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Candidate Reduced Order Models 
for Structural Parameter 
Estimation 
This paper considers the reduction of high order models generated by a finite ele­
ment analysis. The aim is to provide a low order model which retains the effect of 
parameter changes and so may be used to update the unknown physical structural 
parameters of the modelled system in the time or frequency domains. After review­
ing the methods of structural parameter identification, the available order reduction 
algorithms and their properties are introduced. Modal truncation is determined to 
be the most suitable method and the standard algorithm is extended to accom­
modate unknown parameters. Finally the effect of the reduction process on the 
modelled receptances is demonstrated. 

1 Introduction 
Structural parameter estimation is the identification of the 

physical structural parameters such as mass, damping, and 
stiffness, or possibly geometric parameters. In practical ap­
plications an estimate for these parameters will exist and the 
estimation process updates these estimates. In linear systems 
this becomes the estimation of the mass, damping, and stiff­
ness matrices. No papers have been published that directly 
tackle the major problem of the high model order of 
theoretical finite element models. This paper argues that in 
many practical situations reducing the order of a linear model, 
while maintaining its dependence on unknown parameters, 
can be beneficial and suggests some order reduction methods. 

Irrespective of the method used the parameters to be 
estimated should be carefully selected. Generally the dimen­
sion of the measurement vector is considerably smaller than 
the order of the finite element model. The input to output rela­
tionship, even in the absence of noise, could be reproduced by 
an infinite number of mass, damping, and stiffness matrices. 
Thus to obtain accurate estimates of physical parameters the 
choice of which parameters to estimate is important. If mass, 
damping, and stiffness matrices are available, for example, 
from a theoretical finite element analysis, then updated 
matrices "closest" to those of the initial model could be 
chosen. But even this does not consider the special structure of 
a typical finite element model. If a homogeneous continuum is 
discretized then the only unknowns would be the mass, damp­
ing, and stiffness properties of the material and the geometry 
of the modelled item. The elements of the matrices defining 
the system model will not be independent of each other. In 
principle it is unreasonable and unnecessary to identify whole 
mass, damping, and stiffness matrices. Wei et al. (1988) con­
sider the selection of physical parameters in more detail. This 
reasoning may be adapted slightly to consider a discrete 
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system comprising of masses, springs, and dampers although 
the parameters of such relatively low order systems may be ob­
tained by standard methods of parameter estimation. Fritzen 
(1986) considers the application of some of these estimation 
methods to mechanical systems. 

The methods of structural parameter estimation fall into 
three categories: methods applied directly to the time domain 
data, methods using the measured frequency response func­
tions, and methods using the estimated natural frequencies, 
damping, and mode shapes. Time domain methods have been 
used extensively in control and other low order applications. 
Their use in identifying physical structural parameters is 
limited by the high order of structural models. Reduced order 
models may produce practical algorithms particularly for the 
monitoring of time varying parameters. 

Mottershead, Lees, and Stanway (1987) use a linear, fre­
quency domain filter to estimate the mass and stiffness 
matrices from receptance data. This algorithm updates a con­
densed theoretical model and is not directly applicable to finite 
element models with many more degrees of freedom than the 
number of measurement locations. The method is easily ex­
tended to update unknown physical parameters but requires 
the unmeasured state variables of the system to be estimated. 
The method loses much of its computational speed advantage 
when a state estimator is included. Such an estimator is likely 
to be numerically ill-conditioned if a large number of states 
are estimated from a small number of measurements, even if 
all the states were theoretically observable. It would be possi­
ble to generalize the nonlinear filter described by Mottershead 
and Stanway (1986) although for models with a large number 
of degrees of freedom computation times would become 
impractical. 

Methods using the measured natural frequency, damping, 
and mode shapes, or modal model, are numerous and can pro­
duce good results. Obviously the amount of data is reduced as 
one goes from the time domain through the frequency domain 
to the modal properties. Deriving the modal properties effec-
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tively chooses a reduced order model which has the same 
number of degrees of freedom as the number of measured 
modes. In many instances the modal model is difficult to ob­
tain accurately, especially when there are heavily damped, 
closely coupled, or complex modes present or the data has fre­
quency shifts due to the mass loading of a roving ac-
celerometer. Also any dependence of the unknown parameters 
on the structural response cannot be included in the procedure 
to obtain the modal properties. Caesar (1986) summarizes 
methods based on minimizing a norm of the difference be­
tween the estimated mass and stiffness matrices and the initial 
matrices obtained analytically, with the constraint that the 
system has the measured modal properties. Friswell (1988) and 
Collins et al (1974) give details of the statistical identification 
of structural parameters based on a minimum variance 
estimator. Janter et al (1988) outline an algorithm which up­
dates physical parameters by improving the correlation be­
tween the theoretical and experimental modal models subject 
to practical constraints. Reduced order models have no ap­
plication to these methods as the computation involved in the 
reduction process will be as great as the computational effort 
of the method. 

2 An Overview of Order Reduction 

Before describing the reduction process the validity of the 
approach will be discussed. Finite element models of realistic 
structures are generally high order and produce a correspon­
dingly high number of natural frequencies, damping coeffi­
cients, and mode shapes. The natural frequency of most of 
these modes will be outside of the frequency range of interest 
in practical applications. For example, when measurements of 
the structure are taken using a computerized data acquisition 
system the resulting frequency response functions (inertance, 
mobility, or receptance) have an upper limit on the usable fre­
quency range determined by the sampling rate through the Ny-
quist Frequency. Thus it should be possible to reduce the 
number of degrees of freedom in the theoretical model for lit­
tle loss of accuracy over the measured frequency range. This 
assumes sufficient degrees of freedom are included to provide 
at least the same number of modes, within the frequency 
range, in the reduced model as were in the original model. The 
accuracy of the response function of the reduced order model 
within the frequency range of interest will be improved by in­
cluding a reasonable number of modes outside the measured 
frequency range. In many practical applications this would 
produce enormous savings. 

Methods of order reduction have been used extensively in 
control and filter applications to reduce the cost of designing 
or implementing a high order controller or filter. The oldest 
and least computationally demanding algorithms are based on 
Pad6 approximations or continued fractions, for example, 
Shamash (1975). These methods are not suitable to reduce the 
order of structural models because they substantially alter the 
eigenvalues, or natural frequencies, of the system, which can 
usually be measured quite accurately. Obviously, when the full 
model is predicting the system natural frequencies adequately, 
the reduced order model should also predict the lower natural 
frequencies adequately. 

Static condensation, for example, Guyan (1965) and Irons 
(1965), has been used to reduce the order of structural 
problems. Equations that do not include an external force 
term are used to eliminate spatial variables. Generally these 
methods must be handled with extreme care as important 
natural frequencies may be changed considerably, or omited 
altogether (Thomas, 1982). Paz (1984) suggested a method of 
dynamic condensation that is really limited to solving the 
theoretical eigenproblem. 

Modal truncation, or reducing the model order by retaining 
only the modes with the the lowest natural frequencies, is 

slightly more complex and computationally more demanding. 
It has the advantage that the lower natural frequencies remain 
unchanged and providing that enough modes are included the 
reduced model can approximate the full model sufficiently ac­
curately. This method shows the most promise and is 
developed further in this paper. 

There has been considerable interest recently on methods 
based on balanced realizations and the Hankel singular values 
of a system. Moore (1981) proposed the balanced realization 
approach based on the transformation given by Laub (1980). 
Glover (1984) develops optimal Hankel-norm approximations 
for multivariable systems. These methods of reduction are in­
appropriate for the identification of structural parameters for 
three reasons. First, the large dimension of a finite element 
model makes the computation times involved prohibitive. Se­
cond, the methods do not allow for unknown parameters. The 
linearization of the equations and the solution of a series of 
balanced realizations or Hankel-norm approximations could 
extend the methods at the expense of additional computation. 
Finally the lower eigenvalues of the system are not guaranteed 
to remain unchanged. For practical structural systems, in­
cluding the example in this paper, the resulting reduced order 
model is indistinguishable from that derived from modal 
truncation. 

Nonlinear programming may be used to directly minimize a 
cost function related to the difference between the full and 
reduced order models. This would be so computationally 
demanding it is not considered further. 

3 Modal Truncation 

An order reduction method based on a transformation us­
ing a subset of the current estimated eigenvectors of the full 
model will now be formally derived. The standard method 
does not allow for unknown parameters. If the transformation 
is obtained using the current parameter estimate, then the low 
frequency eigenvalues of the reduced order model are correct 
to first order in parameter variations. The next section demon­
strates the use of a transformation dependent on the 
parameter variations. This section also introduces the struc­
tural model used and most of the notation. 

The n degree of freedom system model with p unknown 
parameters is assumed to be given by 

M(d)x" +C(0)x'+K(6)x = B„u ... 
y = D„x (l) 

where ' denotes differentiation with respect to time 

8 = (0,, d2 6p)
T is the p dimensional vector 

of unknown parameters 
x is the n dimensional vector of generalized 

coordinates 
y is the m dimensional measured displacement vector 
u is the q dimensional vector of input forces 

M(0) is the mass matrix for the model which is depen­
dent on the unknown parameters 

C(0) is the viscous damping matrix for the model which 
is dependent on the unknown parameters 

K(6) is the stiffness matrix for the model which is 
dependent on the unknown parameters 

B„ is the matrix allocating the input force to the cor­
rect degrees of freedom 

D„ is the matrix determining the position of measure­
ment transducers 

The stiffness matrix in equation (1) may be complex to 
allow for hysteretic damping. The mass, damping, and stiff­
ness matrices are all functions of the unknown parameters. 
Comments on the choice of physical parameters to update 
were given in the introduction. The number of parameters will 
obviously depend on the particular system and how the 
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physical system is modelled. In principle all the physical 
parameters input to a finite element package could be up­
dated. In some cases the model can be formulated so that the 
mass, damping, and stiffness matrices will be linear functions 
of unknown parameters which could, in turn, be functions of 
the unknown physical parameters. If the matrices involve 
more complicated functions, then a Taylor Series may be used 
to expand the matrices as linear functions in the parameters 
which are valid for small parameter variations from the cur­
rent parameter estimate. The mass, damping, and stiffness 
matrices may be written in either case as 

M(0) = M„o + 0,M,„ + . . +6pMnp 

cm = c„o+0,cn,+ . . +epcnp 

K(6) = KnO + 0xKnl+ ..BpKnp 

(2) 

Equations (1) and (2) may be combined and rewritten as the 
first order differential equation 

[Mo-f-0,M, + . . +epMp]z' + lK0 + 6lKl+ . . + 6pKp]z = Bu 

(3) 

y=Dz 

where 

M; 

K, = 

0 

Mni 

-Mm 

0 

B 

M„r 
C • 

0 

Kni 

= 

~ 

_ 

0 " 

Bn_ 

z' = 0, . . . ,p 

/ = 0, . 

D = [0 D„] 

z = 

Let the current estimate of the unknown parameters be 

6e=(6el,ee2, . . . , 0 e p ) r a n d 

50 = (50,,S02 ,86p)
T = 6-6e 

= (#1 -0el>02-0e2> • • • . Op-OepV 

M e = M o + 0 e , A f , + 

^ e = ^ 0 + ^el^l + • 

so that equation (3) may be written as 

[Me + 50,M, + . . + 86pMp]z' 

+ \K, + 50,K{ + . . + SBpK]z = Bu 

• • +6epMp 

• +9epKp 

(4) 

The system eigenvalues and eigenvectors evaluated at the 
latest parameter estimates are given by the solutions of 

[AfeX; + Ke]4>i = 0 for / = 1, . . , In (5) 

where 

X,- is the ith eigenvalue arranged in ascending order of 
natural frequency 

$,- is the corresponding eigenvector normalized so that 
<j}iTMe<f>k = 5ik, the Kronecker delta 

Let the reduced order model have r degrees of freedom, 

which is generally much less than the n degrees of freedom of 
the full order model. Then for the reduction of the equations 
only the first 2r eigenvalues and eigenvectors are required and 
these can be assembled into matrices defined as 

A0= -diag(X1;X2, . . , X2r) 

*O = W>1.02> • • . 4>2r] (6) 
The matrix $0 will be the transformation matrix used to 

reduce the original model to a model with r degrees of 
freedom. The 0 subscript on A0 and *0 is to show that these 
eigenvalue and eigenvector matrices are correct to zeroth order 
in 86. If A and * are the eigenvalue and eigenvector transfor­
mation matrices correct to first order in 56 then they are given 
by 

A = AO + 50,A, +S02A2 + . . +86pAp 

* = *0 + 50, $, + 502*2 + . .+86p% (7) 

where the matrices A, and $,- may be determined from the 
properties of the eigenvalues and eigenvectors neglecting terms 
of second order in 50. The next section considers the evalua­
tion of these matrices and their use in a modal truncation. Ap­
plying the transformation 

z = *0w (8) 

where w is the reduced order state vector of dimension 2r, to 
equation (3) and premultiplying by $0

 T produces the reduced 
order equation 

•+9pMRp] 

.+6pKRp]w--

\Mm + SiMm + . 

+ [KR0 + d1Km + . 

y=A?w 

where 

MRi = #0
rM,*0 

KRi 

BR 

DR 

(9) 

= V* 

This is the equation of the r degree of freedom model that 
can now be used in parameter identification routines. Note 
that from the definitions MRQ and KRa are not diagonal but 

epMRp - / 2 r MR0 + eelMm+. .+ 

Km+eelKRl + . .+eepKRp = A0 (io) 

where I2r is the 2r dimensional identity matrix. 

4 First Order Modal Truncation 

This section considers the differences between the basic 
transformation used in the previous section and the transfor­
mation, given in equation (7), based on eigenvectors that are 
correct to first order in the parameter variations. In fact the 
first 2r eigenvalues given by the reduced model, equation (9), 
are correct to first order. The A, matrices in equation (7) are 
given by, (Nelson 1976) 

dX, 9X2 dX2r , 
I 2 2r , ( n ) 

A,-=diag( -
38,- ae; 39,-

where 

3L -=-<^(X,M /+Jsr,.) 

The normalized eigenvectors u^ of the reduced model, equa­
tion (9), at the current parameter estimate are unit vectors in 
the direction of the fcth coordinate. Thus the variation in the 
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kth eigenvalue of the reduced model due to the rth parameter 
is given by 

- ^ - = -uk
T{\kMRi+KRi)uk 

= -faTfrM+K,)^ (12) 

Let the first order transformation and reduced equations be 
given by 

v' +Av = $TBu 

= [V+«©i* i 7 ' +«o 2 * 2
r +. .+5ep<i>p

T]Bu 

(13) 

y = D$v 

= Z>[*0 + 5G1*1+5e2$2 + . . + 6Qp*p]v 

where v is the reduced order state. The evaluation of the 
reduced order model requires the sensitivities of the first 2r 
eigenvectors to the unknown parameters, *,. Nelson (1976) 
and Chen and Garba (1980) discuss various methods to com­
pute these sensitivities. 

The advantages of using this first order modal truncation as 
opposed to the zeroth order truncation given in the previous 
section is that now the eigenvectors are correct to the first 
order in the parameter variations. Of course it is still a further 
approximation to the full order system since not all the modes 
are included. For many applications the zeroth order approx­
imation will produce a reduced order model which is almost as 
good as the model based on the first order modal truncation. 
What are the errors involved if zeroth order modal truncation 
is used? The derivative of the hth eigenvector may be written 
as the linear combination of the 2« eigenvectors of the full 
model evaluated at the current parameter estimate given by 
equation (14) [see Chen and Garba (1980)]. 

-%*- = £ /«*** (14) 

where 

/«« = T ^r<t>kl\MRi+KRi\<j>h iik^h 
Kk~Kh 

iOhh = -Y-WhMgM 

It is easily shown, using a method similar to that in equation 
(12), that the eigenvector derivatives of the zeroth order ap­
proximation consist of only the first 2r terms of this series. 
Providing enough modes are included in the reduced order 
model the modulus of the term ~Kk-\h for k>2r will be large 
for all modes whose natural frequencies lie in the frequency 
range of interest. In general this will mean that the derivatives 
of the eigenvectors with low associated natural frequencies 
will be determined more accurately than those with higher 
natural frequencies. Thus, in the frequency response func­
tions, at low frequencies the difference between the zeroth and 
first order approximation will be small and become larger at 
higher frequencies. The order of the reduced model should be 
chosen so that this error is acceptable over the measured fre­
quency range. 

The first order approximation does produce diagonal 
"mass" and "stiffness" matrices that may give a computa­
tional advantage in some parameter estimation routines. This 
advantage is minimized by the relatively short computer time 
that would be used to diagonalize the reduced model obtained 
from the zeroth order transformation. 

5 Numerical Example with Proportional Viscous 
Damping 

So far the structural could be modelled using general 
viscous or hysteretic damping. The computation is eased when 
the structure is modelled using proportional viscous damping 
where the damping matrix in equation (1) is given by 

C(e) = aM(e) + PK(Q) (15) 

for some, possibly unknown, constants a and /3. The equa­
tions may be reduced using a subset of the normalized 
eigenvectors of equation (1), ŷ ,-, given by 

[M„e/i,-
2 + KmW, = 0 for i = 1, . . , n (16) 

where iiTMm^k=bik 

M„e = M„0 + GelMnl + . . + eepM„p 

Km: ~ KnO + ^e l^n l + • • + ®tpKnp 

Pi are the eigenvalues of equation (16) (purely imaginary) 

Because proportional damping is a particular case of the 
systems considered in the previous two sections, the methods 
are exactly the same but are implemented more easily using 
eigenvectors defined by equation (16) and their derivatives 
with respect to the unknown parameters. Since the dimensions 
of the matrices are halved and real matrix algebra may be 
used, the computational savings are substantial. 

Consider a ten degree of freedom system whose damping 
matrix is proportional to the mass matrix although the 
numerical value of the constant has only been estimated. 
Force is applied at one position and the response is measured 
at only one location. The mass matrix is assumed fixed and the 
stiffness matrix is a function of a second parameter. The 
system has a single input and produces a single output. This 
example will only show the effect of the reduced order model­
ling on the magnitude of the receptance of the system and does 
not implement any parameter estimation algorithms. 

The reduced models are obtained on the parameter estimate 
9 = (0.01, 3.0). Figure 1 shows the receptance of the system 
over a frequency range that includes three modes. Also shown 
is receptance of the system reduced by including only the first 
four degrees of freedom. The major discrepancies are where 
the magnitude of the response is small and where an ex­
perimental receptance would be susceptible to noise. Although 
the approximation is reasonably accurate at the current 
estimated parameter values, the reduced model must retain 

A 

— - ^ 

: 

• 

: 

\ / 

\ / 

\ / 

-

^ N V \ -
: 

Full order 
Reduced order 

0. 0 .1 0 . 2 0 . 3 0 . 1 0 . 5 0 .6 0 . 7 0 .8 0 . 9 1.0 

Fig. 1 The effect of modal truncation 
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9 = (0.01, 3.0) 
0 = (0.02, 4.0) 

0. 0.1 0 . 2 0 . 3 0 .4 0 . 5 0 .6 0 . 7 0 . 8 0 . 9 1. 

Fig. 2 The receptance at different parameter values 

Full model 
Zeroth order approx 

— First order approx 

0. 0 . I 0 . 2 0 . 3 0 .4 0 . 5 B.6 0 . 7 0 .8 0 . 9 1.0 

Fig. 3 The effect of parameter variations on modal truncation 

this accuracy over a range of parameter values. Figure 2 shows 
the receptance of the full model for parameter values of (0.01, 
3.0) and (0.02, 4.0). The damping and natural frequencies 
have obviously changed. Figure 3 shows the receptance of the 
full model for a parameter vector of (0.02, 4.0) and the zeroth 
and first order reduced models evaluated at the same 
parameter values. Even though the parameter change is large, 
and could not be described as first order, the first natural fre­
quency is still accurate. The second and third modes suffer 
more inaccuracy because of their magnitude relative to that of 
the fourth and last mode modelled in the reduced equation. 
The extra complexity in calculating the eigenvector sen­
sitivities to the parameter variations does not yield a 
significantly better approximation. 

6 Discussion 
This paper has considered the problems of using high order 

finite element models to identify physical structural 
parameters with time and frequency domain methods. In prac­
tical situations a reduced order model must be used to produce 
an algorithm that is computationally feasible. Modal approx­
imations based either on current estimated eigenvectors or a 
first order eigenvector expansion in the parameter variations 
have been recommended as the most suitable order reduction 
method. The main reason for this recommendation is that 
modal truncation is the only method that guarantees no 
change in the natural frequencies of interest. 

Throughout the paper there has been little mention of the 
parameter estimation algorithms that would use the reduced 
order models. Whichever method is used the integration of 
reduction and estimation will have to be considered carefully. 
How often is the reduced order model to be updated to allow 
for the change in parameters caused by the estimation pro­
cedure? The answer will depend on the stability and con­
vergence rate of the combined reduction-estimation 
algorithm. Indeed the stability and convergence of a combined 
algorithm must be checked. Does the reduction process pro­
duce a bias on the parameter estimates? The amount of bias 
will depend on the parameter estimation algorithm but 
hopefully it would be insignificant. 

There are many questions still to be answered before the 
estimation of structural parameters using reduced order 
models may be routinely applied. This paper has suggested the 

type of reduced order models which could form the basis of 
the total estimation algorithms. 
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