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A Dynamical Systems Approach
to Failure Prognosis
In this paper, a previously published damage tracking method is extended to pr
failure prognosis, and applied experimentally to an electromechanical system w
failing supply battery. The method is based on a dynamical systems approach t
problem of damage evolution. In this approach, damage processes are viewed as
ring in a hierarchical dynamical system consisting of a ‘‘fast,’’ directly observable s
system coupled to a ‘‘slow,’’ hidden subsystem describing damage evolution. Da
tracking is achieved using a two-time-scale modeling strategy based on phase
reconstruction. Using the reconstructed phase space of the reference (undamaged) s
short-time predictive models are constructed. Fast-time data from later stages of da
evolution of a given system are collected and used to estimate a tracking functio
calculating the short time reference model prediction error. In this paper, the track
metric based on these estimates is used as an input to a nonlinear recursive filte
output of which provides continuous refined estimates of the current damage (or, eq
lently, health) state. Estimates of remaining useful life (or, equivalently, time to fail
are obtained recursively using the current damage state estimates under the assump
a particular damage evolution model. The method is experimentally demonstrated
an electromechanical system, in which mechanical vibrations of a cantilever beam
dynamically coupled to electrical oscillations in an electromagnet circuit. Discharge
battery powering the electromagnet (the ‘‘damage’’ process in this case) is tracked u
strain gauge measurements from the beam. The method is shown to accurately es
both the battery state and the time to failure throughout virtually the en
experiment.@DOI: 10.1115/1.1640638#
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1 Introduction
Most previous work in the field of machinery condition mon

toring has aimed at developing robust discriminators ofimpending
failures. Current research efforts, however, aim to move past s
diagnostic methods, which are primarily suitable for alarm-ba
condition monitoring systems, to the actual tracking of incipie
damage as it develops. Such ‘‘gray scale’’ damage state trac
are required, furthermore, for the development of true progno
algorithms capable of giving continuously updated estimates
remaining life, well in advance of actual failures.

In this paper we formulate and experimentally implement a n
method for failure prognosis that addresses this need. The w
presented here is an extension of previous efforts@1,2# to develop
a method for tracking hidden damage processes. The diagn
and prognostic methodology employed is based on a dynam
systems perspective on evolving damage@3#. From this point of
view, a slowly evolving damage process is coupled to, and ca
nonstationarity in, a directly observable fast-time dynamical s
tem. Because of this coupling, appropriate determination of su
distortions in the state-space dynamics of the fast time system
be used to track the developing damage and predict its fu
evolution.

Here, the utility of the method is validated experimentally
the tracking and prediction of a battery discharge process in
electro-mechanical system. The application of these method
real damage processes in structures~crack initiation and progres
sion in a structure! is being explored in current research. Prelim
nary results for material damage were presented in@2# and final
results will be the subject of forthcoming papers.

In the next section, a current literature review is used to fra
our approach to damage diagnosis and prognosis. A brief des
tion of our previously presented damage tracking procedur

Contributed by the Technical Committee on Vibration and Sound for publica
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given in Section 3. In Section 4, we develop procedures for
proved damage diagnosis and prognosis using recursive fil
The application of the proposed techniques to the experime
electromechanical system is described in Section 5. Finally
Section 6 we conclude with a discussion of our results.

2 Background
Review articles that discuss the state-of-the-art of damage id

tification and systems health monitoring are presented by D
bling et al.@4,5#, and more recently by Zou et al.@6#. In the fol-
lowing paragraphs we give a brief overview of some of the m
developments in damage diagnosis and prognosis that provi
context and background for the work presented in this paper.

Much of the research on damage detection and identifica
has concentrated on the development of heuristic methods b
on time or frequency domain signal processing techniques@7–10#.
More recent research focuses on heuristic methods that can u
both time and frequency domain information@11–13#. In both
cases, these are mainly failure detection methods, i.e. the m
emphasis is on the development of a feature vector that will in
cate when the system parameters have reached some preset
values. These methods do not continuously estimate the dam
~or, equivalently, health! state, or provide a functional relationshi
between the feature vector and the damage state—a nece
requirement for failure prognosis. The main advantage of th
methods is that they are easy to implement and sometimes w
very well. However, there is no theoretical basis to determina
priori if a given method is going to work well for a particula
system without prior experimentation or knowledge.

Model based methods, in contrast, overcome some of the l
tations of heuristic methods at the expense of more complex
velopment and higher implementation costs@14–16#. They are
general in the sense that if some properties of the system or d
age physics change, models can be readjusted to accommoda
change. Their main advantage is that knowing a model struc
gives one the ability to tie the changes in feature vectors to

ion
2004 by ASME Transactions of the ASME
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model parameter changes@17#. However, in many cases one do
not know the appropriate model, and, since most damage
cesses are nonlinear, new model development costs are high.
problem is overcome by the use of autoregressive models@18#,
neural networks@19–21#, genetic algorithms@22#, and other data-
based modelling techniques in place of physics-based mod
However, the ability to directly tie damage evolution to changes
a system’s physical parameters is generally lost with data-ba
models. It should be mentioned that most of the model ba
schemes, just like most heuristic methods, have up to now b
used primarily to provide damagedetectionand, possibly, classi-
fication.

The failure prognosis problem is still in its developmen
stages. Currently available failure prediction algorithms can
divided into methods based on deterministic@23# and probabilistic
or stochastic@24,25# models for fault propagation. Currently
these methods are application dependent and their success is
tingent on a successful damagestate estimationby some means
Damage state estimation~or damage tracking! refers to a process
that goes beyond mere identification and classification of dam
to yield a continuous, updateable estimate of the current stat
damage in a given system or component, sometimes referred
‘‘gray scale’’ damage monitoring.

This paper is based on the assertion that for true progno
ability we need:~1! an empirical or physics-based damage evo
tion model;~2! a failure surface~or levels! for the relevant dam-
age variables that operationally defines the failed condition;
~3! a technique that can continuously estimate the current sta
these variables. It is preferable that such a damage trac
method need only readily available measurements~for example,
as obtainable using available vibration or control signals! in lieu
of special ‘‘damage detectors.’’ Given a proven damage track
method, one acquires the ability to test available physics-ba
models or develop appropriate empirical models. Thus, the p
lem of failure prognosis can be reduced to a recursive filter de
problem for estimating remaining time to failure.

In previous work @1,2# we have described a novel dama
tracking method developed in a dynamical systems framework
studying damage evolution@3#. This method was shown to ove
come most of the limitations discussed above. In particular, it w
demonstrated both experimentally and analytically that the tra
ing output was in one-to-one relationship with the actual dam
variable, and, indeed, under circumstances to be expected in m
cases, not only one-to-one but alsolinear. Here we demonstrate
an application and extension of this method to the developmen
a true damage diagnosis and prognosis algorithm.

3 Damage Tracking Based on Short-Time Dynamics
We view the state of a machine or component with damage

point evolving in an extended phase space of a hierarchical
namical system. This system consists of a ‘‘fast-time’’ subsyst
coupled to a ‘‘slow-time’’ subsystem:

ẋ5f~x,m~f!!, (1a)

ḟ5eg~f,x!, (1b)

where:xPRn is a directly observable, fast-time variable;fPRm

is a slow-time variable representing the damage that is ‘‘hidd
~i.e., not directly accessible!; mPRs is a function off represent-
ing the material parameters in Eq.~1a!; a rate constant 0,e!1
defines a time scale separation between fast and slow-time
namics; and overdots denote differentiation with respect to timt.
Please note that fore50 the parameter vectorm is a constant and
system Eq.~1a! is stationary, and foreÞ0 Eq.~1a! is nonstation-
ary due to the evolution off. However, over the time scales o
O~e! we consider Eq.~1a! to be quasistationary since drifts inm
are negligible.

This formulation is appropriate for systems where hidden p
cesses evolve on a much slower time scale than the directly
Journal of Vibration and Acoustics
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servable dynamics that can be measured in real time, as is ap
priate for systems with evolving damage. For example, cr
growth in a spinning shaft can be characterized by a time scal
hours, days, weeks or even years, while a time scale of s
vibration signature is characterized by milliseconds or seconds
what follows we summarize the main ideas behind the dam
tracking procedure@1#, with a formulation that emphasizes it
algorithmic implementation. We also note improvements on
procedure presented in the original papers.

3.1 The Damage Tracking Function and Reference Model
In an experimental context we usually do not have access to
analytical form of governing differential Eqs.~1!. However, we
have access to measurements from the fast-time system Eq.~1a!.
These measurements are usually, as will be assumed
sampled at uniform time intervalsts and the dynamics~or, more
generally, the equivalent topological structure of the phase sp!
of Eq. ~1a! can be reconstructed using a delay coordinate emb
ding @26,27#. In this procedure, the measured scalar time se
$x(r )% r 51

M is converted to a series of vectorsyT(r )5@x(r ),x(r
1t), . . . ,x(r 1(d21)t)#PRd, wheret ~multiple of ts) is a suit-
able delay time andd is the appropriate embedding dimensio
Embedding parameterst and d are usually determined using th
first minimum of the average mutual information@28# and method
of false nearest neighbors@29#, respectively.

The reconstructed state vectors are governed by an as ye
known map of the form

y~r 11!5P~y~r !;f!. (2)

In @1,2#, the followingdamage tracking function

Ek~r ,f!5Pk~y~r !,f!2Pk~y~r !,f0! (3)

was proposed. In Eq.~3!, Pk is thek-th iterate of the map defined
in Eq. ~2!. To actually calculate the tracking functionEk(r ,f) for
any given initial conditiony(r ), we need to know how the fas
subsystem evolves over the time intervalkts for the current, ap-
proximately constant, value off, as well as how this subsystem
would haveevolved for the reference value off0 . Since the sys-
tem’s fast time behavior for the current value off is directly
measurable~i.e., we can reconstruct the fast-time trajectory usi
a sensor measurement from the fast subsystem!, the strategy is to
compare it to the predictions of areference modeldescribing the
fast system’s behavior forf5f0 .

For fixed y(r ), the tracking function can be expanded in
Taylor series inf. For f sufficiently close tof0 , it is shown in
@1# that, assuminglinear observability~i.e., assuming the first de
rivative of Pk with respect tof has maximal rank!, the relation-
ship between the tracking function and the damage variable ca
well-approximated by an affine map

Ek~r ,f!5C~r !f1c~r !, (4)

where the matrix C5]Pk/]f is evaluated atf5f0 , and
c52Cf0 is a column vector. Thus, under the above assumptio
the tracking function can be used to provide a linear measurem
of, and therefore to track, the damage variablef.1 In @1,2#, a
suitably averaged~see section 3.2! Ek(r ,f) was successfully used
to track a scalar damage variable.

The reference modelP(•;f0) in Eq. ~3! can be estimated in a
variety of ways. In this work, local linear models are used as
simplest form of a globally nonlinear reference model

y~r 11!5A~r !y~r !1a~r !, (5)

whereA(r ) is ann3n matrix anda(r ) is ann31 vector. Equa-
tion ~5! approximates Eq.~2! for a particular pointy(r ) in the
reference system’s reconstructed phase space. In practical a

1Note that tracking can be accomplished without necessarily knowing the m
cesC and c. In many applications, it is sufficient to know that the relationship
linear, without need for prior calibration to determine the ‘‘sensitivity’’ and ‘‘bias’’ o
the measurements.
JANUARY 2004, Vol. 126 Õ 3
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cations, other modeling approaches, such as neural nets, ra
basis functions, or auto regressive moving averages, may be m
appropriate, either in terms of accuracy or implementability.

The parameters of the local linear models are determined
calculating the best linear fit betweenN nearest neighbors ofy(r )
and their future states for data taken in the reference conditio
Then the damage tracking function~Eq. 3! for the initial point
y(r ) can be written as

Ek~r ,f!5y~r 1k!2Aky~r !2ak1EM~r !5Ek~r ,f!1EM~r !,
(6)

where, for simplicity, we have suppressed the dependency ofA
and a on r. In the above equation,EM(r ) represents the local
linear model error and

Ek~r ,f!5y~r 1k!2Aky~r !2ak (7)

is the estimated tracking function that can be determined expe
mentally~refer to Fig. 1!. The use ofEk(r ,f) in place ofEk(r ,f)
is justified if iEMi is small compared toiEki . In fact, as we
discuss in the next section, the situation is somewhat better th
this, sinceEk(r ,f) can be used to provide anestimateof Ek(r ,f)
by means of a suitably selected recursive filter.

3.2 Recursive Estimation of a Scalar Tracking Metric. In
this paper we focus on scalar damage variables. This sugge
that, instead of the vector tracking function defined in the previo
section, we useiEk(r ,f)i . However, as discussed in detail in@1#,
there will in general be fluctuations in the tracking function
caused by two main sources that are not related to changes in
damagef: ~1! changes in the model fit errorEM from point to
point in phase space; and~2! changes in the actual mapping of Eq
~4!, also from point to point. We compensate for both sources
fluctuation by using a suitable filter, as described below. This a
proach has the added benefit of using all of the data availa
within one data record, and thus making the estimates more
bust.

We use the data from an entire data record by considering
following tracking metric

ek5^iEk~r ,f!i&, (8)

where^•& represents theroot mean square~RMS! value over the
index r ~i.e., over an entire data record of time spantD).

We can then attempt to estimateEk(r ,f) using only the mea-
surableiEk(r ,f)i time series with an appropriate filterF, so that
Eq. ~8! becomes:

ek5^F~ iEk~r ,f!i !&. (9)

In our previous work@1,2#, the filter F was taken to be a
weighted average in which the weights were proportional to th
probability density of data points in the neighborhood of the cu
rent state. Here we improve the approach by defining a recurs
filter, which is easier to implement and results in much bett
performance.

Fig. 1 Damage tracking function estimation. Solid black line is
the current trajectory of the fast subsystem. Dashed gray line is
the corresponding reference trajectory. Model is based on the
reference trajectory points shown in gray.
4 Õ Vol. 126, JANUARY 2004
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One way to design such a filter would be to make use of
explicit analytical model for the fast subsystem Eq.~1a!, which
could be used to derive a model describing the dynamics
iEk(r ,f)i . In our case, we have assumed that such a model is
available. However, considering that the fast sampling time
very short (ts!tD!1/e), a constant model should provide an a
ceptable approximation for the tracking function evolution ov
the sampling time intervalts . That is, over the relatively shor
sampling time, the best estimate of the next ‘‘error state.’’iEk(r
11,f)i , is its current value,iEk(r ,f)i , which is, obviously, a
linear relationship.

For linear systems, the Kalman filter@30# provides the optimal
minimum mean square error estimator, and it can be calcula
recursively. Specifically, forF we consider a Kalman filter de
signed for random constant parameter estimation. Thus, we
the following linear process difference equations for the sca
tracking functionE(r )[iEk(r ,f)i and for the corresponding sca
lar measurement functionz(r )[iEk(r ,f)i :

E~r 11!5E~r !1w~r 11!
(10)

z~r 11!5E~r 11!1v~r 11!

where the process~model! noise w(r ) and measurement nois
v(r ) are assumed to be white, independent random variables
Gaussian distributions ~i.e., p(w);N(0,Q) and p(v(r ))
;N(0,R(r ))).

In this case, the constantQ corresponds to the average amp
tude of fluctuations iniEk(r )i as the location in phase spac
changes along a given trajectory. In addition,R(r ) corresponds to
fluctuations iniEk(r )i due to changes in the local linear mod
accuracy from point to point in phase space. As in@1,2#, we take
R(r )}dr

D , wheredr is the distance from the pointy(r ) to the
farthest of allN nearest neighbors used for local modeling, andD
is the average pointwise dimension@31#. The argument behind
this choice is that the accuracy of the local linear models is p
portional to the generalized volume occupied by the fixed num
of nearest neighbors, and that the volume scales asdr raised to the
D power.

Note that the Kalman filter assumes thatw( l ) and v( l ) have
normal distributions. However, statistical characteristics of
tracking function output most likely will not be Gaussian sin
they are an outcome of a nonlinear process. In practice, very
processes possess noise terms that are normally distributed a
case this deviation is due to some nonlinear measurement f
tion, one usually tries to find an inverse transform to get Gauss
variables. If such a transform can not be found, however, Kalm
filtering is still used since it provides accurate estimates of the
two moments of these distributions.

Finally, for each record, the damage tracking metricek and its
variance are estimated as,

ek5^E~r !&, and sek

2 5^@E~r !2ek#
2&. (11)

4 Damage Diagnosis and Prognosis
Cusumano and Chatterjee@3# proposed that, given the hiera

chical system of Eq.~1!, the form of the damage evolution ‘‘law’
of most use for predicting remaining useful life would be th
related to the system of Eq.~1! by application of the concept o
averaging. That is, the damage model used for failure prognos
related to the original slow subsystem Eq.~1b! by taking the long
time average of the vector fieldg along the solution to thee50
~i.e., the undamaged! system.2

This results, in principle, in a slow flow equation for the dam
age variable that is independent of the fast variablex:

ḟ5ḡ~f!, (12)

2Since here we consider only scalar damage variables,g is also scalar-valued.
Transactions of the ASME
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where the derivatives are taken with respect to ‘‘slow time’’z
5et andḡ is the appropriately averaged version of the originalg.
In @2#, this claim was examined using a mathematical model o
specific system having the general form of Eq.~1!. In that particu-
lar case, the damage model provided by the averaged system
~12! could be approximated analytically, and it was demonstra
that the output of the damage tracking algorithm followed its
lutions very closely.

4.1 Recursive Estimation of Damage State. In general, re-
liable first-principles models for damage evolution are not av
able. In principle, the tracking methodology presented here
mits the establishment of appropriate empirical damage evolu
laws. However, in this paper we do not go through this proced
We assume instead that the form of the damage model is kn
from previous calculations or is determined a posteriori from pr
applications of the tracking algorithm. As mentioned in sect
3.1, and demonstrated in earlier work, the tracking metric can
used to monitor an evolving damage variable. However, give
damage model, the tracking metric time series, which consist
one set of data of the form Eq.~11! for each data record, can b
used to obtain an actual estimate of the damage state, tog
with an estimate of the uncertainty.

To construct a recursive estimator, we consider the track
metric values to be measurementszf(r )[ek(r ) that are linearly
related to the damage state, following the linear observability
sumption of Eq.~4!. However, the damage process equation
usually nonlinear. This results in a set of estimator differen
equations of the form:

f~r 11!5f~r !1eg~f~r !!Dt1wf~r 11!,
(13)

zf~r 11!5Cf~r 11!1c1vf~r 11!,

whereg is a given nonlinear function;Dt5Mts5tD for consecu-
tive data records with no gaps;C andc are scalar parameters; an
the process~model! noisewf(r ) and measurement noisevf(r )
are assumed to be white, independent random variables
Gaussian distributions (p(wf(r ));N(0,Qf(r )) and p(vf(r ))
;N(0,Rf(r ))). Here, we takeRf(r )}sek

2 (r ) to be the covariance
associated with each measurementzf(r ) andQf is an estimate of
the damage model error.

Given the nonlinearity of Eqs.~13!, one must use a nonlinea
technique to estimate the state off. While it is common practice
to use the extended Kalman filter for nonlinear systems, it is
suitable for systems with strong nonlinearities. Here, we use
called unscented filtering@32#. In the interest of completeness, w
here summarize this approach as it applies to our problem.

Let us consider a scalar random variableX(r ) with meanX̄(r )
and varianceP(r ). We would like to predict thea posteriorimean
X̄2(r 11) and varianceP2(r 11) of the random variableX(r
11), whereX(r 11) is related toX(r ) by the nonlinear transfor-
mationX(r 11)5G(X(r )). In our case, the nonlinear transform
tion G includes all but the last term on the right hand side in
first of Eqs.~13!. Then the general procedure at each iteration

1. Calculate the set of translatedsigma points$Xi(r )% from the
P(r ) as

$X0~r !,X1~r !,X2~r !%5$X̄~r !,X̄~r !2s~r !,X̄~r !1s~r !%,
(14)

where,s(r )5A3P(r ).
2 The transformed set of sigma points are evaluated byXi(r

11)5G(Xi(r )).
3 ComputeX̄2(r 11) andP2(r 11) by computing the mean

and covariance of the set$Xi(r 11)%.

4.2 Recursive Estimation of Time-to-Failure. Given a
damage model Eq.~12! and a predefined failure surface~in the
scalar case, simply a level!, f5fF , the time to failuretF is
Journal of Vibration and Acoustics
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uniquely defined by the solution to Eq.~12! with initial conditions
f(tC) ~the current damage state!, such thatf(tC1tF)50:

tF5E
f

fF df

g~f!
. (15)

Equation~15! can be evaluated analytically or numerically to giv
a finite tF assuming thatg is bounded away from zero.3 ~In the
example studied in the next section,g,0.)

Given the expression Eq.~15!, damage state estimates can b
used to generate derived measurements of the time to failur
simple linear recursive estimator~Kalman filter! can then be used
to obtain improved estimates of time to failure~together with
uncertainty! using the following discrete-time state transition an
measurement equations:

t~r 11!5t~r !2tD1w~r !,
(16)

tF~r 11!5t~r 11!1v~r 11!,

where t(r ) is the remaining time to failure,tF(r ) is the current
estimate~measurement! based on Eq.~15!, tD is the time length of
a data record;4 andw(r ) andv(r ) are assumed to be zero-mea
white-noise processes with Gaussian distributions (p(w)
;N(0,Qt(r )) andp(v(r ));N(0,Rt(r ))). Here,Rf(r ) is the co-
variance for each estimate off(r ) ~which is also obtained from
the damage state estimator!, andRt(r )5u(dtF /df)Rf(r )u is the
covariance associated with each measurement.

5 Experimental Application to Electro-Mechanical
System

The algorithm is tested experimentally using the system
@1,2#, which is a modified version of the well known two-we
magneto-mechanical oscillator@33#. The system consists of a
single degree-of-freedom cantilever beam with an assembly
permanent magnets and an electromagnet near its end, provid
variable two-well potential~see Fig. 2!. The electromagnet is
powered by a standard 9 volt battery. A strain gauge is attache
the beam below the fixture and just above the stiffeners adde
the beam to ensure a single mode vibrational response. The
tem is mounted on a shaker and is forced at about 6.3 Hz.
battery discharge process, which weakens the electroma
strength, is viewed as a hidden damage process and the
circuit battery voltage is considered to be the damage variabl

The forcing amplitude was set to obtain nominally chaotic r
sponse at least in the beginning of experiment.5 The experiment is

3This is equivalent to assuming that the damage model does not have an eq
rium point in the region of interest. See@3# for detailed discussion.

4tD5Mts in this case, but it can easily be generalized~to be irregular, for ex-
ample!.

5Note that the chaotic response is used in this case merely to simplify data ac
sition: a more general method, such as stochastic interrogation@34# could be used for
nonchaotic systems.

Fig. 2 Schematic diagram of the experimental apparatus of
the two-well electro-mechanical oscillator.
JANUARY 2004, Vol. 126 Õ 5
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started with a fresh 9 V battery and runs continuously for ju
under 7 hours. The stiffness in the electromagnet potential w
decreases by a total of 6 percent due to the battery discha
Strain gauge output is sampled at 100 Hz sampling freque
(ts50.01 sec), digitized~12 bit A/D!, and stored on a compute
along with the independent voltage measurements taken from
electromagnets coil.

The system was chaotic throughout most of the experime
However, numerous passages through windows of periodic beh
ior were also observed in the range of stiffnesses traversed by
system as the battery discharged. Delay time and embedding
mension for the reference data set were estimated to be 5ts and 5,
respectively. The first 214 data points were used for the referenc
data set, andN516 nearest neighbors were used for the loc
linear model parameter estimation. The estimated average po
wise dimension of the reference data set was approximatelyD
52.82.

After going through the embedding and modeling process,
estimated the tracking functione5 by calculating the short-time
prediction errorE5(r ), which is a scalar in this case, of the re
erence model along with the distancedr between the pointy(r ) to
the farthest nearest neighbor pointsynn(r ) used in modeling. A
sample distribution ofuE5(r )u is highly asymmetrical and is
shown on Fig. 3~left!. However, it can be approximated by
lognormal distribution. Indeed, if we take the natural log of th

Fig. 3 Probability distributions of zE5z „upper … and ln zE5z
„lower …. 214 points were used for histograms.
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absolute value of the tracking function we get an approximat
Gaussian distribution~Fig. 3 right!. Thus, to estimate the trackin
function we apply the Kalman filter to ln(uE5(r)u) and, then, trans-
form it back using the exponential function. The filter paramet
we used are:R( l )5103dr

D andQ51025.
A mathematical model for the experimental system was de

oped elsewhere by the authors@2#. It was shown that the following
form of the battery voltage evolution law closely follows the e
perimental battery voltage data:

ḟ52e~f2c!~11g~f2h!2!, (17)

where 0,e!1 is the rate constant,c represents residual voltag
after battery discharge,h corresponds to the midpoint of the ba
tery voltage operating range, andg is a positive constant.

To determine the parameters of the battery voltage model
~17!, we make use of independently measured electromagnet
voltage data. Since the recorded battery voltage signal ha
modulation induced by the inductive coupling of the electroma
net electrical circuit and the beam oscillations, the local time
erage of the recorded voltage signal in each record was take
an estimate of the open circuit battery voltage. Figure 4~upper!
uses thick gray line to depict the local mean of the measu
battery voltage. On the same plot we present results of nonlin
curve fitting of Eq.~17! to the recorded voltage data using dash
black line. The nonlinear curve fitting resulted in the followin
parameterse50.0429,c50.0766,g54.2050, andh55.9168.

The above model is used to formulate the discrete-time s
transition equations for Eqs.~13!. To determine the correspond
ing measurement equation we need to perform a calibration re
ing the battery voltage data and the estimated tracking funct
Using a linear fit for Eq.~4! we have: e55Cf1c, where
C520.0085,c50.073, andf in this case corresponds to loca
time mean of the measured voltage data. This results in the
lowing form of Eqs.~13!:

f~r 11!5f~r !2eDt~f~r !2c!~11g~f~r !2h!2!1wf~r 11!

(18)

zf~r 11!5Cf~r 11!1c1vf~r 11!.

After obtaining the information needed to formulate the dama
model above, experiments were conducted with consecutive
records ofM54,000 points, with no overlapping sections or ga
between records. These records were used to calculate the
zf(r )5e5(r ) and its variationse5

2 (r ) using Eq.~11!. Next, the
nonlinear recursive filter for damage state estimation and Eq.~18!
were used to estimate the battery voltage, as shown in Fig
~lower! using a solid black line. In this case we usedRf(r )
5102se5

2 (r ) andQf51022.
By integrating Eq.~17! we can calculate the time elapsed fro

the initial to the current value off:

t~f!52

ln
f2c

A11g~f2h!2
1~h2c!Ag arctan@Ag~f2h!#

e~11g~h2c!2!

1
K

e
, (19)

whereK is a constant of integration.
We chose a failure value for the battery voltage offF

53.567 V,6 and used the following expression as the measu
ment input in Eqs.~16!:

tF~r !5t~fF!2t~f~r !!, (20)

6This value is arbitrary. Changing it would not significantly change our result
Transactions of the ASME
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wheref(r ) is a current estimate of the battery voltage. Results
the tF(r ) calculation are shown in Fig. 4~right! using a thin black
line. To calculate corresponding variances we use the follow
equation:

RF~r !}UdtF~f~r !!

df~r !
Usf

2 ~r !5
sf

2 ~r !

euf~r !2cu~11g~f~r !2h!2!
(21)

Results of this calculation are shown using a thick black line
Fig. 4 ~right!. For this calculation, we have usedQF51024. The
standard deviation for each estimate was too small to resolv
the plot. For a fixedfF , the failure prediction algorithm was abl
to provide accurate estimates of the time to failure~knowna pos-
teriori and shown by the heavy gray dashed line in Fig.!
throughout the whole experiment.

Fig. 4 Damage state estimation and failure prognosis: „upper …
plot of local mean of measured battery voltage „heavy gray
line …, fitted nonlinear battery discharge model „dashed black
line …, and recursively estimated battery state „solid black line …

vs. time; „lower … time-to-failure predictions based on damage
state estimates. In the time-to-failure predictions, the dashed
heavy gray line indicates the true time to failure „known
a posteriori …, thin black line represents simple time-to-failure
estimate using Eq. „20…, and thick black line indicates the im-
proved estimate using the failure prognostic filter of Eq. „16….
Journal of Vibration and Acoustics
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6 Conclusions
In this paper we have presented a new procedure for dam

diagnosis and prognosis. The algorithm is based on a multi-ti
scale analysis of changes in the dynamics of a hierarchical sys
and is not tied to any specific damage physics. It assumes tha
system possesses time scale separation, i.e., damage proce
curs on a much slower time scale than the observable dynamic
the system. It is assumed implicitly that the fast, directly obse
able subsystem is governed by some ordinary differential equa
~Eq. 1a!, however and explicit model need not be known. Ho
ever, for failure prediction, a mathematical model for the dama
evolution ~Eq. 1b! is required.

We have described the major parts of our diagnost
prognostics algorithm. In the first part, a tracking function bas
on reference model short-time prediction error statistics is use
obtain a tracking metric that provides a linear measurement of
current damage state. In the second part, we discussed how
tracking metric together with a damage evolution model are u
to estimate current damage state more precisely. Finally, we
scribed how predictions of the remaining time-to-failure can
obtained.

The algorithm was applied to an electro-mechanical oscilla
with a drifting potential energy, caused by an electromagnet p
ered by a discharging battery. The battery discharge was con
ered to be a ‘‘hidden’’ damage process. As the battery dischar
to complete failure, the system’s stiffness in the potential ene
well powered by the electromagnet declined by 6 perce
Throughout the experiment, the system underwent many bifu
tions causing repeated periodic/chaotic transitions. Neverthe
the method smoothly tracked the battery voltage, and predic
the remaining useful life of the battery well in advance of actu
failure, using only strain measurements taken from the vibrat
beam subsystem.
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