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1. Introduction 

Over the last decade a lot of TTS systems have been developed around the world that are 
more or less language-dependent and more or less time and space-efficient (Campbell & 
Black, 1996; Holzapfel, 2000; Raitio et al., 2011; Sproat, 1998; Taylor et al., 1998). However, 
speech technology-based applications demand time and space-efficient multilingual, 
polyglot, and multimodal TTS systems. Due to these facts and due to the need for a 
powerful, flexible, reliable and easily maintainable multimodal text-to-speech synthesis 
system, a design pattern is presented that serves as a flexible and language independent 
framework for efficient pipelining all text-to-speech processing steps. The presented design 
pattern is based on time and space-efficient architecture, where finite-state machines (FSM) 
and heterogeneous relation graphs (HRG) are integrated into a common TTS engine through 
the so-called ‘‘queuing mechanism’’. FSMs are a time-and-space efficient representation of 
language resources and are used for the separation of language-dependent parts from the 
language-independent TTS engine. On the other hand, the HRG structure is used for storing 
all linguistic and acoustic knowledge about the input sentence, for the representation of very 
heterogeneous data and for the flexible feature constructions needed by various machine-
learned models that are used in general TTS systems. In this way, all the algorithms in the 
presented TTS system use the same data structure for gathering linguistic information about 
input text, all input and output formats between modules are compatible, the structure is 
modular and interchangeable, easily maintainable and object oriented (Rojc & Kačič, 2007). 
The general idea of corpus-based speech synthesis is the use of a large speech corpus for 
acoustic inventory and for creating realistic-sounding, machine-generated speech from raw 
waveform segments that are directly concatenated without any or only minimal signal 
processing. Since only a limited size speech corpus can be used, a compromise between the 
number of speech units in different prosodic contexts and the overall corpus size should 
normally be reached. On the other hand, the unit selection algorithm has to select the most 
suitable sequence of units from the acoustic inventory, where longer units should be 
favoured. Namely, when using longer units, the number of concatenation points can be 
reduced, resulting in more natural synthetic speech. The performance of the overall unit 
selection algorithm for corpus-based synthesis, regarding quality and speed, depends on the 
solving of several issues, e.g. preparation of text corpus, acoustic inventory construction 
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using non-uniform units, reduction of unit search space, detection and removal of 
acoustically very similar units, off-line calculation of concatenation costs between all speech 
units in the acoustic inventory, their efficient representation, and their fast access within the 
on-line system. Further, the optimisation of weights used within cost function is an 
important issue, since these weights mainly influence the unit selection process performance 
regarding synthesised speech quality and naturalness (Black et al., 1997; Christophe et al., 
2002). In the presented design pattern for corpus-based TTS systems, a gradient descent 
based unit selection optimisation algorithm is proposed for optimising unit cost functions’ 
weights. Furthermore, the presented unit selection process addresses issues, such as: 
efficient acoustic inventory construction, reduction of unit search space, detection and 
removal of acoustically similar units, calculation of the concatenation costs, efficient 
representation of concatenation costs, and fast lookup. An important aspect of the presented 
cost functions’ weights optimisation is that it also reduces laborious manual involvement 
when preparing new voices and tuning the best possible quality of the corpus-based TTS 
system. No matter what age, cultural background, or even what language people might 
speak, facial expressions and different body gestures always occur in natural human-human 
dialogues. Even when the dialogue is not face-to-face, people are prone to describing key 
issues by using different facial expressions or even by hands that remain free. Therefore, the 
first reason for using non-verbal modalities together with the TTS system, is to better 
emulate the natural course of the dialogue, and to make people feel more comfortable when 
‘’speaking’’ to a machine. The second reason is hidden in those issues that occur during the 
usage of human-machine interaction systems. The need to repeat and the misinterpretation 
of speaking terms are common features regarding the majority of users. Such behaviour 
usually leads towards less-functional and less-efficient spoken dialogue systems (Cassell, 
2000). If we were to have more appropriate social responses from the machine through 
personification of the TTS system by using embodied conversational agents (ECA), people 
will more readily respond with emotive socially-coloured responses. Therefore, human-
human-like communicative behaviour may be evoked in this way, giving the spoken 
dialogue system the ability to shape and adjust the dialogue to its own rules. TTS systems 
and believable characters (ECAs) can be used together to evoke communicative behaviour. 
ECAs can often, by expressing social tendencies, shape and also lead the dialogue. 
Understanding of attitude, emotion, together with how gestures (facial and hand) and body 
movements complement, or in some cases, override any verbal information produced by the 
TTS system thus providing crucial information for modelling both the dialogue and the 
ECA’s socially-oriented responses. The social response (naturality) of the TTS system fused 
with ECA can then be presented to the user in a more human-like form, using not just audio 
but also facial expressions, such as: facial emotions, visual animation of synthesised speech, 
and correlated head, hand, and body movements. Therefore, personificated TTS systems 
enable the development of more advanced, personalized, and more natural multimodal-
output-based human-machine interfaces that are in demand more and more for today’s 
applications and environments. The time and space-efficient architecture of the corpus-
based TTS system is presented in Section 2. The unit selection process for corpus-based TTS 
systems is then described in Section 3. The next section describes in detail the novel EVA 
framework that enables personification of the general TTS system. Slovenian 
implementation of the multilingual and multimodal corpus-based PLATTOS TTS system is 
presented in Section 5. A novel approach to distributive evaluation and the testing of TTS 
systems is presented in Section 6. Conclusions are drawn at the end. 
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2. Time and space-efficient TTS architecture  

The corpus-based TTS architecture of the PLATTOS TTS system presented in Figure 1 is 
modular, time and space-efficient, and flexible (Rojc, 2003; Rojc & Kačič, 2007). By following 
the multilingual aspect, the language-dependent resources are separated from the language-
independent core TTS engine. Its modular structure allows for all modules within the 
system to be easily maintained, and further improved by easy integration of new algorithms 
into the TTS system. 
 

 
Fig. 1. The time and space-efficient architecture of the corpus-based TTS system. 

2.1 Queuing mechanism used in the TTS architecture 
An efficient queuing mechanism is implemented in the presented TTS architecture (Rojc & 
Kačič, 2007), where each double-linked list is used for one processing step in the TTS 
system. In this way all TTS processing steps are pipelined together. A queuing mechanism 
enables flexible addition and removal of dequeues from the mechanism, thus allowing for 
the merging of already existing processing steps, or adding new ones. The overall text-to-
speech process runs in a loop, when processing the input text. All TTS engine dequeues are 
empty at the start. Firstly, the tokenizer module starts generating tokens from the input text 
by using a finite-state machine (FSM) based lexical scanner. Two additional token types are 
added for marking end-of-sentence or end-of-file conditions. These two tokens are only 
used for controlling the overall queuing mechanism. Immediately after detection, either of 
these two tokens, the following part-of-speech (POS) tagging dequeue is activated, taking all  
    

 
Fig. 2. The queuing mechanism. 
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tokens from the previous tokenizer dequeue (for the current sentence). After the tagging 
process, the grapheme-to-phoneme (G2P) conversion dequeue activates and grabs all tokens 
from the POS tagging dequeue. In this way (at the sentence level) the text-to-speech process 
continues until acoustic dequeue, where the speech signal for the corresponding sentence is 
finally generated. All text-to-speech processing steps are sequential processes. Nevertheless, 
the processing of several sentences within the presented queueing mechanism can run in 
parallel, by processing each sentence within its own thread. At the end, only the correct 
order from the input must be preserved, before playing-out generated speech signals. 

2.2 Heterogeneous relation graphs used in the TTS architecture 
All TTS processing steps contribute to the linguistic information used for generating the 
speech signal. The heterogeneous relation graph (HRG) structure provides clean general-
purpose mechanisms for storing and representing all the information extracted by the TTS 
system (Rojc & Kačič, 2007; Taylor et al., 2001). In the PLATTOS TTS architecture, one HRG 
structure is used per each text sentence, and is accessible by all dequeues used in the TTS 
system. In this way, all algorithms are able to access, change, or enrich stored information 
when appropriate. Figure 3 illustrates the integration of the HRG structure into a queuing 
mechanism. The HRG structure demonstrates the use of two different relation-structures for 
storing extracted information, linear lists and trees. The linear lists are named Segment, 
Syllable, Word, Phrase, IntEvent, and SynUnits in Figure 3, whilst the tree structures are 
named SyllableStructure, PhraseStructure, IntonationStructure, SynUnitsStructure. The 
linguistic objects within the relation-structures are e.g. words, syllables, segments, phrase-
breaks, intonation events, synthesis units, enriched with several attributes determined by 
the algorithms used within the processing dequeues. Attributes are the properties used in 
TTS system modules, e.g. part-of-speech, duration, phone-class and properties, intonation 
event type, phrase-break type, prominence label-type, to name just a few. Linear lists are 
used to specify the relation between linguistic items found in the specific processing step. 
  

 
Fig. 3. Interaction of a queuing mechanism and a HRG graph structure. 
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Forward and backward traversals are possible within the structure. Additional tree relation-
structures add vertical information between those linguistic objects included in different 
linear lists. In this way, very complex features for machine-trained models (e.g. CART trees, 
NNs etc.) can be generated from the linguistic information stored in the HRG structure, 
without any additional processing or extra work on feature construction. Furthermore, the 
relation-structures used within a HRG structure can easily be changed and adapted to 
different structures, following the processing needs of the modules used in the TTS system. 

2.3 Finite-state machines used in TTS architecture 
For multilingual and polyglot speech synthesis systems, it is important that the migration to 
new language can be done with little or no intervention in the algorithms used. This can be 
achieved by separating language-dependent language resources from the TTS engine, and 
obtaining a language-independent TTS engine. The efficient separation of language-dependent 
language resources is done within PLATTOS TTS architecture by finite-state machines (FSM) 
(Mohri, 1995; Rojc & Kačič, 2007). Furthermore, FSMs are also used for the representation of 
language resources and linguistic rules. FSMs can be constructed off-line and loaded into the 
TTS engine during on-line operation. The corresponding representation offers fast lookup, 
since the lookup does not depend on the size of the dictionary but only on the length of the 
considered input string. Minimization algorithms allow one to reduce the sizes of these 
devices to a minimum. The FSM compiler is used for the compilation of several regular 
expressions into the finite-state machine, construction of finite-state machine-based tokenizers, 
etc. In order to solve disambiguity problems, heuristically-defined or trained weights are 
assigned to FSM transitions and final states, yielding weighted finite-state automata and 
transducers (WFSA, WFST) that can be integrated into the TTS architecture (Mohri, 1995). In 
Figure 1 the tokenizer is marked as ‘T’ in the TTS architecture. At this processing level two-
level rules or rewrite rules can be used, and compiled into finite-state machines by an FSM 
compiler (Mohri, 1996). Namely, these rules can resolve much of the language-dependent 
disambiguity present in the input texts. TTS system processes any given input text that often 
contains more or less spelling mistakes (e.g. e-mails, SMS messages). Therefore, the finite-state 
automaton ‘S’ follows (represents efficiently large lists of valid words), and is used by the 
spell-checking system (if it is included in the architecture). Using them, the spell-checking 
system is able to detect invalid words and can guess the most suitable replacements. Next, the 
POS-tagging module needs large-scale morphology lexicons. Therefore, the finite-state 
transducer ‘P’ can be used here for time and space-efficient representation of large-scale 
morphology lexicons. If TTS systems use rule-based POS-tagging algorithms (e.g. Brill, 1993), 
the POS-tagging rules can be further compiled into finite-state machines, and become a 
compact part of the TTS architecture (Emmanuel & Schabes, 1997). The grapheme-to-phoneme 
(G2P) conversion module uses, in general, large-scale phonetic lexicons for common words, 
proper names, and even foreign words, as found in the input text. All these resources can be 
represented by the finite-state transducer (FST) ‘G’, as presented in Figure 1. Decision-tree 
models can be included in the TTS architecture, since they represent efficient knowledge 
representation regarding time and space requirements. They can be used in the prosody 
modules (symbolic and acoustic prosody) for the prediction of phrase breaks, prominence and 
intonation event labels, segment durations, pauses between segments and the acoustic 
parameters of intonation events. Nevertheless, it has been shown that decision trees can also 
be represented by weighted finite-state machines (labelled as WFST ‘SP’, WFST ‘AP’) (Sproat 
& Riley, 1996). However, this step only makes sense when they are going to be merged with all 
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other finite-state machines, as decision trees are already efficient knowledge-representation 
structures. In corpus-based TTS systems, the unit selection search process represents a 
significant time and space issue (large unit search space). Finite-state machines can be used 
here for more efficient access to unit candidates stored in the acoustic inventory. In the 
concatenation and acoustic modules, digital signal processing algorithms are used for the 
processing of concatenation points, and for adapting unit candidate pitch and duration and, in 
general, no external language-specific resources are needed. 

3. Time and space efficient unit selection in corpus-based TTS systems 

All the data-preparation steps needed for general corpus-based TTS systems are shown in 
Figure 4. The acoustic inventory and concatenation costs (have to be represented in a time 
and space efficient way) calculated between unit candidates are the result of these data 
preparation steps. The optimality and quality of the final acoustic inventory (used by the 
unit selection process) depends on several previous steps e.g. text-corpus construction, 
segmentation, phonetic tree-based clustering of units, and the acoustic evaluation of unit 
candidates. The last step takes care of removing acoustically similar units (the so-called 
redundant units) that are unnecessary in the optimised acoustic inventory. Calculation of 
concatenation costs then follows with a quantisation-based compression of these, and their 
space and time efficient representation, where the concatenation costs’ matrix indices can be 
stored in the form of FSM. 

3.1 Acoustic inventory construction 
In corpus-based TTS systems the idea is to use the whole speech database for acoustic unit 
inventory, selecting the longest possible existing phonetic segments, and matching the target 
unit's specification, as defined for the target sentence. Because of the complexity and 
combinatorics of languages, it is important to find the best compromise: that has, on the one 
hand, as small a speech database as possible and, on the other hand, ‘enough’ acoustic 
realizations of those units found in several phonetic and prosodic contexts. Defining such a 
compromise is one of the major issues for the corpus-based speech synthesis approach 
(Bozkurt et al., 2003, Rojc, 2003). In PLATTOS TTS architecture diphone and triphone units 
are used within a unit-selection algorithm, where the diphones are base units. The richness 
of text corpus (regarding diphones and triphones) then has a significant impact on the 
richness of the acoustic inventory, on the performance of the unit-selection algorithm, and 
on the expected naturalness of the synthesised speech signal. A detailed analysis of several 
tokenised text corpora has to be performed in order to collect the appropriate text of a given 
language when striving to good acoustic inventory at the end.  
 

 
Fig. 4. Data preparation steps for the efficient unit selection process (off-line process). 
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After constructing a text corpus and recording speech database, the obtained database is 
segmented into unit candidates. Automatic segmentation procedures are preferred for 
segmentation of the database during the first step, but for optimal quality at least some 
manual checking usually follows. Better results can be expected when canonical phonetic 
transcriptions are verified and adapted to the recorded speech material, before running 
automatic segmentation. The final size of the constructed acoustic inventory is important in 
order to meet real-time requirements. In PLATTOS TTS architecture the starting acoustic 
inventory consists of a large set of non-uniform units (diphones and triphones). It can be 
expected that an acoustic inventory constructed directly from a segmented database, will 
contain acoustically similar units (can be qualified as redundant units) that can be removed. 
In order to detect these units, all units have to be acoustically evaluated regarding pitch, 
duration, and energy. When the text corpus is well-defined, the recorded speech material 
will more probably contain units with several distinct acoustical realisations, have less 
redundant units and, consequently, will allow for a better quality of synthesised speech 
from general input texts.  

3.2 Acoustic inventory optimization 
The search space for a unit-selection algorithm can already be reduced off-line during acoustic 
inventory construction, and also during the on-line unit selection process (within the TTS 
system) (Campbell & Black, 1996; Holzapfel, 2000). In the PLATTOS TTS system’s unit 
selection approach, the reduction of the search space is proposed as a two-stage process 
(performed off-line). During the first stage, the diphone and triphone unit candidates are 
clustered according to their phonetic context and, during the second stage, acoustically similar 
units (similarity measurements are determined by considering pitch, duration, and energy) are 
automatically detected, and removed within the constructed tree-clusters. In order to detect 
acoustically similar candidates within the tree-clusters, detailed acoustic analysis is performed 
on all the cluster's unit candidates. Detecting acoustically similar units and removing them 
from the acoustic inventory can be performed in a manner analogous to the perceptual stimuli 
relationship. The final decision about which units should remain in the constructed clusters is 
done after the acoustic characteristics of all the clusters' unit candidates are obtained during 
analysis. The final optimised acoustic inventory contains, for each specified cluster, n units that 
are then used in the unit selection algorithm. The concept of suitability functions can be used 
in order to rank the unit candidates, where the setup and tuning of suitability functions can be  
performed by using a hybrid approach (Holzapfel & Campbell, 1998). First, the mean values of 
energy, pitch, and duration are calculated for each obtained tree cluster. All the mean values 
then represent those target values having a suitability value of 1.0. Other target values for 
energy, pitch, and duration, are defined for each unit candidate within a specific cluster by 
using the cluster’s suitability functions' shape. Partial suitability functions must reflect acoustic 
differences between unit candidates within a specific cluster. Differences in duration amongst 
the units in the cluster ‘i’ are represented by using the following partial suitability function: 
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Differences in pitch amongst the units in the cluster ‘i’ are calculated by using the following 
partial suitability function: 
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Differences in energy amongst the units in the cluster ‘i’ are calculated by using the 
following partial suitability function: 
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In this way, the overall unit candidate’s suitability is ultimately defined by combining 
partial suitability functions for pitch, duration and energy within the given cluster: 

 
1

N

overall partial
i

S S
=

= ∏  (4) 

At the end of the ranking process unit candidates are ranked within the region of 0 to 1 in all 
tree clusters. This region is then divided into smaller sub-regions. Suitability values within a 
specific sub-region correspond to those candidates that have similar acoustic characteristics, 
meaning that they have small or insignificant differences regarding pitch, duration, and 
energy. In this case, only one candidate from a specific sub-region is kept in the optimised 
acoustic inventory, and all  the others can be removed. Multiplication of the used partial 
suitability functions ensures that differences in certain acoustic parameter are noticeable 
within the overall suitability value for each unit candidate, and that the significance of a 
particular acoustic feature is reflected by the shape of the used partial suitability function. 

3.3 Concatenation cost calculation and representation 
The calculation of concatenation costs (CC) is a very time-consuming step for corpus-based 
TTS systems, especially if performed during the on-line unit selection process. Namely, the 
CC costs must be calculated between all phonetically-matched candidates for each of the 
two successive target units in the current sentence. Then, in order to evaluate any distortions 
at concatenation points, the corresponding speech samples of all these candidates have also 
to be loaded. In order to avoid this, the obvious solution can be the off-line calculation of all 
CC costs. The disadvantage of this solution is that the target unit sequences are unknown 
and, therefore, consideration of any phonetically-matched candidates in the acoustic 
inventory must be taken into account. Furthermore, concatenation costs have to be 
calculated between all unit pairs in the acoustic inventory (for large databases, non-uniform 
acoustic inventories can have a lot of units), and this results in large CC cost-matrix 
dimensions and storage requirements. In order to also solve this problem, the vector 
quantisation algorithm (VQ) can be used. By using the VQ technique, we are able to 
compress a CC cost-matrix into a much smaller one. This whole process can be easier 
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performed by first splitting the large CC cost-matrix into smaller sub-matrices (speed and 
memory problems). The CC costs for each pair of candidates are calculated for each sub-
matrix. The calculated costs within each sub-matrix are then quantisized into a 
corresponding codebook of a pre-defined size (number of clusters) (Rojc & Kačič, 2007). 
Without using vector quantisation, the storage requirements for each sub-matrix are (W – 
size of the sub-matrix): 

 ( )Storage N W sizeof float= ⋅ ⋅  (5) 

After using vector quantisation, the storage requirements drop down to: 

 ( )Storage VQ W sizeof float= ⋅ ⋅  (6) 

VQ represents the codebook dimension regarding a pre-defined size for any specific sub-
matrix. After calculating codebooks for all sub-matrices, they are merged into one common 
codebook, representing the compressed CC cost matrix. This representation is a space-
efficient representation of concatenation costs between all candidates in the acoustic 
inventory. An index table is also built in addition to the constructed codebook, and used for 
accessing the concatenation costs. In order to also make the CC cost lookup also time and 
space-efficient, the CC cost indices are stored in the form of a finite-state transducer (FST) 
(Mohri, 1997). In this way we are able to perform an efficient lookup process in the unit 
selection algorithm. 

3.4 On-line unit selection algorithm 
The unit selection algorithm is a very important process in corpus-based concatenative 
speech synthesis, since it searches for the best matching sequence of unit candidates with 
those target units specified for the input sentence. The selection of non-uniform units 
(diphones and triphones) from the acoustic inventory is based on minimising those acoustic 
distortions that originate from concatenations, and minimising the needed modifications of 
the unit candidates. In the PLATTOS TTS architecture, these distortions are described in the 
form of two costs: 
• target cost ( ),t

i iC u t : represents an estimation of the difference between unit candidate 

iu  in the acoustic inventory and target unit specification it , 
• concatenation cost ( )1 ,c

i iC u u− : represents an estimation of the quality of the 
concatenation of two successive units 1iu −  and iu . 

Target unit specifications include e. g. phonetic symbol, symbolic prosody information (e.g. 
stress indication), acoustic prosody information (e.g., desired unit duration and F0) etc. They 
are used for calculating target cost (TC) in the on-line unit selection algorithm. 
Concatenation cost (CC) is already calculated off-line (as suggested), and accessed through 
an efficient lookup process. Common cost then reflects the differences in target and acoustic 
realisations for specific unit candidates, and the expected distortions when the selected unit 
candidates are concatenated together. In corpus-based TTS systems, a pitch and duration 
modification algorithm (e.g. TD-PSOLA) is often applied to pre-stored candidates in the 
acoustic inventory, in order to guarantee that the prosodic features of synthetic speech meet 
the predicted target values. Then, using a good criterion for finding the best fitting unit 
sequence from the acoustic inventory is crucial for generating high quality speech. In the 
PLATTOS TTS architecture unit selection algorithm, the following equation is used for 
calculating the common cost for each unit candidate: 
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It follows from equation (7), that the target cost uses partial-suitability functions for 
duration, pitch, and energy (equations (1), (2) and (3)). The mathematical framework behind 
the computation of this common suitability is based on fuzzy-logic (Holzapfel & Campbell, 
1998). The performance of the unit selection algorithm and, consequentially, the quality of 
the synthesised speech, significantly depends on the partial suitability functions’ 
parameters. Furthermore, weight localw  is additionally included in order to have control 
over the calculated concatenation cost between two unit candidates. Weight unitw  is 
included in order to favour the selection of longer units during the unit selection process 
(e.g. triphones, instead of diphones). Finally, weight cw  is included in order to control the 
influence of concatenation cost on the common cost ( )iC u . And concS represents the 
distortion measure between two successive unit candidates, based on an acoustic cost that is 
calculated by using signal processing based on spectral analysis (suggested to be performed 
offline). 

3.5 Gradient-descent based unit selection process optimization 
An important common cost calculation issue is the optimal setup and tuning of those 
parameters used within partial-suitability functions (equations (1), (2) and (3)), and other 
weights used in equation (7). Parameters a, b, c, d, and e influence the shapes of the partial-
suitability functions and, consequently, influence the significance of a particular criterion 
(duration, pitch, energy) within the unit selection process. Furthermore, searching for the 
best unit sequence using a unit selection algorithm is a multidimensional problem. 
Heuristics is usually used for setting up parameters and weights, or extensive subjective 
listening tests are performed, resulting in more or less optimal solutions. Such an approach 
is at least time consuming and laborious. Besides, parameters and weights have to be 
adapted for each new TTS voice. Instead, the PLATTOS TTS system uses an automatic 
optimisation approach of cost function’s weights based on a relaxed gradient descent 
algorithm (RGD) (Figure 5).  
 

 
Fig. 5. Unit-selection optimisation process. 
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The input into the unit-selection optimisation process is a set of prosodically annotated 
sentences (HRG utterance structures), off-line calculated CC costs, and acoustic inventory. 
The unit selection algorithm then selects a sequence of units for each input sentence by 
using an initial setup of weights (the initial setup of values is set by a hybrid approach, as 
proposed in (Holzapfel & Campbell, 1998)). Automatic unit selection process evaluation is 
performed during the next step, by calculating the pitch deviations of neighbouring selected 
candidates, and deviations between selected candidates’ durations and those durations 
predicted by prosody. The obtained evaluation result represents initial common error ‘E’ for 
the unit selection optimisation process. The process then keeps running within a loop, and 
the weights and parameters are iteratively updated by using the RGD technique. The 
optimisation loop consists of several processing steps. During each iteration, a common 
error ‘E’ is calculated as the sum of pitch differences (between predicted pitch ( )0f̂ k  and the 
selected unit candidate’s pitch ( )0f k ), and the duration differences (between predicted 
duration ( )d̂ k  and the selected unit candidate’s duration ( )d k  ): 
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The computation of common error ‘E’ includes differences in durations (time) and F0 values 
(frequency). Therefore, differences in duration and F0 value are normalized in equation (8). 
In order to minimize these differences (and common error ‘E’), the RGD technique is used, 
optimizing the initial setup of the unit-cost functions' weights and parameters. In other 
words, the goal is to minimize the cumulative common error ‘E’. All weights and 
parameters are stored in a vector p: 

 1 2, ,...., lp p p p= ⎡ ⎤⎣ ⎦  (9) 

This vector is then iteratively updated in such a direction that the change results in a smaller 
common error ‘E’. This direction is searched for by a gradient calculation, performed for 
each value in vector p: ( )E p∇ . An adjustment of each vector value is then performed by the 
following update rule: 

 1 ( ) ( )n n n np p diag E pµ+ = − ⋅ ∇  (10) 

The obtained gradient vector consists of the partial derivatives of the unit cost functions, 
with respect to each value of the vector p (e.g. partial derivative of ‘E’ with respect to 1p ): 
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The adaptation rate µ must be selected so that the convergence of the algorithm is 
guaranteed, since the performance of the algorithm is quite sensitive to a proper setting of 
the adaptation rate. Namely, if the adaptation rate is too high, the algorithm may oscillate 
and become unstable. On the other hand, if the adaptation rate is too low, the algorithm will 
take too long to converge. The optimisation process is repeated, until obtaining the 
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predefined minimal error. When this happens, the set of weights and parameters is stored, 
and can be used for the on-line unit selection algorithm in the corpus-based TTS system. The 
approach is fully automatic, and can be repeated for each new voice used in the TTS system.  

4. Personification of the TTS systems 

The idea of advanced human-machine interfaces and spoken dialogue systems is to emulate 
natural and highly-complex human-human interactions. Substantial effort by several 
researchers has already been devoted to this task, by taking into account multimodal-input 
and multimodal-output contexts. An understanding of attitude, emotion, together with how 
gestures (facial and hand) and body movement complements, or in some cases even 
overrides verbal information, provides crucial information about modelling interactive 
management.  It influences both input and output perspectives of the realization of natural 
human-machine interaction and, consequently, the personification of those TTS systems 
used in e.g. spoken dialog systems.  Personification of TTS systems, therefore, not only relates 
to the transformation of a TTS system’s output into ECA’s visually-presented articulation 
within the mouth region (visualizing verbal behaviour), but also to the visualization of non-
verbal behaviour. The most natural way to visualize (emulate face-to-face conversation) both 
verbal and non-verbal information is to translate it into a human-body representation. 
Embodied conversational agents (ECA’s) are widely used concepts for the visualization of 
conversation and are used in many spoken dialogue systems. ECA implementations range 
from talking heads (Poggi et al, 2005), to agents that can move and use the whole 
representation of the human body (Heloir & Kipp, 2009; Thiebaux et al., 2008). There are many 
implementations of ECA’s that can, in one way or another, emulate natural human behaviour 
and evoke emotional and social responses within human-machine dialogue. (Ball & Breese, 
2000) describe the generation of emotional responses and the recognition of emotions by 
humans, and the additional adaption of ECA’s personality to that of the human. (Poggi 
&Pelachaud, 2000) generate communicative behaviours on the basis of speech acts and 
concentrate on one facial expression and speech act performatives. Performatives are a key 
part of the communicative intent of a speaker, along with propositional and interactional acts. 
In general terms, all conversational behaviour in conversational models must support 
conversational functions and different input/output modalities. Any conversational action in 
any modality can result in several (sometimes contradictive) communicative goals. The 
general architecture of a system that can visualize and personificate a general TTS system, 
used in e.g. a spoken dialog system, is formed as shown in Figure 6. 
 

 
Fig. 6. General architecture of an ECA visualization system. 

The idea of visualizing suggests that different input modalities are combined into different 
behavioural events. Different input modalities are commonly generated as abstract behaviour 
descriptions provided in XML based description schemes such as Affective Presentation Mark-

www.intechopen.com



 
Multilingual and Multimodal Corpus-Based Text-to-Speech System – PLATTOS – 

 

141 

up Language (APML) (DeCarolis et al., 2004), and behavioural mark-up language (BML) 
(Vilhjalmsson et al., 2007). These are general description languages that can be used to describe 
any movement/action realized within the scope of human-machine dialogue. The task of an 
input manager, commonly referred to as a behaviour modeller, is to process different 
modality-dependent inputs, and to transform them into a time-referenced set of behavioural 
events.  The key concern of such a time-scheduling process is to synchronize verbal with non-
verbal behaviour, such as facial expressions, head movements, gaze and head gestures. Such 
behaviour often relies on the semantic information of data, such as non-standard sync-points 
at word breaks, dialogue markers, etc. The behavioural events (behaviour controllers) then 
form speech-synchronized descriptions of motion that should be transformed into movement 
on an ECA’s articulated model (body). Different types of articulated bodies can be used 
(Güdükbay et al., 2008). In general 3D models can be grouped into: 
• Stick figure models: models based on sets of rigid elements, and connected to joint chains. 
• Surface models (mesh-based models): represent an upgrade of stick figure models. In this 

case, a polygonal mesh-layer (skin) is applied on the skeleton chains. 
• Volumetric models: use simple volumetric primitives such as spheres, cylinders and 

ellipsoids, in order to construct the body shape. 
• Multilayered models (muscle-based models): present anatomically-correct models. The 

animator of such models introduces different kinds of constraints to the relationship 
between layers. 

The ECA realization engine (Figure 6) is used to store the articulated models of different ECA’s 
(different bodies), and to apply behavioural events in the form of different transformations on 
the control units (parts of the articulated model used to generate movement). These 
transformations result in animated movement. The type of animation technique used depends 
on the type of articulated model. Most commonly, such animations are performed in the form 
of skeletal joint transformations and morphed-shaped transformations. The proprietary EVA 
framework (Mlakar & Rojc, 2011), developed to evoke a social response in human-machine 
interaction, is a python-based software environment that can convert a TTS system’s output 
into audio-synchronized animated sequences of speech. ECA’s provided by EVA framework 
can generate social responses in the form of facial expressions, gaze, head and hand movement 
and, most importantly, in the visual form of synthesized speech.  The EVA framework 
provides a description script, an animation engine and articulated 3D models, and provides 
visual representation of synthesized speech sequences in the form of different types of video 
streams (in addition to synthesis into a video file/screen). Figure 7 outlines the modular 
architecture of the EVA framework.   
 

 
Fig. 7. Architecture of the EVA framework. 
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In order to personificate a TTS system by using the EVA framework, the TTS system has to 
produce TTS output according to the framework’s specifications, based on the EVA Script 
XML scheme (Mlakar & Rojc, 2011). These XML schemes specify the desired ECA facial 
animations and body movements. The animation engine translates them onto the articulated 
3D model of a human body in the form of animated movement. A TTS system’s output can 
contain acoustic, linguistic, syntactic, semantic, and temporal information about general 
input texts that can be realized within a two stage visualization concept. The first stage is 
called ‘Animation building’ and the second ‘Animation realization’.  The Animation 
building stage transforms TTS output in the form of the EVA script XML scheme into 
animation parameters mapped to different control units of the ECA’s 3D articulated model. 
The transformation from abstract to animatable content is then performed by the Animation 
parameter’s builder. Such a transformation can be described as interfacing different XML 
tags using different ECA resources. Each ECA generated by the EVA framework has two 
types of resources.  The 3D multi-part actor resources (Figure 7) contain different 3D-
submodels of body (e.g. hair-style, eyes, teeth, dresses, etc.). Each 3D-submodel is associated 
with its corresponding textures, polygonal meshes and sets of different control units 
(morphed shapes, skeletal chains). The Personality template resources contain different 
behavioural templates written in the EVA script. These templates describe the common 
articulation of an ECA (e.g. how should, in general, specific viseme be formed), triggering 
words to gesture translations (e.g. what is a common gestural sequence when a certain word 
occurs), and other distinctive features of an ECA (e.g. eye-blinks, probability of gesturing, 
etc.) making each ECA an individual ’person’. The Animation parameters builder, therefore, 
translates the labelled text by interfacing each EVA script tag with a control unit, or 
behavioural template, and forms different groups of movements. Each group of movement 
is defined by semantic (which control units in which order), temporal (the duration of 
stroke, hold, and retraction phases) and spatial features (ending position of the control unit). 
The Animation realization phase transforms animation parameters into animated sequences. 
The animation parameters present raw data that describes how the Animation engine 
should move different control units. The Animation engine of the EVA framework takes 
care of animating and rendering the obtained animation parameter sets. It is based on the 
Panda 3D game engine (Goslin & Mine, 2004). In essence, this animation engine transforms 
the animation parameter sets into corresponding sequential and/or parallel movements of 
control-points (bones, or morphed shapes) lerp intervals. Each control-point in 3D space can 
be moved, either by 3D transitional or 3D rotational vectors (as specified in MPEG4 
standard). The Forward kinematics and animation engine’s generator provide procedures 
for the synchronization of such movements, and implement the animation-blending 
technique used on those animated segments that have to be controlled by different gestures 
at the same time (e.g. both smile and viseme can try to control the lower jaw joint; in such 
cases most of the influence is given to the viseme, and only a small portion is left to the 
facial gesture smile). Based on the semantics of the animation parameter sets, the animation 
groups the control units into sets of sequential and concurring movements and associates 
each movement with its temporal and spatial features, therefore forming personalized body 
movements. The EVA framework also presumes that no movement is linear and should, 
therefore, be interpolated against its interpolation curve. The EVA framework provides 
three types of non-linear interpolation for each personalized movement: EaseIn (slow-start 
and ramp-to-full, abrupt finish), EaseOut (starts with full speed and in the last n frames 
decelerates to a slow stop), and EaseInOut (starts slowly, ramps to full speed and after the 
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constant phase, if it exists, slowly decelerates to full stop). The rendering process is frame 
based and at each frame is interpolated against its non-linear interpolation curve. At any 
given frame the animation can also be stopped/paused or re-adjusted to its given 
temporal/spatial features. The EVA scripts describe both verbal and non-verbal behavior, 
independently. The verbal behaviour is contained within speech XML tags named speech, 
and the non-verbal behaviour may be contained within fgesture and bgesture tags 
describing facial expressions, and different body gestures. The verbal parameters can be 
described by the semantic, temporal, and articulation features of a sequence, whereas non-
verbal behaviour involves describing the presence level of facial expressions and different 
body gestures. All speech-driven non-verbal behaviour can be defined in the TTS system’s 
output directly, or indirectly by derivation of several non-verbal parameters found in the 
TTS generated output. Non-verbal parameters, such as emphasis, phrase/word breaks, and 
key phrases (e.g. dialogue discourse markers) are used when the non-verbal behaviour is 
controlled by a TTS system. The non-verbal feature allocators, fgesture and bgesture unify a 
set of control units, assigned to control different parts of the body. The facial expressions 
contain control units that can be physically assigned to the human face (e.g. control units 
such as lower-jaw, mouth corners, etc.). Similarly, body gestures allocate control units, such 
as: left elbow, neck, control units for fingers, etc. In addition, the left and right-eye control 
units are also assigned to the body gesture group. By describing the temporal and spatial 
features of movement in the form of sequential or parallel groups, the EVA framework 
enables hierarchical levels of animation for both fgesture and bgesture objects. Each 
movement can, therefore, be built from different control units with either sequential or 
concurrent movement. In the context of spoken dialogue systems using TTS systems, the 
EVA framework not only enables more realistic human-machine interaction, but can also 
evoke emotional and social responses that exist in face-to-face human-human spoken 
dialogues. 

5. Multilingual and multimodal PLATTOS TTS system for the Slovenian 
language 

This section presents an implementation of the corpus-based PLATTOS TTS system for the 
Slovenian language, using a concatenative approach and a TD-PSOLA speech-synthesis 
algorithm. The dequeues are tied together into a common time and space-efficient TTS 
engine, using the HRG structure for the representation of linguistic information. Finite-state 
machines, however, are used for efficient language resource representation, and separation 
of the language-dependent part from the language-independent TTS engine. The fsmHal 
library is used to efficiently construct the necessary finite-state machines used (Rojc, 2000; 
Rojc 2003). All modules, as specified in the TTS system architecture (Figure 1), are included 
and used. In the following subsections, implementation of those modules used for the 
personalized PLATTOS TTS system regarding the Slovenian language is presented in detail. 

5.1 Tokenizer dequeue 
All tokens are specified off-line in the form of regular expressions. Then the FSM compiler is 
used for the construction of a tokenizer finite-state machine. The additional part of the 
tokenizer module is the spell checker. It is used in order to prevent erroneous words that 
corrupt the performance of other modules within the TTS system, e.g. obtained prosody 
patterns result in speech signals with lower intelligibility. The spell-checking algorithm uses 
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a large word list, containing a set of valid words. Represented as FSA, the corresponding list 
is then used for edit distance calculations and searching for the best possible replacements 
for the misspelled words found in the input text. An additional part of the tokenizer is the 
normalisation process. Number tokens’ factorization is performed firstly, in order to convert 
the numbers into the corresponding word forms. Some languages (e.g. German and 
Slovene) need additional filter (FST), for handling language-specific decade flop 
phenomenon. The core number lexicon is constructed from the SIlex lexicon (Rojc & Kačič, 
2000), represented as FST. Additional rewrite rules are used for language-specific word 
insertions (special words such as ‘‘and’’ (English), ‘‘und’’ (German) or ‘‘in/and’’ (Slovene). 
Compiling rewrite rules into a FST is performed, since it is more efficient and requires a 
limited number of operations (Sproat, 1998). Furthermore, an important issue is the 
normalisation process of abbreviations, especially in the cases of inflectional languages. 
When considering the context a decision has to be made about which conversions are 
possible and which are impossible. The marking of unacceptable and acceptable conversions 
for a given context is done using the rewrite rules, and written by an expert. For processing 
special symbols (e.g. %), the construction of FSM representing lexical analysis for a given 
symbol, is performed for the conversion of a special symbol into word forms. In those cases 
where more possible conversions are preserved at the end, the most appropriate one is 
obtained using the BestPath algorithm (Rojc & Kačič, 2007).  

5.2 POS-tagging dequeue 
The POS tagging approach performed in the PLATTOS TTS system is based on the Brill’s 
POS tagging approach. The POS tagging process consists of several steps. Firstly, the 
morphology lexicon is used as obtained from the training. Within this lexicon each entry is 
assigned the most probable POS tag found in the training corpus. If a word is not found, the 
SImlex morphology lexicon (Rojc & Kačič, 2000) is used next. Deterministic and minimized 
FST representation of SImlex lexicon represents time and space-efficient representation and 
fast lookup time. Morphological analysis then follows, which uses the so-called guessing 
automata, constructed for unknown words (this FSA tries to guess the POS tag by analysing 
word endings) (Daciuk, 1998). POS tagging context rules are used at the end. Within the 
scope of the post-processing stage, local grammars are used to resolve possible remaining 
ambiguities, e.g. as a consequence of systematic tagging errors that are unsolved during the 
POS-tagging process (Rojc & Kačič, 2007).  

5.3 Grapheme-to-phoneme conversion dequeue 
The SIflex phonetic lexicon for common words is first used during the unified approach to 
grapheme-to-phoneme conversion (Rojc & Kačič, 2007). Additionally, the SIplex phonetic 
lexicon for proper names is included, followed by the homograph detection step. Next, 
possible unknown words are converted into phonetic transcription by using trained CART 
tree models for stress, grapheme-to-phoneme, and syllable prediction. The HRG utterance 
structure is used as a linguistic knowledge source and for feature construction. Therefore, 
several complex features can be easily constructed by using a textual list of the linguistically 
attributed names. Syllable markers are also inserted into phonetic transcriptions (in the case 
of unknown words), since this information is important later for prosody modules. In the 
final stage of the unified G2P process, several rules have to be applied for performing the 
post-processing of the canonical phonetic transcriptions, by also considering cross-word 
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contexts. Namely, in the Slovenian language cross-word context has a significant impact on 
pronunciation and must be considered within the whole G2P conversion process. The expert 
defines these rules for all phoneme conversions, occurring at word beginnings and word 
endings. Furthermore, input texts often contain words or phrases from some other 
language. The first problem that has to be solved is to detect such words in efficient ways, 
and the second is to specify the corresponding pronunciations. When e.g. the Slovenian 
input sentence contains a German name “Gerhard Schröder’’, these two words have to be 
detected, and then converted into the phonetic transcriptions using Slovenian phonemes. As 
suggested in (Rojc & Kačič, 2007), a G2P conversion module for the German language (using 
SIplex lexicon) is used first, and then German phonemes are mapped into the most suitable 
phoneme substitutions defined for the native language. This mapping can be done by using 
the phoneme mapping table constructed by the phonetic experts. This polyglot functionality 
is currently supported for German and English names.  

5.4 Symbolic and acoustic prosody dequeues 
Within symbolic prosody module the prediction of phrase breaks, prominence labels, and 
Tilt intonation labels (based on syllable level) is performed (Taylor, 2000). CART trees are 
used, since classification is performed on several discrete linguistic attributes during 
training. The phrase break prediction model inserts phrase break labels, the prominence 
prediction model marks the prominent syllables, and the intonation prediction model 
assigns Tilt intonation labels to each syllable. In the PLATTOS TTS system for the Slovenian 
language, a B3 label is used for labelling major phrase breaks, and a B2 label for minor 
phrase breaks. Additionally, phrase break positions are used for pause insertions in the 
sentence. Prominence labels on syllables are marked as PA (primary accent, assigned to the 
most accentuated syllables inside the intonation prosodic phrase), and as NA (marking 
secondary accents in the prosodic phrase). Tilt intonation event labels (a c l m fb rb afb arb 
lfb mrb mfb lrb) are assigned to each syllable in the sentence. In the acoustic prosody 
module prediction is performed for segment durations, pause durations at phrase break 
positions, and the prediction of Tilt acoustic parameters for each Tilt intonation event. Here, 
regression trees are used because of the nature of the used data. Separate prediction models 
are used for vowel phoneme duration prediction, and for the prediction of consonant 
phoneme durations. An additional tree model is trained for the prediction of pause 
durations, using only sentence internal pauses in the recorded Slovenian speech database 
(female voice). After the Tilt acoustic parameters have been predicted, reconstruction of the 
specified F0 contour can also be performed (for subsequent modules), and is stored within 
the HRG structure (Rojc & Kačič, 2007).  

5.5 Unit selection dequeue 
The input text corpus (newspapers, literature, internet) used for recording the Slovenian 
speech database consists of approximately 31 million words. The main criteria for selecting 
sentences were: richness with different diphone and triphone units, maximal final size of the 
speech database, and the minimal and maximal lengths of the sentences (Rojc, 2003). Before 
the segmentation process of the database into monophone, diphone and triphone units, the 
canonical phonetic transcriptions were manually verified, and adapted to the recorded 
material of the database. The initial acoustic inventory was constructed from a large set of 
non-uniform units (diphones and triphones). Then, the two-stage search space reduction 
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process was performed, as presented in section 3.2. During the first stage, all diphones and 
triphones were clustered by considering the phonetic contexts of the units (by using a tree-
based clustering technique). The constructed trees were used in the next stage - in the 
process of eliminating acoustically-similar unit candidates (redundant units). Since 
calculation of concatenation costs is a very time consuming process, they are calculated off-
line, as presented in 3.3, in order to achieve better time and space efficiency of the on-line 
unit selection process. A vector quantisation algorithm (VQ) was also used in order to 
minimize the huge CC cost matrix. The final VQ codebook and the FST with CC cost indices 
then enable an efficient CC cost lookup process in the on-line unit selection dequeue. As 
already mentioned, at the end of symbolic and prosodic dequeue, the sequence of target 
units with predicted symbolic and acoustic prosodic parameters is already defined. The next 
step is then to search in the optimised acoustic inventory for the best matching unit 
candidates. The basic strategy in the PLATTOS TTS system is to find the longest non-
uniform unit for each target, ensuring also that the acoustic features and phonetic contexts 
of the unit candidates are as close as possible to the target unit specifications (stored as HRG 
utterance structure).  
 

 
Fig. 8. Common error ‘E’ during the unit selection optimisation process. 

As presented in 3.5, an important issue for an on-line unit selection process based on 
common unit cost calculation is the proper setup and tuning of partial suitability functions’ 
parameters and weights, as used in equation (7). The tuning of these parameters and 
weights is performed from non-optimised acoustic inventory containing all database 
diphone and triphone units, together with the off-line calculated concatenation costs. The 
initial weights and parameters are defined by using the hybrid approach. The input into the 
unit selection optimisation process is a set of prosodically-annotated database utterances 
(100 sentences). When considering the defined prosody and the existing unit candidates in 
the acoustic inventory for each sentence unit, the optimisation process iteratively searches 
for a sequence of such units that would result in minimal F0 mismatches between selected 
candidates, and in minimal duration deviations towards the predicted prosody. After each 
iteration, the RGD algorithm evaluates the common error ‘E’ made by selecton of candidates 
(regarding pitch and duration), and updates parameters and weights before the next unit 
selection process occurs. Common error ‘E’ distribution across all iterations for the set of 
database utterances (female voice) is presented in Figure 8. The iteration having the smallest 
common error ‘E’ specifies the proper set of weights and parameters to be used in the on-
line unit selection algorithm. As can be seen, the RGD algorithm does not stop if the 
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common error ‘E’ starts to increase, in order to avoid local minima - otherwise the unit cost 
functions’ weights would have been already specified at visible minimum found after 30 
iterations. The optimised acoustic inventory, tuned unit cost functions’ parameters, and 
weights are then used in the on-line unit selection algorithm. The best sequence of unit 
candidates is found by using finite-state machine based BestPath algorithm that minimises 
the two costs along the input sentence: target cost and concatenation cost. The unit selection 
algorithm significantly reduces the amount of needed signal processing in order to meet the 
predicted prosody characteristics at the end, which naturally improves the quality of the 
generated speech.  Figure 9 shows the common error 'E' per sentence (in the set of 100 
sentences). It is composed of F0 mismatches between selected candidates, and of selected 
units’ duration deviations towards unit target specifications, defined by both prosody 
modules. All errors are summed within each sentence and then divided by the number of 
selected units in the sentence. Therefore, the normalised common error values are actually 
presented, in order to compare the obtained values between sentences in the given test set. It 
can be seen that the common error 'E' across the whole set of sentences is significantly larger 
when running a non-optimised unit selection algorithm (x markers), and that the common 
errors 'E' in the case of the optimised unit selection algorithm are smaller (circle markers). 
 

 
Fig. 9. Common errors ‘E’ on the set of test sentences (100 sentences). 
 

      
Fig. 10. Selected unit candidates when using (a) optimised cost functions’ weights, and (b) 
non-optimised cost functions’ weights. 

Further, the sequences of the best candidates selected by using optimised and non-
optimised unit functions’ weights and parameters are shown in Figure 10. Here, each 
selected unit candidate (diphone/triphone) is represented by a straight line. The length 
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represents the duration of the selected unit candidate. The start and end-points of each line 
are characterized by the F0 values at the start and end of each unit candidate selected from 
the acoustic inventory. Naturally, the goal of the unit selection process is that observed F0 
differences between successive straight lines are as small as possible, and that pitch values 
between candidates are also as close as possible. Namely, this will result in lesser-needed 
signal post-processing to be performed by TD-PSOLA. When comparing figures (a) and (b), 
it can be seen that by using an optimised unit cost functions’ weights and parameters, the F0 
mismatches are smaller (and F0 points between successive units are closer), which results in 
a more fluent and more natural synthesized speech signal. 

5.6 Concatenation and acoustic dequeue 
The concatenation module processes those units selected by the unit selection process in the 
previous dequeue. Since the following acoustic module is based on the TD-PSOLA 
algorithm, this module takes care of the following processing steps: calculation of analysis 
pitches, searching for an optimal concatenation point between two successive units, 
matching of analysis and synthesis pitches, and the smoothing of concatenation points. The 
acoustic module based on the TD-PSOLA algorithm is then used for changing the durations 
and pitch on those selected units, where existing F0 mismatches and duration deviations are 
unacceptable (Rojc & Kačič, 2007).  

5.7 PLATTOS ECA – EVA –  
ECA EVA (Mlakar & Rojc, 2011) is a PLATTOS TTS system’s conversational agent that can 
be used in different spoken dialog systems. ECA EVA represents the personification of the 
PLATTOS TTS system, implemented by using the EVA framework. The PLATTOS TTS 
system output′s synthesised speech and linguistic and acoustic data of the input sentence 
(contained in the HRG structure) in the format of the EVA XML script. Currently, these 
scripts contain sequences of phonemes, visemes, and gesture triggers. Each generated EVA 
script includes corresponding temporal (duration), and spatial information (e. g.  
articulation). By using this input, the EVA framework is then able to visualize a PLATTOS 
TTS system’s output in the form of animated verbal and rule-based non-verbal behavioural 
response. ECA EVA is a female agent, since the selected ECA gender depends on of the 
voice used in the TTS system. It can synthesize expressive speech sequences based on 
different levels of co-articulation, head and hand gestures, facial expressions and emotions, 
and gaze. The lip-sync process synthesizes verbal features, and employs the articulation 
parameter (stress) at spoken sequence and utterance levels. At the spoken sequence level of 
articulation all utterances are additionally modified to meet the general articulation 
properties of the sequence as a whole. Articulation at the utterance level only modifies the 
spatial properties of the selected utterance. In this way, spoken dialogue-flow can not only 
adapt articulation, but also influence the speed at which a certain answer is spoken. 
Therefore, in addition to articulation relating verbal features, the general articulation can 
also define several personality features of an ECA (e.g. fast-speaker, speaker with good 
articulation etc.). If, for instance, the user did not understand the different parts of the 
spoken sequences, such sequences can be repeated at a slower rate and with a higher level 
of articulation. Therefore, such a personificated PLATTOS TTS system can also be used as a 
tool for learning pronunciations and other learning/entertainment applications. The rule-
based non-verbal behaviour, such as: emotion, facial expressions, head and hand 
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movements, are generated based on linguistic and acoustic information (stored in the HRG 
structures) that the PLATTOS TTS system can currently provide (e.g. morphology 
information, phrase-break labels, prominence labels, trigger words and phrases, stress 
levels, pitch etc.). By using emphasis markers word/phrase-break markers, ECA EVA can 
generate different speech-driven pointing gestures that can visually emphasize a certain 
word/phrase. By interfacing words/phrases with different emotions, and facial expressions, 
EVA can visually generate speech-driven facial expression, such as: speaking with a gentle 
smile, saying something sadly, etc. All these features represent an essential part of the visual 
synthesis from TTS output. Figure 11 demonstrates the personification of the PLATTOS TTS 
system including expressiveness and emotions that are already well-supported by the EVA 
framework. Different speech segments can be accompanied by different facial gestures, e.g. 
emphasis can be defined by a higher level of articulation, slightly lower pronunciation rate, 
and by raising eyebrows. Negation can be further emphasized by repetitive nods.  
 

 
Fig. 11. Personification of the PLATTOS TTS system output. 

The gestures used on the right-hand side (Expressive behaviour) of Figure 11 are 
independent and don’t directly influence each other. The animation blending technique 
enables the deployment of facial expressions, emotions, and speech, simultaneously. The 
bone-based ECA automatically removes most of the “jerky”, or unnatural poses that usually 
result when animating expressive ECAs, such as: the eyes don’t follow whilst the head is 
turning etc. Since the multipart concept uses a shared skeleton, even though the eyes and 
head are of different body types, the eyes will automatically be sub-parented to the joint 
chain of the head (to the one among the joints in the head joint-chain). This will result in the 
eyes following the head’s movements. Therefore, when the eyes move, head will be 
uninfluenced, but when the head moves, eyes will move according to an automatic gaze 
generation process. Furthermore, gestures, emotions, gaze and verbal communication (lip-
sync), can vary in composition (which combinations of control points are used to form 
them), in amplitude (to what extent a gesture forms; e.g. co-articulation of utterances), in 
speed, and in repetitiveness. The expressive behaviour presented was generated by 
specifying each of the gesture types in the form of the EVA Script, provided by the 
PLATTOS TTS system. ECAs generated by the EVA framework and PLATTOS TTS system 
can generate different speech-driven types of gestures, gaze, and both simple and complex 
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emotions, in an expressive, fully adjustable way. All the ECA’s body movements within are 
defined and described hierarchically, as a composition of movements of the control units. 
The PLATTOS ECA-EVA enables the animation of rich sets of gestures, expressions, or 
event speech utterances that can vary in time, space and composition.  

6. Evaluating multilingual and multimodal TTS systems 

Constant evaluation as a constituent part of research activities has proven to be a successful 
approach for enhancing progress in almost all areas of speech technology, such as speech 
recognition, speech synthesis, or speech translation, especially if organized in the form of 
evaluation campaigns, e.g. TC-STAR1, Blizzard2 etc. (Rojc et al., 2009). As we know, the 
traditional evaluations are not performed ‘on-line’, the transport of test data and results has 
to be treated manually, and the test data are not ‘secret’. Furthermore, the connecting of 
different developers’ modules cannot be handled without an exchange of software to be 
integrated locally. In order to solve all these issues of traditional evaluations for testing TTS 
systems, a RES (remote evaluation system) evaluation framework has been established over 
recent years for speech synthesis technology within the ECESS consortium3.  
 

 
Fig. 12. RES framework for developing and evaluating multilingual and multimodal TTS 
systems and components. 

The key element of the RES is its specification for a set of separate modules: e.g. for text 
processing, prosody generation, acoustic synthesis modules etc., that can be combined 
together into a complete text-to-speech system. Being able to split into any number of such 
modules has the advantage that the developers of an institution can concentrate its efforts 
on a single module, and test its performance within a complete system, using missing 
modules from the developers of other institutions etc. In this way high-performance 
multilingual and multimodal TTS systems can be built by using the high-performance 
modules of different institutions. A common evaluation methodology has been developed 

                                                 
1 www.tc-star.org  (EU project TC-STAR)  
2 http://festvox.org/blizzard/ (The Blizzard challenge) 
3 www.ecess.eu (ECESS - European Center of Excellence in Speech Synthesis) 
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to assess the performances of the modules that are based on the common use of those 
module-specific evaluation criteria and module-specific language resources needed for 
training and testing the modules. The RES was designed, not only to evaluate TTS modules, 
but also to support the developers of TTS modules. Developers/researchers can use RES in a 
test/development modus, in order to improve the performances of their TTS module(s), and 
evaluators can use RES in an evaluation modus for measuring the performances of the 
selected TTS modules. The distributed architecture of the RES is shown in Figure 12. As can 
be seen, the system consists of several RES clients (for developers, researchers, and 
evaluators), the RES server (managing unit), and RES module servers encapsulating the TTS 
modules (developers, and researchers). The RES server communicates simultaneously with 
several RES clients, and also supports the RES module servers when communicating with 
several RES clients at the same time. When performing testing or evaluating, developers, 
researchers and evaluators only select the desired TTS modules via RES clients and provide 
corresponding input for the selected task. The given input is then automatically transferred 
within the RES to the selected TTS modules, and generated output is returned to the RES 
client. 

7. Conclusion 

The presented design pattern for multilingual and multimodal corpus-based TTS systems 
shows that it is possible to integrate all modules of the TTS system, from text processing 
to acoustic processing, into an efficient and flexible queuing mechanism. Time and space-
efficient FSMs are used for separating language dependent resources from a language-
independent TTS engine, for the time and space-efficient representation of language 
resources, and for fast information lookup. A HRG structure is used for storing complex 
and heterogeneous sentence information, and for flexible construction of complex 
features. Furthermore, optimisation of the unit-selection process is one of the most 
important issues for corpus-based TTS systems, where several processing steps have 
important impacts on the achieved performance of the TTS system, regarding quality and 
efficiency. A RGD algorithm for cost functions’ weights optimisation is proposed within 
the unit-selection process. Objective and subjective measures show that such optimisation 
results in a better quality of generated speech, a smaller common error ‘E’ regarding unit 
duration deviations and pitch disagreements between selected speech segments, is fully 
automatic and language-independent. It is, therefore, very helpful for tuning a general 
unit selection process, and can speed-up the generation of new voices for corpus-based 
TTS systems. The presented design pattern was demonstrated on the implementation of 
the Slovenian corpus-based PLATTOS TTS system; however, it can be used for the 
construction of TTS systems for other languages, for which the necessary language 
resources exist. By personification of the PLATTOS TTS system using ECA EVA, it can be 
used in advanced multimodal spoken dialogue systems. PLATTOS TTS system and EVA 
framework together provide flexible and efficient audio-visual multimodal output, 
enriched with a rich set of gestures, expressions, and emotions. Namely, by using EVA 
Script schemes, synthesized speech can be enhanced with several body movements, 
several types of visually represented articulation, different facial expressions (e.g. eye-lid 
movement, gaze, smile, emotions, etc.), and different body gestures (hand gestures, head 
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movement, etc.). All these features personificate machine generated responses, and 
provide means for more natural human-machine interaction to be used in multimodal 
spoken dialogue systems. The ability, not only to articulate but also to control the speed 
and level of articulation, additionally enhances human-machine interfaces.  
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