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ABSTRACT 
The objective of this theme is to non-parameter identify 

and to compare the dynamic properties of the Lion-head river 
bridge located at Chia-I. The east bound of the bridge is 
designed and constructed as conventional, and the west bound 
as bridge isolated by lead-rubber bearings. Signals collected 
from the accelerometers installed on the bridge by the Central 
Weather Bureau will be processed. Back-propagation algorithm 
of Neural networks will be adopted and the nonlinear behavior 
of lead-rubber bearings will be simulated. 

INTRODUCTION 
Earthquakes occurred frequently due to Taiwan located 

between Eurasia plate and Philippine plate. The Central 
Weather Bureau equips the strong ground motion sensor for 
many bridges, and obtains much ground motion data. These 
data were measured by the bridges which equipped with 
accelerometers could analyses the responses of bridges. The 
responses of earthquakes could be predicted more accuracy 
result from these data which could be also utilized to identify 
the structural parameters. 

The Lion-head river bridge which equipped with 
accelerometers connects to Chia-I, Taiwan, and the data were 
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measured by accelerometers could be transferred to the useful 
data by high pass and low pass filter procedure. At first, using 
the earthquake data and the finite element analyses to create 
and train the Neural networks model might compare the 
simulation and practical results. Proving the non-parameter 
system identification method can represent the bridge structural 
response, and can detect the bridge structural characteristics 
changes. 

The east bound of the bridge is designed and constructed as 
conventional, and the west bound of the bridge as bridge 
isolated by lead-rubber bearings. The instrument deployed 
diagram with the bridge is shown as Fig.1, and the five 
earthquake records information of the bridge is shown as Table 
1. 

BACK-PROPAGATION NEURAL NETWORKS 
The feedforward, multilayered, supervised neural 

networks with the error backpropagation algorithm, the alleged 
backpropagation neural networks (BPNN), is by far the most 
commonly applied neural networks learning model owing to its 
simplicity. A general multiplayer feedforward network consists 
of an input layer, one or more hidden layers, an output layer 
1 Copyright © 2007 by ASME 
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and weight values. A neural networks with a hidden layer is 
shown in Fig. 2. [1] The basic structure is narrated as follows: 
i Input layer:  

    In order to express the input variable of the network, 
the processing several elements would be depend upon the 
problems, the signal of the network would input from here, 
and among each artificial neuron would use linear activation 
functions. 

ii Hidden layer:  
    In order to express the influence of each input element, 
the number of elements would be without any standard 
method, but usually would be decided the best numbers by 
try and error method, and among each artificial neuron 
would use nonlinear activation functions. 

iii Output layer:  
    In order to express the output variable of the network, 
the processing several units would be depend upon the 
problems, the signal of the network would output from here, 
and among each artificial neuron would use nonlinear 
activation functions. 

iv Weight value: 
    Generally speaking, the training final purpose of the 
neural networks is to get the best weight value. It is to make 
the particular relation between input layer and output layer. 

 
The hidden layer of the neural networks model is 

represented in terms of a threshold type of nonlinear layer. In 
this paper, we considered Tan-Sigmoid Transfer function to 
represent the activity in this layer. 
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APPRAISAL OF BACKPROPAGATION NEURAL 
NETWORKS 

NN have many different types, all kinds of network is 
suitable for dealing with different problems. Back-propagation 
neural networks’s advantage and shortcoming as follow: 
i advantage of NNBP: 

a. High precision learning; 
b. Fast recall speed. 

ii shortcoming of NNBP: 
a. Low learning speed; 
b. Virtual minimum convergence value. 
c. The decisions of network structure and dynamic parameter 

lack the systematized method. 
 

Levenberg - Marquardt learning algorithm (LM) 
Gradient-based training algorithms are the basic theme 
commonly used by researchers and backpropagation is one of 
it, but they are not efficient. However, Newton algorithms, 
improved from Gradient-based algorithms, could converges 
quickly as the solution is approached. But it has to calculate 
complex Hessian Matrix. So, LM algorithm applies second 
order training procedure, it doesn’t need to calculate complex 
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Hessian Matrix, and use G=H+μI to solve the problems of 
Newton numerical analysis. If LM approaches Hessian Matrix 
H, characteristic value {λ1, λ2,…, λn}and characteristic vector 
{v1,v2,…,vn}, then: 
 

[ ] ( ) iiiiiiiiii vvvHvvIHGv μλμμλμμ +=+=+=+=  (2) 
 
Thus, G and H have the same characteristic vector, and G 
characteristic value is (λi + μ). When the value of μ increases, it 
will make all the value of (λi + μ) bigger than zero, G is positive 
definite and it will obtain G-1. From the above, we know that 
LM algorithm is also using the procedure of approaching 
Hessian Matrix, then the basic process of Newton algorithm 
can be written as: 
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+=Δ μ             (3) 

 
where E is a vector of size n calculated as 
 

[ ]nn ytytytE −−−= ...2211         (4) 
 

Here JT J is referred as the Hessian matrix. I is the identity 
matrix, μ is the learning parameter. For μ = 0 the algorithm 
becomes Gauss-Newton method. For very large μ the LM 
algorithm becomes steepest decent or the error 
Backpropagation algorithm. The parameter is automatically 
adjusted at each iteration in order to secure convergence. The 
LM algorithm requires computation of the Jacobian Matrix J at 
each iteration step and the inversion of JT J Square Matrix. 

APPLICATION AND ESTABLISHMENT OF NEURAL 
NETWORKS MODEL 
 
Establishment 

Using the neural networks toolbox in Matlab math 
software could easily build up the model. Unlike putting many 
commends in order to make the network function. 
The LM-BPNN toolbox Establishing: 
The structure of LM-BPNN is showing as the Fig. 3.In this 
paper we select several function to represent the diverse layer, 
snowing as follows: 

Input layer applied Linear Activation function. 
Hidden layer applied Nonliner Activation function. 
Output layer applied Linear Activation function. 
Performance function applied Mean Square Error Method. 
Training function applied TRAINLM Method. 
Adoption learning function applied LEARNGDM Method. 

 
Training procedures: 
Pre-procedure of the training data 

To make neural networks training more sufficient, we 
need to do pro-procedure. The original data through 
normalization, its maximum value at +1 and minimum value 
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at -1, so that the input value and objective value could be 
always within the range of +1, -1, and the related factor of 
normalized data could be remained. The factor will also be 
used to transform normalized data back to previous scale. 
Hence, the peak values of different data will be the same 
after normalized. The adoption of the model will be more 
flexible. There won’t be missing peak value of simulation 
data. See Fig. 4. 
 

Training details: 
The numerical NN model used 3 points input data value 

(X, Y and Z axis) of the in input layer, used 10 neurons of the 
hidden layer, 2 points output data value (X and Y axis), and call 
it 3-10-2 model. The structure of Isolation bridge NN model 
would be depend upon the channel of the sensor at the bridge. 
The NN model structure of Sensor No.6 to Sensor No.9 of the 
east bound bridge is 2-10-1. The NN model structure of Sensor 
No.7 to Sensor No.10 of the west bound bridge is 2-10-2. 
 
Training Analyzing  

We will compare the output data with the target data by the 
regression analysis after NN model training. The Prostreg 
Function can be used to run linear regression analysis at Matlab 
software, and the result will come out the related factor R. R 
can represent the degree of similarity of the two datum. 
If R = 1, it indicates that the output and target is perfect related. 
The result of NN model training R will be shown as Table 2, 
and Table 3. 

If each R of each isolated bridge of NN model is greater 
than 0.82, then the NN models would be displayed as reliable 
training, which every R of every numerical bridge is greater 
than 0.9. 
 
Simulation of Neural networks Model 

After NN model training, we will utilize other four 
earthquakes records by putting them into simulation, and the 
output of NN model will be compared with the actual data after 
simulation. Using the same method of the Training Analysis, R 
is representing the degree of similarity of simulation data and 
exact record. The result of  NN model training R would be 
shown as Table 4, and Table 5, and each time series fig shown 
as Fig. 5 to Fig. 8. 

If each R of each isolated bridge of NN model is greater 
than 0.94, then the NN models would be displayed as reliable 
simulation, which every R of every numerical bridge is greater 
than 0.95.  

Proving the non-parameter system identify method can 
represent the bridge structural response, and can predict the 
earthquake response in the future. 

THE HILBERT-HUNG TRANSFORM ANALYZING OF 
THE SIMULATION DATA 

In order to gain important information of earthquake 
records, we use Fourier Transform traditionally. With the 
development of information technology, all kinds of signal 
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management technologies come into being and flourish in 
recent 20 years, such as Hilbert-Huang Transform. 

A new Hilbert-Huang Transform (HHT)-based method for 
nondestructive instrument structure health monitoring is 
developed. The essence of the method is the newly developed 
HHT for nonstationary and nonlinear time series analysis, 
which consists of the empirical mode decomposition and 
Hilbert spectral analysis [2]. 

In this paper, we will use Fourier Transform and 
Hilbert-Huang Transform (HHT)-based method to analyzing 
the NN model simulation data and exact recode at frequency 
domain, and sown spectral as Fig. 9 to Fig. 15. 

CONCLUSION 
In this paper, we used the collecting code of the earthquake 

from the bridge at Lion-head River to proceed system 
identification and to approve the effect ion of neural networks 
when it is applied to the local data. The result shows: 
1. The natural frequency of system identification is match 

with the exact value. 
2. The phase and peak value of system identification of 

time-domain are approaching the exact signal. 
3. The finite element model output data which creates neural 

networks model will have the same results of 1 and 2.. 
4. Using the pro-procedure could solve the problem of 

inaccurate peak value. 
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Table 1. The five earthquake records information 

data 11/04/ 
2001 

11/24/ 
2001 

03/31/ 
2002 

05/15/
2002 

09/30/
2002 

Intensity 2 3 4 2 4 

Remark Sensor S3 Channel 07 is error record at the 
11/04/2001 data. 
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Table 2. The training related factor R of Isolation bridge NN 
model 

date 11/04/01 11/24/01 03/31/02 05/15/02 09/30/02

related 
factor 

R(E-W) 
0.9620 0.8634 0.9259 0.9897 0.9399

related 
factor 

R(N-S) 
0.8783 0.8257 0.9731 0.9934 0.9674

 

Table 3. The training related factor R of Numerical bridge NN 
model(train data: chichi Chy035 PGA 0.5g) 

Bound of 
bridge 

East Bound 
(Pot Bearing) 

West Bound 
(Lead Rubber Bearing) 

related 
factor 

R(E-W) 
0.935 0.954 

related 
factor 

R(N-S) 
0.963 0.923 

 

Table 4. The simulation related factor R of Isolation bridge NN 
model(NN model create by 11/04/01 data) 

date 11/04/01 11/24/01 03/31/02 05/15/02 09/30/02

related 
factor 

R(E-W) 
- 0.9782 0.9502 0.9791 0.9733

related 
factor 

R(N-S) 
- 0.9632 0.9472 0.9699 0.9890

 

Table 5. The simulation related factor R of Numerical bridge NN 
model(train data: chichi Chy035 PGA 0.5g) 

Bound of 
bridge 

East Bound 
(Pot Bearing) 

West Bound 
(Lead Rubber Bearing) 

Simu. 
data 

03/31/02 
PGA0.33g 

09/30/02 
PGA0.33g 

03/31/02 
PGA0.33g 

09/30/02 
PGA0.33g

related 
factor 

R(E-W) 
0.9959 0.9682 0.9891 0.9790 

related 
factor 

R(N-S) 
0.9995 0.9965 0.9985 0.9890 
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Fig. 1 The instrument deployed diagram 

 

 

Fig. 2 Backpropagation neural networks sketch map 

 

 
Fig. 3 The structure of LM-BPNN 

Input layer Output layer

Hidden layer
 Copyright © 2007 by ASME 
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Fig. 4 The missing peak value of simulation data 
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Fig.5 Time-History Comparison of Network Output (Solid 

Pink-Line) and Reference West Bound Bridge (Channel 
No.22) Response Accelerations (Dashed Blue-Line) (Train 
Model: 11/04/2001; Simulation Data: 03/31/2002) 
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Fig.6 Time-History Comparison of Network Output (Solid 

Pink-Line) and Reference West Bound Bridge (Channel 
No.22) Response Accelerations (Dashed Blue-Line) (Train 
Model: 11/04/2001; Simulation Data: 09/30/2002) 
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Fig.7 Time-History Comparison of Network Output (Solid 

Pink-Line) and Reference Numerical Output (E-W X Axial) 
Response Accelerations (Dashed Blue-Line) (Train Model: 
Chi-Chi Chy035 Data PGA 0.5g; Simulation Data: 
03/31/2002 Data PGA 0.33g) 
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Fig.8 Time-History Comparison of Network Output (Solid 

Pink-Line) and  Reference Numerical Output (E-W X 
Axial) Response Accelerations (Dashed Blue-Line) (Train 
Model: Chi-Chi Chy035 Data PGA 0.5g; Simulation Data: 
09/30/2002 Data PGA 0.33g) 
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Fig.9 FFT Spectrum Comparison of Network Output (Solid 

Pink-Line) and Reference West Bound Bridge (Channel 
No.22) Response Accelerations (Dashed Blue-Line) (Train 
Model: 11/04/2001; Simulation Data: 03/31/2002) 
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Fig.10 FFT Spectrum Comparison of Network Output (Solid 

Pink-Line) and Reference West Bound Bridge (Channel 
No.22) Response Accelerations (Dashed Blue-Line) (Train 
Model: 11/04/2001; Simulation Data: 09/30/2002) 
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Fig.11 FFT Spectrum Comparison of Network Output (Solid 

Pink-Line) and Reference Numerical Output (E-W X 
Axial) Response Accelerations (Dashed Blue-Line) (Train 
model: Chi-Chi Chy035 Data PGA 0.5g; Simulation Data: 
03/31/2002 Data PGA 0.33g) 
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Fig.12 FFT Spectrum Comparison of Network Output (Solid 

Pink-Line) and Reference Numerical Output (E-W X 
Axial) Response Accelerations (Dashed Blue-Line) (Train 
Model: Chi-Chi Chy035 Data PGA 0.5g; Simulation Data: 
09/30/2002 Data PGA 0.33g) 
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Fig.13 Marginal Hilbert Spectrum Comparison of Network 

Output (Solid Pink-Line) and Reference West Bound 
Bridge (Channel No.22) Response Accelerations (Dashed 
Blue-Line) (Train Model: 11/04/2001; Simulation Data: 
03/31/2002) 

 
Fig.14 The Hilbert Spectrum of The West Bound Bridge Data 

(03/31/2002 Channel No.22) with 1024 frequency cells. 

 
 
 

 
Fig.15 The Hilbert Spectrum of Network Output Data (Channel 

No.22) with 1024 frequency cells (Train Model: 11/04/2001; 
Simulation Input Data: 03/31/2002) 
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