the parameters y (the 
descriptor of interaction between neighbours) and 0 
(the interactive radius). A goodness-of-fit criterion 
suggested by Diggle (1983: 77) was used in fitting the 
model to the empirical data. For both populations, best 
fits to the Markov point process model were obtained 
for parameter values 0 = 18 cm and Y= 0.8. The inter­
action radius 0 = 18 cm corresponds closely to the 
mean horizontal radius of wild sarsaparilla leaves 
(ramet shoots), indicating that clonal interactions 
occur at the spatial scale of individual ramets. The in­
teraction radius can therefore be interpreted as a 
measure of the size of a ramet's resource depletion 
zone. The value Y= 0.8 indicates that the degree of spa­
tial inhibition is comparatively weak (recall that y = I 
corresponds to complete spatial randomness, y = 0 a 
Matern 'hard-core' process). This indicates that the 
Matern process is far too restrictive a model, as an­
ticipated by Cormack (1979). 

Future Directions 

Ecologists have expended considerable effort develop­
ing models and undertaking controlled experiments to 
examine the foraging properties of single genets. By 
contrast, comparatively few studies have focussed on 
inter-ramet interactions in well-established, density­
dependent clonal monocultures (Sutherland & 
Stillman 1990). Clonal monocultures form extensive 
and persisent rhizome systems (from the same or dif­
ferent genets) that function in the storage of photosyn­
thates and in the acquisition of water and nutrients 
(Hutchings & de Kroon 1994). Excavations have re­
vealed that a dense, persistent rhizome system is 
characteristic of Aralia nudicaulis populations 
(Kenkel 1993). The presence of an extensive rhizome 
system may be an important adaptive strategy for op­
timizing the acquisition of limiting resources. Specifi­
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cally, the presence of numerous dormant meristems 
ensures that lost ramets are quickly replaced; all that is 
required is activation of a previously-dormant meris­
tern (c.f. Pitelka & Ashmun 1985). In some respects 
this dynamic, Markovian view of clonal population 
dynamics is similar to the foraging of clones in spatial­
ly and temporally dynamic environments (Oborny 
1994), with two important differences: (a) in dense 
monocultures, habitat heterogeneity is largely deter­
mined by endogenous factors; (b) the occupation of a 
favourable habitat (a patch created by the death of a 
ramet) requires only activation of a pre-existing meris­
tern, rather than growth of a rhizome into the patch. 
There is clearly a need for controlled manipulative ex­
periments to test these ideas on natural clonal popula­
tions. 

Markov spatial inhibition processes can be considered 
mathematical formalizations of the local (neighbour­
hood) models of ramet interaction proposed and advo­
cated by ecologists. In particular, 'local interaction 
radius' (used by statisticians) and 'resource depletion 
zone' (used by ecologists) are clearly analagous con­
cepts. My work with the clonal plant Aralia nudicaulis 
(Kenkel 1993) indicates that Markovian inhibitory 
processes are indeed useful in modelling established 
clonal plant populations. Additional studies should be 
undertaken on other species to determine the general 
validity of the Markovian inhibition model. Spatial in­
hibition processes could also be used to model the 
dynamics of density-dependent clonal populations. In 
this regard, the spatial birth-and-death processes 
developed by Preston (1977) are particularly relevant. 
Alternative (non-Strauss) definitions of replacement 
probabilities, such as those advocated by Diggle 
(1983: 65) and Baddeley & Moller (1989), may also 
prove useful to ecological modellers. 
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