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A Dynamical Systems Approach
to Failure Prognosis

In this paper, a previously published damage tracking method is extended to provide
failure prognosis, and applied experimentally to an electromechanical system with a
failing supply battery. The method is based on a dynamical systems approach to the
problem of damage evolution. In this approach, damage processes are viewed as occur-
ring in a hierarchical dynamical system consisting of a “fast,” directly observable sub-
system coupled to a “slow,” hidden subsystem describing damage evolution. Damage
tracking is achieved using a two-time-scale modeling strategy based on phase space
reconstruction. Using the reconstructed phase space of the reference (undamaged) system,
short-time predictive models are constructed. Fast-time data from later stages of damage
evolution of a given system are collected and used to estimate a tracking function by
calculating the short time reference model prediction error. In this paper, the tracking
metric based on these estimates is used as an input to a nonlinear recursive filter, the
output of which provides continuous refined estimates of the current damage (or, equiva-
lently, health) state. Estimates of remaining useful life (or, equivalently, time to failure)
are obtained recursively using the current damage state estimates under the assumption of

a particular damage evolution model. The method is experimentally demonstrated using
an electromechanical system, in which mechanical vibrations of a cantilever beam are
dynamically coupled to electrical oscillations in an electromagnet circuit. Discharge of a
battery powering the electromagnet (the “damage” process in this case) is tracked using
strain gauge measurements from the beam. The method is shown to accurately estimate
both the battery state and the time to failure throughout virtually the entire
experiment[DOI: 10.1115/1.1640638

given in Section 3. In Section 4, we develop procedures for im-

1 Introduction : _ : _ e
Most previous work in the field of machinery condition moni_proved damage diagnosis and prognosis using recursive filters.

toring has aimed at developing robust discriminatorsmgdending glh it?opnqgiig%?cgr ;Cgtgrrr? p;gsggs(t:?ﬁ)hergq;ességtitgf 5e ngggﬂsn%ﬁl
failures. Current research efforts, however, aim to move past SUED tion 6 we conclude with a discussion of our resulfs. '
diagnostic methods, which are primarily suitable for alarm-base

condition monitoring systems, to the actual tracking of incipient

damage as it develops. Such “gray scale” damage state trackérs Background

are required, furthermore, for the development of true prognosticreyiew articles that discuss the state-of-the-art of damage iden-
algorithms capable of giving continuously updated estimates @fication and systems health monitoring are presented by Doe-
remaining life, well in advance of actual failures. bling et al.[4,5], and more recently by Zou et 46]. In the fol-

In this paper we formulate and experimentally implement a neywing paragraphs we give a brief overview of some of the main
method for failure prognosis that addresses this need. The wel&elopments in damage diagnosis and prognosis that provide a
presented here is an extension of previous effdrfg] to develop context and background for the work presented in this paper.

a method for tracking hidden damage processes. The diagnosti¢iuch of the research on damage detection and identification
and prognostic methodology employed is based on a dynamigals concentrated on the development of heuristic methods based
systems perspective on evolving damgg From this point of on time or frequency domain signal processing technifie40].

view, a slowly evolving damage process is coupled to, and cauddere recent research focuses on heuristic methods that can utilize
nonstationarity in, a directly observable fast-time dynamical sybeth time and frequency domain informatiphl—-13. In both

tem. Because of this coupling, appropriate determination of subtiases, these are mainly failure detection methods, i.e. the main
distortions in the state-space dynamics of the fast time system @mphasis is on the development of a feature vector that will indi-
be used to track the developing damage and predict its futurate when the system parameters have reached some preset failure
evolution. values. These methods do not continuously estimate the damage

Here, the utility of the method is validated experimentally byor, equivalently, healthstate, or provide a functional relationship
the tracking and prediction of a battery discharge process in Batween the feature vector and the damage state—a necessary
electro-mechanical system. The application of these methodsrésiuirement for failure prognosis. The main advantage of these
real damage processes in structuf@sck initiation and progres- Mmethods is that they are easy to implement and sometimes work
sion in a structureis being explored in current research. Prelimivery well. However, there is no theoretical basis to deternaine
nary results for material damage were presentef2Jrand final Priori if a given method is going to work well for a particular
results will be the subject of forthcoming papers. system without prior experimentation or knowledge. .

In the next section, a current literature review is used to frame M0del based methods, in contrast, overcome some of the limi-
ions of heuristic methods at the expense of more complex de-

our approach to damage diagnosis and prognosis. A brief descrtﬁ'Jt-

tion of our previously presented damage tracking procedure\’l"é'lopment and higher implementation cotsi—16. They are

general in the sense that if some properties of the system or dam-
Contributed by the Technical Committee on Vibration and Sound for publicatio‘;:'ige phySICS (.:hang.e’ models Car.] be readJUSI.ed to accommodate the
in the JDURNAL OF VIBRATION AND ACOUSTICS Manuscript received February Change. Their main advantage is that knowing a model structure

2003; revised July 2003. Associate Editor: M. I. Friswell. gives one the ability to tie the changes in feature vectors to the
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model parameter changgk7]. However, in many cases one doeservable dynamics that can be measured in real time, as is appro-
not know the appropriate model, and, since most damage ppiate for systems with evolving damage. For example, crack
cesses are nonlinear, new model development costs are high. Tu@wth in a spinning shaft can be characterized by a time scale of
problem is overcome by the use of autoregressive mddeéls hours, days, weeks or even years, while a time scale of shaft
neural network$19-21], genetic algorithm$22], and other data- vibration signature is characterized by milliseconds or seconds. In
based modelling techniques in place of physics-based modelhat follows we summarize the main ideas behind the damage
However, the ability to directly tie damage evolution to changes imacking procedurd1], with a formulation that emphasizes its

a system’s physical parameters is generally lost with data-bassdorithmic implementation. We also note improvements on the
models. It should be mentioned that most of the model basptbcedure presented in the original papers.

schemes, just like most heuristic methods, have up to now been . )

used primarily to provide damagtetectionand, possibly, classi- 3-1 The Damage Tracking Function and Reference Model
fication. In an experimental context we usually do not have access to the

The failure prognosis problem is still in its developmenta@nalytical form of governing differential Eq¢l). However, we
stages. Currently available failure prediction algorithms can BEve access to measurements from the fast-time systertidig.
divided into methods based on determini§i8] and probabilistic These measurements are usually, as will be assumed here,
or stochastic[24,25 models for fault propagation. Currently, Sampled at uniform time intervats and the dynamicgor, more
these methods are application dependent and their success is 8§Rerally, the equivalent topological structure of the phase gpace
Damage state estimatigor damage trackingrefers to a process ding [26,27. In this procedure, the measured scalar time series
that goes beyond mere identification and classification of damagér)}i_, is converted to a series of vectoy3(r)=[x(r),x(r
to yield a continuous, updateable estimate of the current state-of), . .. x(r +(d—1)7)]e RY, wherer (multiple oft,) is a suit-
damage in a given system or component, sometimes referred tabke delay time andl is the appropriate embedding dimension.
“gray scale” damage monitoring. Embedding parametersandd are usually determined using the

This paper is based on the assertion that for true prognosdfiicst minimum of the average mutual informatif28] and method
ability we need:(1) an empirical or physics-based damage evolwf false nearest neighbof29], respectively.
tion model;(2) a failure surfacdor level9 for the relevant dam-  The reconstructed state vectors are governed by an as yet un-
age variables that operationally defines the failed condition; akdown map of the form
(3) a technique that can continuously estimate the current state of .
these varia%les. It is preferable tksllat such a damage tracking yr+1)=P(y(r); ). )
method need only readily available measureméfus example, In [1,2], the followingdamage tracking function
as obtainable using available vibration or control signaidieu
of special “damage detectors.” Given a proven damage tracking Edr, ) =PX(y(r), ) = PX(y(r), ¢bo) 3)
method, one acquires the ability to test available physics-basgfls proposed. In Eq3), P is thek-th iterate of the map defined
models or develop appropriate empirical models. Thus, the prgh-gq. (2). To actually calculate the tracking functidgiy(r, ¢) for
lem of failure pr_ogn(_)sis can t_)e_ redyced to a_recursive filter desigRy given initial conditiony(r), we need to know how the fast
problem for estimating remaining time to failure. subsystem evolves over the time interka) for the current, ap-

In previous work[1,2] we have described a novel damag?)roximately constant, value ap, as well as how this subsystem
tracking method developed in a dynamical systems framework fgiould haveevolved for the reference value ¢f,. Since the sys-
studying damage evolutiof8]. This method was shown to over-tem's fast time behavior for the current value ¢fis directly
come most of the limitations discussed above. In particular, it Waseasurabldi.e., we can reconstruct the fast-time trajectory using
demonstrated both experimentally and analytically that the track-sensor measurement from the fast subsystéra strategy is to
ing output was in one-to-one relationship with the actual damagempare it to the predictions of aference modedlescribing the
variable, and, indeed, under circumstances to be expected in magyt system'’s behavior fop= ¢, .
cases, not only one-to-one but alsiwear. Here we demonstrate  For fixed y(r), the tracking function can be expanded in a
an application and extension of this method to the developmentpiylor series ing. For ¢ sufficiently close tog,, it is shown in
a true damage diagnosis and prognosis algorithm. [1] that, assuminginear observability(i.e., assuming the first de-

rivative of P¢ with respect togp has maximal rank the relation-
3 Damage Tracking Based on Short-Time Dynamics ship between the tracking function and the damage variable can be

We view the state of a machine or component with damage a\slvgll-apprOX|mated by an affine map

point evolving in an extended phase space of a hierarchical dy- Er,p)=C(r)p+c(r), ()]

namical system. This system consists of a “fast-time” subsyste . K .
coupled to a “slow-time” subsystem: erhere the matrixC=9P*/d¢ is evaluated at¢p=¢,, and

c=—Cd¢y is a column vector. Thus, under the above assumptions,

x=f(x,u(P)), (1a) the tracking function can be used to provide a linear measurement
. of, and therefore to track, the damage varialfﬂér In [1,2], a
b= €g(P.Xx), (1b)  suitably average¢see section 3)25,(r, ¢) was successfully used

where:xe R" is a directly observable, fast-time variabige R [ rack a scalar damage variable. . .
is a slow-time variable representing the damage that is “hidden” 1€ reference mode¥(-; ¢y) in Eq. (3) can be estimated in a

(i.e., not directly accessiblepe RS is a function of¢ represent- variety of ways. In this work, local linear models are used as the

ing the material parameters in Ea); a rate constant @ e<1 simplest form of a globally nonlinear reference model
defines a time scale separation between fast and slow-time dy- y(r+1)=A(r)y(r)+a(r), (5)
namics; and overdots denote differentiation with respect to time . . .
Please note that far=0 the parameter vectgr is a constant and WNEreA(r) is annxn matrix anda(r) is annx1 vector. Equa-
system Eq(la) is stationary, and foe+0 Eq. (1a) is nonstation- tON (5) approximates Eq(2) for a particular pointy(r) in the
ary due to the evolution ofh. However, over the time scales 0freference system'’s reconstructed phase space. In practical appli-

O(e) we consider Eq(la) to be quasistationary since drifts g = ——— ) ) ) ) ) )
INote that tracking can be accomplished without necessarily knowing the matri-

are n.eg“glble' . . . . cesC andc. In many applications, it is sufficient to know that the relationship is
This formulation is appropriate for systems where hidden pr@gear, without need for prior calibration to determine the “sensitivity” and “bias” of
cesses evolve on a much slower time scale than the directly @i measurements.

Journal of Vibration and Acoustics JANUARY 2004, Vol. 126 / 3

Downloaded From: https://vibrationacoustics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



One way to design such a filter would be to make use of an
explicit analytical model for the fast subsystem Etg), which
could be used to derive a model describing the dynamics of
|Ex(r, ). In our case, we have assumed that such a model is not
available. However, considering that the fast sampling time is
very short (;<tp<<1/e), a constant model should provide an ac-
ceptable approximation for the tracking function evolution over
the sampling time intervalg. That is, over the relatively short
sampling time, the best estimate of the next “error staf&;(r
+1,0)|, is its current value|E.(r,¢)||, which is, obviously, a
linear relationship.

For linear systems, the Kalman filtE80] provides the optimal
minimum mean square error estimator, and it can be calculated
recursively. Specifically, fotF we consider a Kalman filter de-
signed for random constant parameter estimation. Thus, we use
the following linear process difference equations for the scalar
tracking functionE(r)=||&(r,¢)| and for the corresponding sca-
cations, other modeling approaches, such as neural nets, ragiaimeasurement function(r)=||E.(r,®)|:
basis functions, or auto regressive moving averages, may be more
appropriate, either in terms of accuracy or implementability. E(r+1)=E(r)+w(r+1)

The parameters of the local linear models are determined by
calculating the best linear fit betwedhnearest neighbors gf(r) zZ(r+1)=E(r+1)+v(r+1)
and their future states for data taken in the reference condition.

Then the damage tracking functidiq. 3 for the initial point Wwhere the procesgmode) noise w(r) and measurement noise
y(r) can be written as v(r) are assumed to be white, independent random variables with

£t ) =y +K)— ARY(r) — a+ EM (1) = Ex(r )+ EM (). E?\lu(sosllFf;(r;)))d.lstrlbutlons(|.e., p(w)~N(0,Q) and p(v(r))
(6) In this case, the constaf corresponds to the average ampli-
where, for simplicity, we have suppressed the dependendy oftude of fluctuations in|E(r)|| as the location in phase space
anda on r. In the above equatiorEV(r) represents the local changes along a given trajectory. In additi&®fr) corresponds to

Fig. 1 Damage tracking function estimation. Solid black line is
the current trajectory of the fast subsystem. Dashed gray line is
the corresponding reference trajectory. Model is based on the
reference trajectory points shown in gray.

(10

linear model error and fluctuations in||E,(r)|| due to changes in the local linear model
. ‘ accuracy from point to point in phase space. A$lir2], we take
Ex(r, @) =y(r +k)—Afy(r)—a (") R(r)=d®, whered, is the distance from the poin(r) to the

is the estimated tracking function that can be determined expé@thest of allN nearest neighbors used for local modeling, &nd
mentally(refer to Fig. 3. The use oE,(r, ¢) in place of§(r,¢) IS the average pointwise dimensi¢81]. The argument behind
is justified if [EM| is small compared tdE,||. In fact, as we this choice is that the accuracy of the local linear models is pro-
discuss in the next section, the situation is somewhat better tH@tional to the generalized volume occupied by the fixed number
this, sinceE,(r, ¢) can be used to provide astimateof &(r,¢) ©Of nearest neighbors, and that the volume scale eaised to the

by means of a suitably selected recursive filter. D power. )
Note that the Kalman filter assumes thafl) andv(l) have

3.2 Recursive Estimation of a Scalar Tracking Metric. In normal distributions. However, statistical characteristics of the
this paper we focus on scalar damage variables. This suggegigking function output most likely will not be Gaussian since
that, instead of the vector tracking function defined in the pl’eViOlﬂﬁey are an outcome of a nonlinear process. In practice, very few
section, we usé&(r, 4)||. However, as discussed in detail[tt],  processes possess noise terms that are normally distributed and, in
there will in general be fluctuations in the tracking functiortase this deviation is due to some nonlinear measurement func-
caused by two main sources that are not related to changes infiB), one usually tries to find an inverse transform to get Gaussian
damageg: (1) changes in the model fit err&" from point to variables. If such a transform can not be found, however, Kalman
point in phase space; aiig) changes in the actual mapping of Eqfiltering is still used since it provides accurate estimates of the first
(4), also from point to point. We compensate for both sources efo moments of these distributions.
fluctuation by using a suitable filter, as described below. This ap-Finally, for each record, the damage tracking megicand its
proach has the added benefit of using all of the data availakigriance are estimated as,
within one data record, and thus making the estimates more ro-
bust. e=(E(r)), and agk:<[E(r)—ek]2>. (11)

We use the data from an entire data record by considering the

following tracki tri . . .
oflowing fracking metric 4 Damage Diagnosis and Prognosis

ec=(ll&r. @), ®) Cusumano and Chatterj¢8] proposed that, given the hierar-
where(-) represents theoot mean squaréRMS) value over the chical system of Eq¢(1), the form of the damage evolution “law”
indexr (i.e., over an entire data record of time sggp. of most use for predicting remaining useful life would be that

We can then attempt to estimafg(r,¢) using only the mea- related to the system of Eql) by application of the concept of
surable| E(r, ¢)|| time series with an appropriate filtéf, so that averaging. That is, the damage model used for failure prognosis is

Eq. (8) becomes: related to the original slow subsystem Etjp) by taking the long
time average of the vector fielglalong the solution to the=0
e=(FUEr. ¢))). © (i.e., the undamagedysten?

In our previous work[1,2], the filter 7 was taken to be a  This results, in principle, in a slow flow equation for the dam-
weighted average in which the weights were proportional to tf&ge variable that is independent of the fast variable
probability density of data points in the neighborhood of the cur-

rent state. Here we improve the approach by defining a recursive 6=9(¢), (12)
filter, which is easier to implement and results in much better

performance. 2Since here we consider only scalar damage varialgés, also scalar-valued.
4 /| Vol. 126, JANUARY 2004 Transactions of the ASME
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where the derivatives are taken with respect to “slow tinie” Shaker
= et andg is the appropriately averaged version of the origipal

In [2], this claim was examined using a mathematical model of
specific system having the general form of Ef. In that particu-

lar case, the damage model provided by the averaged system
(12) could be approximated analytically, and it was demonstratt
that the output of the damage tracking algorithm followed its sq e - <ion

lutions very closely. Generator

Amplifier

Strain Gauge

Data
Acquisition

Battery

Voltage | |

4.1 Recursive Estimation of Damage State. In general, re- Dividr

liable first-principles models for damage evolution are not avai W
able. In principle, the tracking methodology presented here p¢ Permanent Magnet

mits the establishment of appropriate empirical damage evoluti Permanent/Electromagnet Stack \
laws. However, in this paper we do not go through this procedure.
We assume instead that the form of the damage model is knowi§. 2 Schematic diagram of the experimental apparatus of
from previous calculations or is determined a posteriori from priahe two-well electro-mechanical oscillator.

applications of the tracking algorithm. As mentioned in section

3.1, and demonstrated in earlier work, the tracking metric can be

used to monitor an evolving damage variable. However, givengiquely defined by the solution to E(.2) with initial conditions
damage model, the tracking metric time series, which consists gft ) (the current damage statesuch thatg(te+tg)=0:
one set of data of the form E@L1) for each data record, can be

used to obtain an actual estimate of the damage state, together _ ¢ dop

with an estimate of the uncertainty. F . 9(e) (15)
To construct a recursive estimator, we consider the tracking

metric values to be measurememg{r)=e,(r) that are linearly Equation(15) can be evaluated analytically or numerically to give

related to the damage state, following the linear observability a&-finite t; assuming thag is bounded away from zerb(In the

sumption of Eq.(4). However, the damage process equation @xample studied in the next sectiag<0.)

usually nonlinear. This results in a set of estimator difference Given the expression Eq15), damage state estimates can be

equations of the form: used to generate derived measurements of the time to failure. A
simple linear recursive estimat@{alman filtep can then be used
B(r+1)=p(r)+eg(p(r)At+w,(r+1) to obtain improved estimates of time to failutegether with

(13)  uncertainty using the following discrete-time state transition and
measurement equations:

Zy(r+1)=Ce(r+1)+ct+uvy(r+1),
t(r+1)=t(r)—tp+w(r),

. . . (16)
whereg is a given nonlinear functiomt=Mt,=tp for consecu- _

tive data records with no gap§;andc are scalar parameters; and e(r+)=tr+1)+v(r+1),

the procesgmode) noisew,(r) and measurement noisg,(r) wheret(r) is the remaining time to failuret(r) is the current
are assumed to be white, independent random variables wéstimatelmeasuremenbased on Eq.15), tp is the time length of
Gaussian distributions p(w,(r))~N(0,Q4(r)) and p(v,(r)) a data record;andw(r) andv(r) are assumed to be zero-mean
~N(OR4(r))). Here, we taka¢(r)aggk(r) to be the covariance White-noise processes with Gaussian distributionp(w)

; : ; : ~N(0,Qi(r)) andp(v(r))~N(O,Ri(r))). Here,Ry(r) is the co-
qu:%(:a;:gggvgrénggr%?asurenm;(tr) andQ is an estimate of variance for each estimate @f(r) (which is also obtained from

Given the nonlinearity of Eqe13), one must use a nonlinear € damage state estimatoandR,(r) =|(dtg/d$)Ry(r)] is the
technique to estimate the state dfWhile it is common practice covariance associated with each measurement.
to use the extended Kalman filter for nonlinear systems, it is not
suitable for systems with strong nonlinearities. Here, we use do- Experimental Application to Electro-Mechanical
called unscented filteringB2]. In the interest of completeness, weSystem

here summarize this approach as it applies to our problem. The algorithm is tested experimentally using the system of

Let us consider a scalar random variallig) with meanX(r) 11 2 which is a modified version of the well known two-well
and variancé(r). We would like to predict the posteriorimean magneto-mechanical oscillatgB3]. The system consists of a
X“(r+1) and varianceP? " (r+1) of the random variabl&(r  gingle degree-of-freedom cantilever beam with an assembly of
+1), whereX(r +1) is related toX(r) by the nonlinear transfor- nermanent magnets and an electromagnet near its end, providing a
mationX(r +1)=G(X(r)). In our case, the nonlinear transformay,griaple two-well potentialsee Fig. 2 The electromagnet is
tion G includes all but the last term on the right hand side in thgo\ered by a standard 9 volt battery. A strain gauge is attached to
first of Egs.(13). Then the general procedure at each iteration ighe heam below the fixture and just above the stiffeners added to

1. Calculate the set of translateima points X;(r)} from the he beam to ensure a single mode vibrational response. The sys-

P(r) as tem is mounted on a shaker and is forced at about 6.3 Hz. The
[ — — battery discharge process, which weakens the electromagnet
{Xo(r), Xa(r), Xo(r)}={X(r),X(r) = o (r),X(r) +o(r)},  strength, is viewed as a hidden damage process and the open
(4 circuit battery voltage is considered to be the damage variable.
where,a(r) = J3P(r). The forcing amplitude was set to obtain nominally chaotic re-

2 The transformed set of sigma points are evaluatedtlfy ~Sponse at least in the beginning of experintefihe experiment is

+1)=G(X(r)).

3 Co%putéfl‘((r)lr 1) andP(r+1) by computing the mean _ °This is equivalent to assuming that the damage model does not have an equilib-

: , rium point in the region of interest. S¢8] for detailed discussion.
and covariance of the Se‘?('(r + 1)} %tp=Mt, in this case, but it can easily be generaliéal be irregular, for ex-

4.2 Recursive Estimation of Time-to-Failure. Given a 2mple: ) . - o )
X R . Note that the chaotic response is used in this case merely to simplify data acqui-
damage model Eq(12) and a predefined failure surfa¢® the sition: a more general method, such as stochastic interrog@zould be used for
scalar case, simply a leyel¢g= ¢, the time to failuretg is nonchaotic systems.
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900 T ' ; : ' absolute value of the tracking function we get an approximately
Gaussian distributiofFig. 3 righd. Thus, to estimate the tracking

8oop 1 function we apply the Kalman filter to I[is(r)|) and, then, trans-
| form it back using the exponential function. The filter parameters
700 we used areR(l)=10°dP andQ=10 5.

A mathematical model for the experimental system was devel-

800 | oped elsewhere by the auth¢®g. It was shown that the following

E 500 | form of the battery voltage evolution law closely follows the ex-
5 perimental battery voltage data:
é4oo 1 . 5
2 ¢=—e(p=)(1+v(p— 7)), a7
300 ]
where 0<e<1 is the rate constants represents residual voltage
200 1 after battery dischargey corresponds to the midpoint of the bat-
tery voltage operating range, ands a positive constant.
100 ] To determine the parameters of the battery voltage model Eg.

(17), we make use of independently measured electromagnet coil
p Y o~ os o o5 Y o7 Voltage data. Since the recorded battery voltage signal has a
Tracking Function Estimate, IE,| modulation induced by the inductive coupling of the electromag-
net electrical circuit and the beam oscillations, the local time av-
1 erage of the recorded voltage signal in each record was taken as
an estimate of the open circuit battery voltage. Figureigpe)
{ uses thick gray line to depict the local mean of the measured
battery voltage. On the same plot we present results of nonlinear
4 curve fitting of Eq.(17) to the recorded voltage data using dashed
black line. The nonlinear curve fitting resulted in the following
| parameterg=0.0429,4=0.0766,y=4.2050, andy=5.9168.

The above model is used to formulate the discrete-time state
transition equations for Eq$13). To determine the correspond-
ing measurement equation we need to perform a calibration relat-
ing the battery voltage data and the estimated tracking function.
Using a linear fit for Eq.(4) we have:es=Cq¢+c, where
C=-0.0085,c=0.073, and¢ in this case corresponds to local
time mean of the measured voltage data. This results in the fol-
lowing form of Egs.(13):

80

Number of Points
n w B Lol D ~
(=] o o =] o (=]
T T 7 T T T

-
o

ik, B(r+1)=(r)— eAt(p(r)— ) (1+y(p(r) = 7)*) +Wy(r +1)
2 1 0 (18)
24(r+1)=Cep(r+1)+ct+uvy(r+1).

6 5 4 3
Log of Tracking Function Estimate, InIEsl

9 8 7

Fig. 3 Probability distributions of |Es| (upper) and In|Eg|

(lower ). 2* points were used for histograms. After obtaining the information needed to formulate the damage
model above, experiments were conducted with consecutive data
records ofVl =4,000 points, with no overlapping sections or gaps

started with a fresh 9 V battery and runs continuously for J.ugetween records. These records were used to calculate the mean

under 7 hours. The stiffness in the electromagnet potential wéi(")=€s(r) and its variationo (r) using Eq.(11). Next, the

decreases by a total of 6 percent due to the battery dischargenlinear recursive filter for damage state estimation and Eg).

Strain gauge output is sampled at 100 Hz sampling frequenégre used to estimate the battery voltage, as shown in Fig. 4

(ts=0.01 sec), digitized12 bit A/D), and stored on a computer (lower) using a solid black line. In this case we usBg(r)

along with the independent voltage measurements taken from maozags(r) andQ,=10"2

electromagnets coil. . , By integrating Eq(17) we can calculate the time elapsed from
The system was chaotic throughout most of the experimefje initial to the current value of:

However, numerous passages through windows of periodic behav-

ior were also observed in the range of stiffnesses traversed by the b

system as the battery discharged. Delay time and embedding di-

IN—=+(7—y)\Vyarctai\y(¢— )]
mension for the reference data set were estimated td bens 5, V1+y(p—n)?

respectively. The first 2 data points were used for the reference ()= e(1+y(n—¢)?
data set, andN=16 nearest neighbors were used for the local
linear model parameter estimation. The estimated average point- K
wise dimension of the reference data set was approxim&ely * e’ (19)
=2.82.

After going through the embedding and modeling process, wghereK is a constant of integration.
estimated the tracking functioes by calculating the short-time  We chose a failure value for the battery voltage ¢t
prediction errorEs(r), which is a scalar in this case, of the ref-=3.567 V8 and used the following expression as the measure-
erence model along with the distandebetween the poing(r) to  ment input in Eqs(16):
the farthest nearest neighbor poingt¥'(r) used in modeling. A
sample distribution of|Es(r)| is highly asymmetrical and is te(r)=t(g) —t(d(r)), (20)
shown on Fig. 3(left). However, it can be approximated by a
lognormal distribution. Indeed, if we take the natural log of the °This value is arbitrary. Changing it would not significantly change our results.
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8 ' . . : : - 6 Conclusions

\ In this paper we have presented a new procedure for damage
W, 1 diagnosis and prognosis. The algorithm is based on a multi-time-
. scale analysis of changes in the dynamics of a hierarchical system,
6r M Saeiae 1 and is not tied to any specific damage physics. It assumes that the
R S system possesses time scale separation, i.e., damage process oc-
1 curs on a much slower time scale than the observable dynamics of
the system. It is assumed implicitly that the fast, directly observ-
41 able subsystem is governed by some ordinary differential equation
(Eq. 1a), however and explicit model need not be known. How-
ever, for failure prediction, a mathematical model for the damage
evolution (Eq. 1b) is required.

o1
T

IS
T

Battery Voltage (V)

W

T
—— L

L

oL \! _ We have described the major parts of our diagnostics/
“\& prognostics algorithm. In the first part, a tracking function based
1| == Measured f | on reference model short-time prediction error statistics is used to
— Estimated L obtain a tracking metric that provides a linear measurement of the
— - Model " .
ok . . . ‘ ‘ Nmmee|  current damgge state. In _the second part, we discussed how the
0 ] > 3 4 5 5 7 tracking metric together with a damage evolution model are used
Time (hours) to estimate current damage state more precisely. Finally, we de-
55 . . . . . scribed how predictions of the remaining time-to-failure can be
\ obtained.
3r ' - ‘E\gi“rﬁgted ] The algorithm was applied to an electro-mechanical oscillator
45k — caculated |  With a drifting potential energy, caused by an electromagnet pow-

ered by a discharging battery. The battery discharge was consid-
1 ered to be a “hidden” damage process. As the battery discharged
to complete failure, the system’s stiffness in the potential energy
well powered by the electromagnet declined by 6 percent.
1  Throughout the experiment, the system underwent many bifurca-
1 tions causing repeated periodic/chaotic transitions. Nevertheless,
the method smoothly tracked the battery voltage, and predicted
the remaining useful life of the battery well in advance of actual
| failure, using only strain measurements taken from the vibrating

w
o
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[
T

Time to Failure (hours)
n
N 01

151
beam subsystem.
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