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The study of community detection algorithms in complex networks has been very active in the past several years. In this paper,
a Hybrid Self-adaptive Community Detection Algorithm (HSCDA) based on modularity is put forward first. In HSCDA, three
different crossover and two different mutation operators for community detection are designed and then combined to form
a strategy pool, in which the strategies will be selected probabilistically based on statistical self-adaptive learning framework.
Then, by adopting the best evolving strategy in HSCDA, a Multiobjective Community Detection Algorithm (MCDA) based on
kernel k-means (KKM) and ratio cut (RC) objective functions is proposed which efficiently make use of recommendation of
strategy by statistical self-adaptive learning framework, thus assisting the process of community detection. Experimental results
on artificial and real networks show that the proposed algorithms achieve a better performance compared with similar state-of-
the-art approaches.

1. Introduction

Since many complex systems, such as the Internet, social
networks, and biological networks, can be modeled as com-
plex networks, the study of complex networks is essential
to better understand and analyze such systems. In complex
networks, community structure [1] refers to the node groups
which have the feature that connections between the nodes in
the same group are dense and connections between different
groups are sparse. In addition to the properties of small
world, scale-free, and high clustering coefficient, community
structure is another important feature of complex networks.
Community detection [2] (also known as network clustering,
graph clustering) is to find a division of nodes to obtain
community structure. Community detection is helpful to
better understand the topology and functions of complex
networks [3]. For example, mining community structure on
the Internet can not only improve the web search results
and enhance the user experience but also implement the hot

topic tracking system. Obtaining the community structure
of social networks can help to find social circles with the
same hobbies. Therefore, it is essential to further study the
community detection in complex networks.

Fortunato [2], Schaeffer [4], and Newman’s [5] articles
provide a good overview on the community detection appro-
aches. The community detection approaches include tra-
ditional methods, divisive algorithms, and modularity-
based methods. As one of the most popular methods, the
modularity-based methods have attracted many researchers’
attention, with the most characteristic feature of converting
the network clustering problem into an optimization problem
by maximizing the modularity 𝑄 presented by Girvan and
Newman [6]. With the increase of network size, calculating
the communities with maximal modularity is NP-hard [7].
Therefore, heuristic and intelligent optimization algorithms
are often used to tackle the problem. For example, GN algo-
rithm [6] generated candidate solutions by using heuristic
operations, such as moving a node to other communities,
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switching nodes in different communities, decomposing or
merging communities, and then selecting the best commu-
nity division by calculating𝑄 valueswith simulated annealing
Metropolis criterion. FN [8] algorithm is a community
detection algorithm proposed by Newman in 2004; the basic
idea is to use greedy optimization algorithm to maximize 𝑄
value. BGLL algorithm [9] utilized the network topology and
modularity to compute the division of community structures;
the time complexity of the algorithm is proved to be linear.

Small-scale communities cannot be detected from some
large complex networks by optimizing the modularity, which
is the resolution limit [10]. To conquer the limit, a number
of modified modularity measurements, such as modularity
density [11], kernel 𝑘-means (KKM), and ratio cut (RC) [12],
are developed and introduced into the objective function,
which promotes a group of new detection methods based on
multiobjective optimization. Recentmultiobjective optimiza-
tion algorithms for community detection include MOGA-
net [13], MOCD [14], and MOEA/D-net [15]. MOGA-net
algorithmuses community fitness (CF) and community score
(CS) as two objectives to be optimized to solve community
detection problem.MOCD algorithm employed PESA-II [16]
to optimize the objective functions intra and inter and used
two methods (max𝑄 and max𝐷) to select suitable solutions
from Pareto dominant solution set. MOEA/D-net algorithm
employed MOEA/D to optimize negative ratio association
(NRA) and ratio cut (RC) [15] to find dominant solutions.

The above work shows that the modularity-based intel-
ligent optimization algorithms for community detection
attract much attention of researchers. In order to further
improve the performance of intelligent optimization algo-
rithms for community detection, the paper proposes a new
framework including hybrid evolving strategies and adaptive
learning mechanism based on evolutionary algorithm. The
work includes two parts. In the first part, the modularity
𝑄 is used as the objective function because of its simplicity
and easy understanding. A Hybrid Self-adaptive Commu-
nity Detection Algorithm (HSCDA) based on modularity is
put forward. In HSCDA, three different crossover and two
different mutation operators for community detection are
designed and then combined to form a strategy pool, in
which the strategies will be selected probabilistically based
on statistical self-adaptive learning framework. Experimental
results show that HSCDA is able to achieve competitive
modularity compared to other modularity-based algorithms,
GN, FN, and BGLL. In the second part, a Multiobjective
Community Detection Algorithm (MCDA) is proposed, in
which KKM and RC are used as two optimization objectives
instead of the modularity. The primary evolving strategy of
MCDA is decided by the self-adaptive learning framework
in HSCDA. Pareto mechanism is used to preserve the good
solutions. Experimental results show that MCDA achieves
a better performance compared with HSCDA and other
multiobjective based algorithms, MOGA-net, MOCD, and
MOEA/D-net.

The rest of this paper is organized as follows: Section 2
gives the problem statements. In Section 3, the proposed algo-
rithms for community detection are presented. In Section 4,
the performances of the proposed algorithms are validated on

both computer-generated networks and real world networks.
We also compare our algorithms with other approaches. The
conclusions are finally summarized in Section 5.

2. Network Community Detection Problem

Assume that a network 𝐺 is defined as 𝐺 = (𝑉, 𝐸), where 𝑉
denotes the node set and𝐸 denotes the edge set.The topology
of the network is usually represented by adjacent matrix 𝐴 =
(𝐴
𝑖𝑗
). The elements in the matrix are 0 or 1. 𝐴

𝑖𝑗
= 1 indicates

that the nodes 𝑖 and 𝑗 are connected, whereas 𝐴
𝑖𝑗
= 0

represents the nodes 𝑖 and 𝑗 are unconnected.
Community structure is a universal property of many

complex networks in real world. The community is the node
subset, which has a relatively tight connection between the
inner nodes and a relatively sparse connection between the
external nodes [17]. Since the concept of connection is not
clearly defined, there are many ways to measure community
structure.

The modularity 𝑄 proposed by Girvan and Newman is
the most popular measurement [6]. 𝑄 is defined as follows:

𝑄 =
1

2𝑑
∑

𝑖,𝑗

(𝐴
𝑖𝑗
−
𝑘
𝑖
𝑘
𝑗

2𝑑
)𝛿 (𝑖, 𝑗) , (1)

where 𝑑 is the total number of edges in the network, 𝐴
𝑖𝑗

is the adjacent matrix of the network, and 𝑘
𝑖
is the degree

of node 𝑖; if the nodes 𝑖 and 𝑗 are in the same community,
𝛿(𝑖, 𝑗) = 1; otherwise it is 0. If the value of 𝑄 is bigger
than 0, the community structure begins to appear in complex
networks. If 𝑄 value is greater than 0.3, there is a clear
community structure in complex networks. If 𝑄 value is
close to 1, community structure is more obvious. In the real
world complex networks, 𝑄 value is usually between 0.3
and 0.7. The advantage of modularity is easy understanding
and lower computational cost. The problem of community
detection based onmodularity is an optimization problem by
maximizing modularity 𝑄.

In order to solve problem of limit of modularity resolu-
tion [10], Li et al. in [11] introduced a new objective function,
the modularity density𝐷, which is defined as

𝐷 =

𝑚

∑

𝑖=1

𝐿 (𝑉
𝑖
, 𝑉
𝑖
) − 𝐿 (𝑉

𝑖
− 𝑉
𝑖
)

𝑉𝑖


, (2)

where 𝑉
𝑖
is the node set of 𝑖th community in all 𝑚 com-

munities, 𝐿(𝑉
𝑖
, 𝑉
𝑖
) = ∑

𝑖∈𝑉𝑖 ,𝑗∈𝑉𝑖
𝐴
𝑖𝑗
, and |𝑉

𝑖
| is the node

number in𝑉
𝑖
. The greater the value of the modularity density

𝐷, the more accurate the community found. In order to
analyze network topology structure in different resolutions
and find community of networks in more detail, the expres-
sion of modularity density is improved continuously and
then decomposed to several parts to form a multiobjective
optimization problem for community detection. One of the
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Input: Adjacent matrix 𝐴 of network 𝐺
Parameters: population size (popsize), max generations (gen), crossover probability (pc),
mutation probability (pm), initial probability of adaptive strategy (p)
Output: Optimal solution of the current iteration
Step 1. Initialization

(1.1) Initialize each individual by label propagation mechanism (see Algorithm 2).
(1.2) Calculate objective function 𝑄 using formula (1).

Step 2. Self-adaptive learning
For each individual, select a strategy from hybrid evolutionary strategy pool (see Section 3.1.3)

using roulette wheel selection according to the selected probability,
then update the selected probability of each strategy by self-adaptive learning framework (see Section 3.1.4).
Step 3. Local search

Apply hill-climbing search (see Section 3.1.5) to the individual with highest 𝑄 value in the current population for local search.
Once a better individual is generated, the new individual will replace the chosen one.
Repeat until no more better individual is get or the number of search reaches the maximum,
then the individual is the current best solution of the population.
Step 4. Stopping criteria:

If (iterations < gen), iterations ++, and go to Step 2; otherwise, stop the algorithm and output.

Algorithm 1: The flow of HSCDA.

popular decompositions is KKM [12] and RC [12], which are
defined as follows:

KKM = 5 (𝑛 − 𝑚) −
𝑚

∑

𝑖=1

𝐿 (𝑉
𝑖
, 𝑉
𝑖
)

𝑉𝑖


,

RC =
𝑚

∑

𝑖=1

𝐿 (𝑉
𝑖
, 𝑉
𝑖
)

𝑉𝑖


.

(3)

The smaller the KKM value is, the closer the internal
group will be, and the smaller the RC is, the sparser the
links between nodes of internal and external community
will be. Therefore, community detection problem can also
be modeled to a multiobjective optimization problem by
minimizing KKM and RC.

3. Description of Proposed Method

In this section, the detailed information of HSCDA and
MCDA is depicted.

3.1. HSCDA. In order to further improve the solution qual-
ity of intelligent optimization algorithms for community
detection problems based on modularity, HSCDA is pro-
posed based on evolutionary algorithm. In HSCDA, three
different crossover and two different mutation operators
for community detection are designed and then combined
to form a strategy pool, in which the strategies will be
selected probabilistically by roulette wheel selection based
on statistical self-adaptive learning framework. The flow of
HSCDA is shown in Algorithm 1.

3.1.1. Individual Encoding. A partition Ω of the network
𝐺 is encoded as an integer string x = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
},

where x denotes an individual, 𝑛 is the number of nodes
in the network, and 𝑥𝑖 is community label of node 𝑖,

𝑥
𝑖
∈ {1, 2, . . . , 𝑛}. Nodes with the same community label

are considered in the same community. Note that a network
of 𝑛 nodes can be divided into 𝑛 communities at most; in
this case, each node consists of a community, which can be
denoted as {1, 2, . . . , 𝑛}. Moreover, there are many different
representations corresponding to the same partition. For
example, given a network of 4 nodes, {2, 1, 3, 2} and {1, 3, 2, 1}
represent the same partition {{1, 4}, {2}, {3}}; that is, nodes
1 and 4 belong to the first community, node 2 belongs to
the second one, and node 3 belongs to the third one. This
direct encoding mode can be easily used without knowing
the additional information such as the size of community
structures in advance.

3.1.2. Population Initialization AlgorithmBased on Label Prop-
agation Mechanism. To both reduce the searching space and
promote diversity, the paper adopts initialization mechanism
based on label propagation [12], whichmakes full use of prior
knowledge of network topology to generate a population that
densely connected nodes have a unique label.

Assume that the neighbor set of a node 𝑖 is 𝑁(𝑖) =
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) and let 𝑙(𝑖) be the label of node 𝑖. In label

propagation mechanism, the label of each node depends on
the label with biggest proportion of labels in its neighbor set;
it is defined as follows:

𝑙 (𝑖) = arg max
𝑟

∑

𝑗∈𝑁(𝑖)

𝛿 (𝑙 (𝑗) , 𝑟) , (4)

where 𝑟 represents the community labels of nodes in 𝑁(𝑖).
If 𝑙(𝑗) and 𝑟 are the same labels, then 𝛿(𝑙(𝑗), 𝑟) equals 1
and otherwise 0. After label propagation, densely connected
nodes can be set as the same label quickly. Algorithm 2 shows
the flow of initialization algorithm using label propagation.

3.1.3. Hybrid Evolutionary Strategy Pool. In order to enhance
the capability of evolution of the algorithm and thus to
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Input: Population with each node divided into different communities, that is, 𝑙(𝑖) = 𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛}
Output: Population after initialization
For 𝑚 = 1 : popsize //for all individuals in population
For 𝑝 = 1 : 5 //the number of propagation iterations is set to 5
For 𝑖 = 1 : 𝑛 //for all nodes in the network
If (𝑁(𝑖) > 1)

For all node 𝑗 in𝑁(𝑖)
𝑙(𝑖) ← Equation (4)

End For
Else //node 𝑖 has only one neighbor 𝑗

𝑙(𝑖) = 𝑙(𝑗) //assign the label of neighbor 𝑗 to 𝑖
End If

End For
End For

End For

Algorithm 2: Algorithm of population initialization.

improve the quality of solution, six different strategies
for community detection are designed to make up the
hybrid evolutionary strategy pool. Every evolutionary strat-
egy includes crossover and mutation operators. Individual
chooses different strategies adaptively and then gradually
improves its solution structure.

Given two individuals 𝑥
𝑎
and 𝑥
𝑏
, three different crossover

and two different mutation operators are designed as follows.

Crossover 1 Is Block Crossover. Two positions of 𝑎 and 𝑏 (1 ≤
𝑎 ≤ 𝑏 ≤ 𝑛) are randomly selected at first. Then, the labels
(from 1 to a and from (𝑏 + 1) to 𝑛) are selected from 𝑥

𝑎
to

replace the labels of the same position of a new individual 𝑥
𝑐
,

while the labels in the other position (from (𝑎 + 1) to 𝑏) in 𝑥
𝑐

are set to the same as in 𝑥
𝑏
. In the same way, the labels (from

1 to 𝑎 and from (𝑏 + 1) to 𝑛) are selected from 𝑥
𝑏
to replace

the labels of the same position of a new individual 𝑥
𝑑
, and

the labels in the other position (from (𝑎+1) to 𝑏) in 𝑥
𝑑
are set

to the same as in 𝑥
𝑎
. This process will generate two offspring

individuals 𝑥
𝑐
and 𝑥

𝑑
.

Crossover 2 Is a Single Point of Double Crossing Crossover.
Firstly, randomly select a node called V

𝑖
in 𝑥
𝑎
and mark its

label as 𝑥𝑖
𝑎
. Then all of nodes with the same label as 𝑥𝑖

𝑎
are

set to the same label in 𝑥
𝑏
, thus generating a new individual

𝑥
𝑐
; that is, 𝑥𝑘

𝑏
← 𝑥
𝑖

𝑎
, ∀𝑘 ∈ {𝑘 | 𝑥𝑘

𝑎
= 𝑥
𝑖

𝑎
}. Meanwhile, the

node V
𝑖
with label 𝑥𝑖

𝑏
in 𝑥
𝑏
is found out and then let all of

nodes belonging to this community in 𝑥
𝑏
be set in the same

label in 𝑥
𝑎
, 𝑥𝑘
𝑎
← 𝑥
𝑖

𝑏
, ∀𝑘 ∈ {𝑘 | 𝑥𝑘

𝑏
= 𝑥
𝑖

𝑏
}, thus generating

a new individual 𝑥
𝑑
. This process will generate two offspring

individuals 𝑥
𝑐
and 𝑥

𝑑
.

Crossover 3 Is a Two-WayCrossing Over [18]. Firstly, randomly
select twonodes called V

𝑖
and V
𝑗
and ensure that their labels𝑥𝑖

𝑎

and 𝑥𝑗
𝑎
are different. Then let all of nodes belonging to these

two communities in 𝑥
𝑎
be set as the corresponding commu-

nities in 𝑥
𝑏
to generate a new individual 𝑥

𝑐
. Meanwhile, the

nodes V
𝑖
, V
𝑗
in𝑥
𝑏
are found out with different labels, andmake

sure that the corresponding nodes in 𝑥
𝑎
are set as belonging

to these two communities.Thus, the new individual𝑥
𝑑
will be

generated. This operator is an extended version of Crossover
2 and will also generate two offspring individuals 𝑥

𝑐
and 𝑥

𝑑
.

Mutation 1. Firstly, get the community structure according to
the labels of nodes of an individual. Secondly, select a node in
each community randomly and then change the label of this
node into the label of one of its neighbor nodes.

Mutation 2. Firstly, get the community structure according to
the labels of nodes of an individual. Secondly, select a node
in each community randomly and then change the label of
this node into the label of its neighbors which has the highest
duplication. If the labels of neighbor node are different from
each other, then randomly select a label from neighbor nodes
to assign.

Combine the above three crossover and two mutation
operators mutually and thus generate the following six evo-
lutionary strategies to form the hybrid evolutionary strategy
pool:

Strategy 1: Crossover 1 + Mutation 1.
Strategy 2: Crossover 1 + Mutation 2.
Strategy 3: Crossover 2 + Mutation 1.
Strategy 4: Crossover 2 + Mutation 2.
Strategy 5: Crossover 3 + Mutation 1.
Strategy 6: Crossover 3 + Mutation 2.

3.1.4. Self-Adaptive Learning Framework. Based on strategy
pool, a statistical self-adaptive learning framework is intro-
duced into HSCDA. The individual adaptively chooses the
appropriate strategy in different stages of the algorithm
depending on the evolution effect of the strategy. In the
self-adaptive learning framework, each strategy is given
the corresponding probability of being selected. Individual
selects evolution strategy by roulette wheel selection.

In particular, each individual 𝑖 (𝑖 = 1, 2, . . . , 𝑝𝑜𝑝𝑠𝑖𝑧𝑒)
has a selective probability vector 𝑝

𝑖
for strategy, 𝑝

𝑖
=

[𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑀
], where 𝑝

𝑖𝑗
means the probability of which
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𝑖th individual chooses 𝑗th strategy from all 𝑀 strategies in
the hybrid strategy pool.𝑀 is 6 in the paper.

The difference of the individual before and after evolving
by a strategy is used to measure the evolution effect of that
strategy, which is defined as follows:

diff =


𝑄new − 𝑄old
𝑄best


, (5)

where 𝑄new is the modularity of the individual 𝑖. 𝑄old rep-
resents the modularity of the individual 𝑖 in last generation.
𝑄best denotes the best individual in current population.Then,
the change quantity of the probability is defined as follows:

deta = rand
1 + 𝑒−diff

, (6)

where rand is a random value in (0, 1) used to make a dis-
turbance to avoid learning too fast. Suppose that individual
𝑖 selects 𝑚th strategy by the roulette wheel selection from
the strategy pool with the probability of 𝑝

𝑖𝑚
(old); then the

selective probability of individual 𝑖 in the next generation will
be updated to 𝑝

𝑖𝑚
(new), which is calculated as follows when

𝑄new − 𝑄old > 0:

𝑝
𝑖𝑚 (new) =

𝑝
𝑖𝑚 (old) + deta

𝑝
𝑖𝑚 (old) + deta + ∑

𝑀

𝑗=1,𝑗 ̸=𝑚
𝑝
𝑖𝑗 (old)

. (7)

If 𝑄new − 𝑄old ≤ 0, 𝑝𝑖𝑚(new) is calculated as follows:

𝑝
𝑖𝑚 (new) =

{{{{{{

{{{{{{

{

𝑝
𝑖𝑚 (old) − deta

𝑝
𝑖𝑚 (old) − deta + ∑

𝑀

𝑗=1,𝑗 ̸=𝑚
𝑝
𝑖𝑗 (old)

, if 𝑝
𝑖𝑚 (old) − deta > 0,

(1 − deta) × 𝑝𝑖𝑚 (old)
(1 − deta) × 𝑝𝑖𝑚 (old) + ∑

𝑀

𝑗=1,𝑗 ̸=𝑚
𝑝
𝑖𝑗 (old)

, if 𝑝
𝑖𝑚 (old) − deta ≤ 0.

(8)

However for other strategies, the selective probability
𝑝
𝑖𝑗 ̸=𝑚
(new) should be updated to make sure ∑𝑀

𝑗=1
𝑝
𝑖𝑗
(new) =

1. Given 𝑇
1
= 𝑝
𝑖𝑚
(old) + deta + ∑𝑀

𝑗=1,𝑗 ̸=𝑚
𝑝
𝑖𝑗
(old), 𝑇

2
=

𝑝
𝑖𝑚
(old) − deta + ∑𝑀

𝑗=1,𝑗 ̸=𝑚
𝑝
𝑖𝑗
(old), and 𝑇

3
= (1 − deta) ×

𝑝
𝑖𝑚
(old) + ∑𝑀

𝑗=1,𝑗 ̸=𝑚
𝑝
𝑖𝑗
(old), 𝑝

𝑖𝑗 ̸=𝑚
(new) is calculated as fol-

lows:
𝑝
𝑖𝑗 ̸=𝑚 (new)

=

{{{{{{{{{

{{{{{{{{{

{

𝑝
𝑖𝑗 ̸=𝑚 (old)
𝑇
1

, if 𝑄new − 𝑄old > 0,

𝑝
𝑖𝑗 ̸=𝑚 (old)
𝑇
2

, if 𝑄new − 𝑄old ≤ 0, 𝑝𝑖𝑚 (old) − deta > 0,

𝑝
𝑖𝑗 ̸=𝑚 (old)
𝑇
3

, if 𝑄new − 𝑄old ≤ 0, 𝑝𝑖𝑚 (old) − deta ≤ 0.

(9)

Individuals in the next generation will make a choice
of the evolving strategies according to the updated selective
probabilities. Therefore, HSCDA can make the individual
adaptively choose the appropriate strategies at different
stages.

3.1.5. Local Search. In order to improve convergence speed
and alleviate trapping into local optima, the hill-climbing
method suggested in [18] is adopted here as a local search
mechanism. Hill-climbing method is a kind of optimization
method commonly used in local search, which usually starts
from an arbitrary solution of current problems and tries
to change an element of this solution to find a better
solution. Once this change produces a better solution, then
the new solution replaces the selected solution. The process
is repeated until there is no better solution to be produced or

reaching the stopping criteria. It is worth noting that the hill-
climbingmethod is only for the individual which has the best
fitness value, so as to avoid excessive amount of calculation.

3.2.MCDA. Experiments (see Sections 4.2 and 4.3) show that
the effect of the community structure detection algorithm
based on the optimization of modularity is not good for
the real network clustering. In order to further improve the
solution quality, MCDA is proposed. In MCDA, strategy 6
with the largest proportion of selection of the best individual
in HSCDA is considered as the strategy of MCDA; KKM and
RC are set as two objective functions. The reason to adopt
single strategy instead of adaptive framework based hybrid
strategy pool is that individuals have to compare with each
other to calculate chosen probability of evolving strategy in
self-adaptive learning framework, while Pareto mechanism
in MCDA cannot make a definite decision of which is good
or poor between any two individuals. The same reason leads
to the fact that the local hill-climbing search cannot be
introduced into MCDA directly. The specific flow of MCDA
is shown in Algorithm 3.

4. Experimental Results and Analysis

4.1. Normalized Mutual Information. Normalized Mutual
Information (NMI) [20] is commonly used to estimate the
similarity between the true clustering results and the detected
ones. Two vectors, 𝐴 and 𝐵, are inputted during the process
of comparison. 𝑖th bit of the vector represents the class of 𝑖th
node. The NMI(𝐴, 𝐵) is then defined as follows:

NMI =
−2∑
𝐶𝐴

𝑖=1
∑
𝐶𝐵

𝑗=1
𝐶
𝑖𝑗
log (𝐶

𝑖𝑗
𝑁/𝐶
𝑖.
𝐶
.𝑗
)

∑
𝐶𝐴

𝑖=1
𝐶
𝑖.
log (𝐶

𝑖.
/𝑁) + ∑

𝐶𝐵

𝑗=1
𝐶
.𝑗
log (𝐶

.𝑗
/𝑁)
, (10)
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Input: Adjacent matrix 𝐴 of network 𝐺
Parameters: population size (popsize), max generations (gen), crossover probability (pc), mutation probability (pm)
Output: Pareto front solutions.
Step 1. Initialization

(1.1) Initialize the population with population initialization algorithm based on label propagation mechanism (Algorithm 2)
(1.2) Calculate individual objective functions KKM and RC with formula (3)
(1.3) Calculate the rank of each individual
If at least one objective value of individual 𝑝 is better than that of individual 𝑞,

and all objects of 𝑝 are not worse than those of 𝑞, then 𝑝 dominates 𝑞. This is for each individual division level (rank),
and the rank of all non-dominant individuals is defined as 1,
and the other individual’s rank plus 1 with the number of individuals who control it.

(1.4) Calculate crowding distance
Calculate the distance between one individual and other individual in the same rank by

the crowding distance calculation method refers to [19].
Step 2. Adopt the evolutionary strategy 6 to generate offspring individuals
Step 3. Pick out the dominant solutions of current generation from the population

The rank of all individuals is calculated first,
then select the individuals whose rank is 1 to construct dominant solutions of the current generation.
Step 4. Using the pruning mechanism to update the population

(4.1) Combine the dominant solutions with the present population to form a new population
(4.2) Calculate the rank of each individual and sort them from small to large.
(4.3) Select popsize individuals as the next generation according to the rank.

Step 5. Stopping criteria
If (iterations < gen), iterations ++ and go to Step 2, otherwise, stop the algorithm and output the dominant set of solutions.

Algorithm 3: The flow of MCDA.

Table 1: Characteristics of four real world networks.

Network Nodes Edges True clustering
results

Karate Club 34 78 2
Dolphin 62 159 2
Football 115 613 12
Polbooks 105 441 3

where 𝐶
𝐴
(𝐶
𝐵
) is the number of clusters in vector 𝐴 (𝐵), 𝐶

is the mixing matrix which consists of vector 𝐴 and vector
𝐵, 𝐶
𝑖𝑗
is the number of elements shared in common by 𝑔th

classification of vector 𝐴 and by 𝑗th classification of vector
𝐵, 𝐶
𝑖.
(𝐶
.𝑗
) is the sum of elements of 𝐶 in row 𝑖 (column 𝑗),

and 𝑁 is the number of nodes of the network. The value of
NMI(𝐴, 𝐵) is in the interval [0, 1]. If NMI(𝐴, 𝐵) = 1, then𝐴 =
𝐵. If NMI(𝐴, 𝐵) = 0, then 𝐴 and 𝐵 are totally different.

4.2. Experimental Results and Analysis of HSCDA. The para-
meters of HSCDA are set as follows: population size is 100,
crossover probability is 0.8, mutation probability is 0.2, the
initial selection probabilities of evolving strategies in strategy
pool for each individual are set as 𝑝 = [1/6, 1/6, 1/6, 1/6,
1/6, 1/6], and the maximum number of iterations is 100.

Zachary’s Karate Club network [21], Dolphin social net-
work [22], American college Football network [23], and
Books onUSpolitical network (Polbooks) [24] are commonly
used real networks for benchmarking. Characteristics of
these four networks are shown in Table 1. For details, please
see the related references.

Table 2: NMI of HSCDA, GN, FN, and BGLL in four real networks.

Algorithm Karate Club Dolphin Football Polbooks
GN 0.58 0.55 0.88 0.56
FN 0.69 0.57 0.76 0.53
BGLL 0.59 0.52 0.89 0.57
HSCDA 0.80 0.59 0.89 0.57

HSCDA is applied to four real networks, respectively;
the average of optimal solutions of HSCDA after running 30
times is recorded. Table 2 lists comparison results between
HSCDA and GN, FN, and BGLL algorithm in terms of
NMI, where the results of GN, FN, and BGLL are taken
from [25]. As seen from the table, the NMIs of HSCDA are
superior to other three algorithms except that NMIs are the
same as BGLL in Football and Polbooks. Table 3 shows the
comparison results of 𝑄 values of HSCDA, GN, FN, and
BGLL; we can find that 𝑄 values obtained from HSCDA
are higher than the other three algorithms. This is because
adopting hybrid evolution strategies based on self-adaptive
learning framework can improve solution quality of HSCDA.
Community structures calculated by HSCDA on four real
networks are given in Figure 1. Results of Tables 2 and 3 and
Figure 1 show that HSCDA is more accurate than GN, FN,
and BGLL.

4.3. Analysis of Evolution Effect of Strategies in Self-Adaptive
Learning Framework. To analyze the actual evolution effect
of evolving strategy in hybrid strategy pool, the selected count
of each evolving strategy of the optimal solutions (run 30
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Figure 1: Continued.
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Figure 1: Clustering results on four real networks by HSCDA.

Table 3: 𝑄 value of HSCDA, GN, FN, and BGLL in four real
networks.

Algorithm Karate Club Dolphin Football Polbooks
GN 0.4013 0.5194 0.5996 0.5168
FN 0.3801 0.4897 0.5773 0.5020
BGLL 0.4188 0.5188 0.6021 0.4986
HSCDA 0.4198 0.5277 0.6023 0.5272
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Figure 2: Selected proportion of strategies of the optimal solutions.

times independently) is recorded and shown in Figure 2. As
shown in Figure 2, the selected proportion of strategy 6 is
the highest in all strategies, which means that the evolution
effect of strategy 6 is superior to others when dealing with
the community detection problem.

From the results in Tables 2 and 3 and Figure 1, it is
shown that HSCDA is superior to other methods based on
modularity. However, according to the results in Tables 2 and
3, the improvement of 𝑄 is not in accordance with NMI;
that is, for Football and Polbooks, 𝑄 value of HSCDA is
superior to BGLL while NMI is the same as BGLL. The
reason of the phenomenon is that 𝑄 cannot fully disclose
the essential of natural group in real networks. To improve
the cluster effect, we further propose MCDA. In MCDA,
strategy 6 is considered as the strategy of MCDA and KKM
and RC are set as two objective functions. The reason to
adopt single strategy instead of adaptive framework based
hybrid strategy pool is that individuals have to compare
with each other to calculate chosen probability of evolving
strategy in self-adaptive learning framework, while Pareto
mechanism in MCDA cannot make a definite decision of
which is good or poor between any two individuals.The same
reason leads to the fact that the local hill-climbing search
cannot be introduced into MCDA. The experimental results
and analysis are detailed in the next section.

4.4. Experimental Results andAnalysis ofMCDA. Theparam-
eters of MCDA are set as follows: population size is 100,
crossover probability is 0.9, mutation probability is 0.1, and
maximum number of iterations is 100. MCDA and three
multiobjective algorithms (MOGA-net [13], MOCD [14], and
MOEA/D-net [15]) are compared in experiments on artificial
synthetic network and four real world networks, respectively.
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Figure 4: Cluster results of MCDA in Karate Club network.

The results show thatMCDAhas better solution accuracy and
obtains true network clusters in several real networks.

4.4.1. Experimental Results and Analysis on Artificial Syn-
thetic Network. In order to compare with other community
detection algorithms based on multiobjective optimization,
we do experiments on artificial synthetic benchmark network
proposed by Lancichinetti et al. [26], which is an extension
of classic GN benchmark network proposed by Newman
[6]. The network contains 128 nodes which are divided into
four communities of 32 nodes each. The average degree of
each node is 16. The proportion of outdegree of the node
is controlled by mixing parameter. The network becomes
vaguer when 𝜇 increases, which means that it is harder to
figure out the true clusters on this occasion.

By adjusting values ofmixing parameter𝜇 in the synthetic
network, 11 networks in which mixing parameter 𝜇 changes
from 0 to 0.5 with interval 0.05 are generated to test the
algorithm. NMI is used to measure the similarity between
true network clusters and test results. For each network, we
calculate average of the biggest NMI value after the algorithm
independently running 30 times. Figure 3 shows the curve of
NMI obtained from four different algorithms.

In Figure 3, we found that when 0.1 < 𝜇 < 0.35, MCDA
andMOEA/D-net can find the true network clusters (NMI is
1), while the NMI value of MOGA-net and MOCD declined

obviously. When 0.35 < 𝜇 < 0.45, all the algorithms fail
to obtain the true clusters, but the NMI of MCDA is still
higher than 0.8, which shows that MCDA outperforms other
three algorithms when dealing with the vaguer networks.
When 𝜇 = 0.5, the effect of all algorithms was poor, and it
is reasonable since the community structure is fully fuzzy at
present. It can be seen from Figure 3 that MCDA has a better
performance in most cases (0 < 𝜇 < 0.48) compared with
MOGA-net, MOCD, and MOEA/D-net, which is the benefit
of the good solution space searching ability of strategy 6 for
community detection.

4.4.2. Simulation Results and Analysis of Real Networks.
MCDA is applied to four real world networks mentioned
above. Cluster results with max 𝑄 and max NMI are shown
from Figures 4 to 7. Figure 4 shows results of Zachary’s
Karate Club network, Figure 5 shows results ofDolphin social
network, results of American college Football network are
shown in Figure 6, and results of Books on US politics are
shown in Figure 7.

From Figure 4(a), it is clear that MCDA can successfully
detect the true community structures (corresponding to
NMI = 1). Figure 4(b) shows the community structure cor-
responding to highest 𝑄 value. It is obvious that Figure 4(b)
is the subgraph of Figure 4(a).
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Figure 5: Cluster results of MCDA in Dolphin network.
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Figure 6: Cluster results of MCDA in Football network.
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Figure 7: Clustering results of MCDA in Polbooks network.
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Figure 5(a) shows that MCDA obtains the true com-
munity structures of Dolphin social network (NMI = 1).
Figure 5(b) shows MCDA divides the structure on the right
part in Figure 5(a) into 3 smaller communities. Thus, from
optimizing modularity 𝑄 point of view, MCDA is also
effective for detecting the community structures of Dolphin
network without wrong clustering.

Some nodes in Football network are not connected with
nodes in the same community, while the connection between
nodes of this community and nodes of other communities is
more close. When the network is in the real clustering, the
modularity 𝑄 is −0.0239, which is much less than 𝑄 value
obtained by the algorithm. It shows that the true clusters are
not completely complying with network community cluster
rule. Because of the complicated structure, it is difficult to
completely detect its real cluster. According to the cluster
results from Figure 6(b) with max𝑄, MCDA obtains 10
clusters.We observed that somenodes like 12, 25, 29, 37, 43, 51,
59, 60, 64, 70, 81, 83, 91, 98, and 111 are misplaced. Figure 6(a)
shows community structures detected byMCDAwithNMI =
0.9269; it still has a good reference value because of the high
NMI.

Similar to Football network, Books on US politics net-
work itself shows high complexity. From the comparison of
Figures 7(a) and 7(b), although part of nodes ismisplaced and
real clusters cannot be completely detected, it can still make
NMI be 0.6283 and𝑄 be 0.5264, which ismeaningful in terms
of solution precision.

5. Conclusion

To further improve the solution quality of intelligent opti-
mization algorithms for community detection, HSCDA and
MCDA are proposed based on evolutionary algorithm,
respectively. In HSCDA, 𝑄 is set as the objective function
and six different evolution strategies are designed to construct
hybrid evolution strategy pool. Evolution strategy is chosen
according to the probability through roulette wheel selection
based on statistical self-adaptive learning framework. In
MCDA, KKM and RC are set as the two objective functions;
strategy 6 which has the largest proportion of selection of the
best individual inHSCDA is set as themain evolution strategy
and the dominant solution set is kept with Paretomechanism.
Experiments show that HSCDA has higher solution quality
comparedwith other community detection algorithmswhich
use 𝑄 as the objective function (such as GN, FN, and
BGLL). Compared with HSCDA, MCDA can obtain true
structure of some of the real world networks and achieves
competitive results compared with othermultiobjective com-
munity detection algorithms (such as MOGA-net, MOCD,
and MOEA/D-net).
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