
DPLL+ROBDD Derivation Applied to Inversion

of Some Cryptographic Functions

Alexey Ignatiev and Alexander Semenov

Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia
alexey.ignatiev@gmail.com,biclop@rambler.ru

Abstract. The paper presents logical derivation algorithms that can
be applied to inversion of polynomially computable discrete functions.
The proposed approach is based on the fact that it is possible to or-
ganize DPLL derivation on a small subset of variables appeared in a
CNF which encodes the algorithm computing the function. The exper-
imental results showed that arrays of conflict clauses generated by this
mode of derivation, as a rule, have efficient ROBDD representations. This
fact is the departing point of development of a hybrid DPLL+ROBDD
derivation strategy: derivation techniques for ROBDD representations of
conflict databases are the same as those ones in common DPLL (vari-
able assignments and unit propagation). In addition, compact ROBDD
representations of the conflict databases can be shared effectively in a
distributed computing environment.

1 Introduction

We consider the problem of inverting functions that form a family of type

fn : {0, 1}n → {0, 1}∗,

where {0, 1}n is the set of all possible binary sequences of the length n, n ∈ N1,

{0, 1}∗ =
⋃

n∈N1

{0, 1}n .

Assume that there exists a program M for deterministic Turing machine
which computes an arbitrary function fn of the considered family, and this
program is polynomial time. The problem of inverting a function fn at point
y ∈ range fn is the problem of finding such (an arbitrary) x ∈ {0, 1}n that
fn(x) = y.

There exists an effective procedure (polynomial time in n) reducing this prob-
lem to SAT problem. With the use of Tseitin transformations [22] this procedure
constructs a CNF-encoding of a circuit S(fn) over {&,¬} (any other complete
basis could be here) which emulates M on all the possible inputs of {0, 1}n.
By X = {x1, . . . , xn} we denote a set of Boolean variables corresponding to n
inputs of S(fn). For each logic gate G some new auxiliary variable v(G) is in-
troduced. Every AND-gate G is encoded by a CNF-representation of a Boolean

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357615943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 A. Ignatiev and A. Semenov

function v(G) ↔ u&w. Every NOT-gate G is encoded by a CNF-representation
of a Boolean function v(G) ↔ ¬u. Here u and w are the variables corresponding
to inputs of G. The CNF-encoding of S(fn) is

&
G∈S(fn)

C(G),

where C(G) is a CNF-encoding of G. Then

Cy(fn) =

(

&
G∈S(fn)

C(G)

)

· yσ1

1 · . . . · yσm

m

is a CNF encoding the invertion problem of the function fn at point y =
(σ1, . . . , σm). Here

zσ =

{

z̄, if σ = 0
z, if σ = 1

and y1, . . . , ym are Boolean variables corresponding to outputs of S(fn). If y ∈
range fn then CNF Cy(fn) is satisfiable, and in any of its satisfying assignments
one can find effectively such a vector x ∈ {0, 1}n that fn(x) = y.

It is well-known that while searching for a satisfying assignment for Cy(fn)
it is possible to restrict DPLL derivation to a set of variables denoting an input
for S(fn). We refer to this derivation strategy as “core-DPLL”. Along with
clause learning and restarts core-DPLL is complete for CNFs which encode the
inversion of discrete functions of the class described above.

It is shown in [12] that, generally speaking, core-DPLL cannot polynomi-
ally simulate DPLL (even without clause learning and restarts). Our aim is to
show that, nevertheless, the use of core-DPLL in inversion of discrete functions
provides a number of additional (or rather useful) technical capabilities. In par-
ticular, a number of problems difficult for modern DPLL-solvers can though
be solved without removing learnt clauses. One can also observe that arrays of
conflict clauses learnt by core-DPLL generally have small ROBDD representa-
tions (even for CNFs which encode cryptographic algorithms). The size of these
ROBDD representations are hundreds of times smaller than the original clauses
form. Therefore, it is possible to share effectively arrays of conflict clauses (in
the ROBDD form) accumulated at various nodes of distributed computing en-
vironments.

A brief outline of the paper is given below. In the first section, we describe
basic logical derivation mechanisms combining core-DPLL and a derivation tech-
nique for ROBDD representations of conflict databases. The second section de-
scribes a parallel implementation of DPLL+ROBDD solver made with the use
of MPI. In the third section, we present results of numerical experiments on
inversion of some cryptographic functions by the described solver.

2 Basic Mechanisms of DPLL+ROBDD Derivation

Let Cy(fn) be a CNF encoding the problem of inverting a discrete function fn (of
the class described above) at an arbitrary point y ∈ range fn. In this section we

DPLL+ROBDD Derivation in Inversion of Some Cryptographic Functions 3

use binary decision diagrams (more precisely, ROBDDs) to represent arrays of
conflict clauses accumulated by core-DPLL while finding a satisfying assignment
for Cy(fn). General ideas to represent exhaustive DPLL derivation in the form
of binary decision diagrams were considered in [11]. It should be also noted that
there are examples of hybrid approaches combining DPLL with BDDs [1, 8, 4,
9]. The methods we suggest here are based on the empirical fact that ROBDDs
do compress arrays of conflict clauses learnt during the core-DPLL derivation.

Binary decision diagrams (BDDs) were introduced by C.Y. Lee in the article
[14]. The importance of this fundamental data structure for discrete mathematics
was realized after R.Bryant’s work [3] coming out. In that paper he described a
family of algorithms manipulating Boolean functions with the use of BDDs. One
of the main theoretical results in [3] is the theorem about canonical representa-
tion of Boolean functions in the form of ROBDDs (a ROBDD is a reduced BDD
without repeatable fragments). ROBDDs are often able to represent Boolean
functions arising in applications in a very compact form.

Next, we will use two algorithms described in [3]. The first one is Apply which
constructs a ROBDD representation of a function f1 ∗ f2 using ROBDD repre-
sentations B(f1) and B(f2) of functions f1 and f2, where “∗” is an arbitrary
binary logical operation. If the variable orderings in B(f1) and B(f2) are iden-
tical, then time complexity of Apply is O (|B(f1)| · |B(f2)|) (here and below by
|B| we denote a number of vertices in B). The second one is Restrict. Algorithm
Restrict takes (B(f), x, α) as an input. Here B(f) is a ROBDD representation of
a function f defined by a Boolean formula L(f), x is a variable appeared in L(f)
and α is a constant of {0, 1}. This algorithm produces a ROBDD representation
of a function f |x=α defined by a formula L(f)|x=α. Time complexity of Restrict
is O (|B(f)|).

Consider a CNF

Cy(fn) ·D1

(

x1
1, . . . , x

1
r1

)

· . . . ·Dq

(

xq
1, . . . , x

q
rq

)

,

where Di

(

xi
1, . . . , x

i
ri

)

, i ∈ {1, . . . , q} are the conflict clauses learnt during q
restarts of core-DPLL for Cy(fn). Thus,

q
⋃

i=1

{xi
1, . . . , x

i
ri
} ⊆ X,

where X = {x1, . . . , xn} is a set of input variables for a circuit S(fn). Let’s
denote a ROBDD representation of a function defined by the formula

D1

(

x1
1, . . . , x

1
r1

)

· . . . ·Dq

(

xq
1, . . . , x

q
rq

)

(1)

as B∗. We have the following fact.

Theorem 1. Let x ∈ {0, 1}n be a solution of the inversion problem for fn at

some point y ∈ range fn. Then there exists such a path π in B∗ from the root

to the terminal “1”, that x ∈ A(π), where A(π) is a subset of {0, 1}n specified

by π.

4 A. Ignatiev and A. Semenov

Proof sketch. Let x ∈ {0, 1}n be an arbitrary solution of the inversion problem
considered. Suppose that there is no such a path from the root of B∗ to “1”,
which contains x. Therefore, if we substitute x into (1) we get 0. Note that each
clause Di

(

xi
1, . . . , x

i
ri

)

, i ∈ {1, . . . , q}, is a logical consequence of CNF Cy(fn).
However, if we substitute x into Cy(fn) then the satisfying assignment for Cy(fn)
results from unit propagation [6]. Thereby, CNF Cy(fn) is made true by some
assignment and CNF (1) (which is a logical consequence of Cy(fn)) is made false
by the same assignment. This contradicts our assumption, so we are forced to
conclude that there is a path from the root of B∗ to “1”, which contains x. ⊓⊔

This theorem provides a basis for the general hybrid DPLL+ROBDD deriva-
tion strategy considered below. During the derivation process a ROBDD repre-
sentation of conflict databases is regarded as a formula. Therefore, one can assign
some variables in the ROBDD, and certain variables can be implied from a unit
propagation similarity. Just as in DPLL, the result of every conflict is some con-
flict clause learnt. In our case, every conflict clause contains only literals over a
set of input variables for a function. The resulting conflict clauses are added to
the ROBDD representation of a conflict database using Apply procedure.

Let B(f) be a ROBDD representation of an arbitrary Boolean function
f(x1, . . . , xn). Each path from the root of B(f) to a terminal vertex defines
a family of sets of truth values for x1, . . . , xn.

Let’s put in correspondence each variable xi, i ∈ {1, . . . , n}, and terminal
vertex “0” with a set of the variable’s truth values defined by all the paths in
B(f) from the root to “0”. We denote this set by ∆0(xi). One can define ∆1(xi)
in a similar manner.

Suppose, that in ROBDDB(f) the following conditions for a variable xk ∈ X,
X = {x1, . . . , xn}, hold:

1. Every path π in B(f) from the root to “1” passes through a vertex marked
by xk.

2. |∆1(xk)| = 1.

Then variable xk may take on exactly one value (the value of ∆1(xk)) in any
truth assignment over X that makes f assign true.

Definition 1. The situation defined by conditions 1–2 is called a ROBDD-based

consequence of a value of variable xk.

A ROBDD-based consequence of some variable in B(f) presenting an array
of conflict clauses is a similarity of unit propagation used in DPLL derivation.
Further we make use of a modified version of Restrict which could assign a set
of variables of X into B(f) at the same time. As noted by R.Bryant in [3],
time complexity of this algorithm is the same as time complexity of the original
Restrict, i. e. O (|B(f)|). The basic idea of the procedure described below was
proposed in [5]. However, the authors of that paper did not estimate its time
complexity.

DPLL+ROBDD Derivation in Inversion of Some Cryptographic Functions 5

Fig. 1: ROBDD representation of a function x2 · (x1 ⊕ x3 · x4) using the variable
ordering x1 ≺ x2 ≺ x3 ≺ x4. We have a ROBDD-based consequence of variable
x2 (x2 = 1) here because each path from the root to “1” passes through a vertex
marked by x2 and |∆1(x2)| = 1.

Theorem 2. For a ROBDD B(f) and the values xi1 = αi1 , . . . , xim = αim ,

m ≤ n, αij ∈ {0, 1}, j ∈ {1, . . . ,m}, time complexity of the procedure which

substitutes given values into B(f) and checks for ROBDD-based consequences of

other variables is O (|B(f)|).

Proof sketch. Let’s substitute xi1 = αi1 , . . . , xim = αim into B(f). As it was said
above, this process takes time bounded byO(|B|). After making the substitutions
we check for ROBDD-based consequences. Note that ROBDD-based consequence
of some variable xk results in exactly one of the following:

1. each vertex marked by xk has “0” as the high-child;
2. each vertex marked by xk has “0” as the low-child.

Therefore, we have a ROBDD-based consequence of xi = 1 if and only if
each vertex marked by xi has “0” as the low-child and every path from “1” to
the root passes through a vertex marked by xi.

Using this fact, we go from “1” towards the root of the ROBDD. Let V (1)
be a set containing parents of “1”. We also denote a set of variables marking
vertices of V (1) by X(1) = {xi1 , . . . , xir}. We can choose from V (1) all the
vertices marked by such a variable xi∗ that xi∗ ≺ xj ∀j ∈ {i1, . . . , ir} \ {i∗}
(according to the variable ordering in the ROBDD). Variable xi∗ is referred
to as a minimal variable in X(1) with respect to the variable ordering. It is
obvious that for any variable of X(1) \ {xi∗} a ROBDD-based consequence is
not possible. By Ṽ (1) we denote a set of all vertices marked by variables of
X(1) \ {xi∗}. Next, move up from each vertex in Ṽ (1) toward the root of the
ROBDD until the first vertex marked by variable xk appears, such that either
xk = xi∗ , or xk ≺ xi∗ . A set of the ROBDD vertices generated in this sense by
set V (1) is denoted by V (xi∗), and a set of variables to mark vertices of V (xi∗)

6 A. Ignatiev and A. Semenov

is denoted by X(xi∗) = {xk1
, . . . , xks

}. If xk1
= . . . = xks

= xi∗ , then we check
for each vertex of V (xi∗) whether its low-child (or high-child) is “0”. If yes,
then we have a ROBDD-consequence of variable xi∗ . If not, then we should go
on the procedure. It is not difficult to understand that the described algorithm
finds all the possible ROBDD-consequences in one pass through the ROBDD.
Hence, time complexity of the procedure which makes substitutions into B(f)
and checks for every possible ROBDD-based consequence is O (|B(f)|). ⊓⊔

This theorem implies the next corollary.

Theorem 3. If some substitution into B(f) implies a ROBDD-based conse-

quence of xk = αk, αk ∈ {0, 1} for some xk ∈ X, then substitution of xk = αk

in B(f) cannot imply another ROBDD-based consequence.

Proof sketch. Suppose, that some substitution into B(f) implies a ROBDD-
based consequence xk = αk. Assume without loss of generality that αk = 1.
In accordance with the above (see the first paragraph of theorem’s 2 proof)
this assumption means that the low-child of each vertex marked by xk is “0”.
Substitution of xk = 1 in B(f) means that each vertex u(xk) hands over its
high-child to its parents. However, the low-child of u(xk), that is, the terminal
“0”, is not handed over to any vertex. Thus, substitution of xk = 1 into B(f)
cannot cause such a vertex in B(f) to appear, that some of its children is “0”
(but it does not mean that there is no such a vertex before the substitution).
Similar arguments hold if αk = 0. ⊓⊔

This fact shows a very useful feature of ROBDD considered as an array
of Boolean constraints. It’s known that substituting a variable’s value into a
CNF may lead to a situation where unit clause rule can be used several times.
The procedure implementing iterative unit clause rule is the so-called Boolean
constraint propagation (BCP). In the general case, BCP passes through the
CNF many times. The obtained feature of ROBDDs means that ROBDD-based
consequences implied by an arbitrary substitution cannot imply a new ROBDD-
based consequence and, therefore, all the information implied by the substitution
comes out as a result of a single pass through a ROBDD (see Fig. 2).

Another positive property of the hybrid derivation is the possibility to easily
implement lazy computations (an analogue of well-known data structures used
in BCP, i. e. “watched literals”, [15]) using ROBDDs.

Let’s consider the conditions determining a situation which in some sense is
ambivalent to a ROBDD-based consequence.

3. For a variable xq ∈ X, X = {x1, . . . , xn}, every path π in B(f) from the
root to “0” passes through a vertex marked by xq.

4. |∆0(xq)| = 1.

Theorem 4. Let B(f) be an arbitrary ROBDD and there be such a variable xq

in B(f) so that conditions 3–4 hold for xq. Then there are no possible ROBDD-

based consequences of any variable from X \ {xq} in B(f). Time complexity of

procedure which checks whether conditions 3–4 hold is O (|B(f)|).

DPLL+ROBDD Derivation in Inversion of Some Cryptographic Functions 7

(a) BCP (b) ROBDD-case

Fig. 2: On the left we show the BCP process in CNF (x1 ∨ x2) · (x2 ∨ x3) ·
(x3 ∨ x4) started by assigning x1 = 0; on the right we demonstrate the result of
substituting x1 = 0 into ROBDD representation of the considered CNF — here
a single pass through the ROBDD is required.

Proof sketch. Let conditions 3–4 hold for some variable xq ∈ X in B(f). Assume
without loss of generality that ∆0(xq) = {1}. By analogy with the proof of
theorem 2 the assumption means that each vertex marked by xq has “1” as the
low-child.

Let xp ∈ X\{xq} be an arbitrary variable. There are two possible alternatives
for its location relative to xq with respect to the variable ordering in B(f)
(variable x1 marks the root of B(f)):

1 : x1 ≺ . . . ≺ xq ≺ . . . ≺ xp ≺ . . .
2 : x1 ≺ . . . ≺ xp ≺ . . . ≺ xq ≺ . . .

Consider the first case. As it was said above, the low-child of each vertex
marked by xq is the terminal “1”. This means that there is such a path from the
root of B(f) to “1” that does not pass through vertices marked by xp. In other
words, the ROBDD-based consequence of xp is not possible.

Consider the second case. Assume there is a ROBDD-based consequence of
xp in B(f), i. e. conditions 1–2 hold for xp. Then one of the children of each
vertex marked by xp is “0”. However, this means that there are such paths from
vertices marked by xp to “0” which do not pass through vertices marked by xq.
This contradicts the fact that conditions 3–4 hold for xq.

It is not difficult to understand that validity of conditions 3–4 can be checked
by a procedure which is similar to the procedure described in the proof of theorem
2 and has the same time complexity — O (|B(f)|). ⊓⊔

This theorem provides a possibility to formulate mechanisms of lazy compu-
tations while assigning variables implied during the hybrid derivation process.
If conditions 3–4 hold for some xq in a ROBDD B∗, and a value of xk, k 6= q,
is derived from a CNF, then it is not necessary to substitute this value into B∗

because no new ROBDD-based consequences will be implied. It is sensible to

8 A. Ignatiev and A. Semenov

store up all the variables to assign until the moment of assigning xq and after
that to substitute them all into B∗ at the same time checking every possible
ROBDD-based consequence (see theorem 2).

3 Parallel DPLL+ROBDD Solver Sharing Arrays of

Conflict Clauses in the ROBDD Form

As already mentioned, in practice even for hard cryptographic tests core-DPLL
generates conflict databases which have compact ROBDD representations (one
can use the variable ordering defined by a current state of accumulated variable
activities [17]). This fact leads us to an idea of a parallel solver to accumulate
arrays of conflict clauses in the ROBDD form at different computing nodes and
to share them effectively between the nodes. It is a small size of a ROBDD
representation of conflict clauses that provides the efficiency.

In more detail, the solver consists of two components. A core-DPLL compo-
nent is implemented as a modification of MiniSat-C v1.14.1 [7] named “coresat”.
Conflict analysis made by coresat uses information only on those function’s input
variables which are responsible for a conflict. It is based on the use of character-
istic vectors (this technique is similar to the one proposed in [13]). As a result,
there is no need to use an implication graph [16] to determine a reason for the
conflict. Another solver’s component encloses the process constructing ROBDD
representations of conflict databases and derivation procedures for ROBDDs
based on the algorithms described above.

The interaction between core-DPLL and ROBDD components of the hybrid
solver is implemented in compliance with the schema shown in Fig. 3.

Fig. 3: Schema of the hybrid DPLL+ROBDD solver.

DPLL+ROBDD Derivation in Inversion of Some Cryptographic Functions 9

Under this schema, the hybrid DPLL+ROBDD solver is an iterated proce-
dure determined by the actions listed below.

1. At the initial stage only coresat operates. The result is an array of learnt
conflict clauses, each contains literals over a set of input variables for the
function.

2. The solver suspends coresat and starts to construct a ROBDD represen-
tation of the array of conflict clauses learnt during the first step (for this
purpose we use algorithm Apply by R. Bryant). It is reasonable to use the
variable ordering defined by variable activities which were accumulated by
this moment.

3. The result of each iteration is a new ROBDD obtained using Apply to a
previous one and the ROBDD representation of the conflict database con-
structed during the current iteration (see step 2). The variable ordering can
differ in the two ROBDDs. Therefore, before running Apply we need to re-
order the old ROBDD according to the new variable ordering.

4. The process continues iteratively and is terminated if a satisfying assignment
is found or it is proven that the CNF instance is unsatisfiable.

A sequential variant of the hybrid solver is referred to as “hsat”. A parallel
version of the hybrid solver (we name it “mhsat”) is implemented as an MPI
application and is a bunch of hsat instances, which work simultaneously and
periodically share their conflict databases in the ROBDD form. To ensure that
hsat instances start to solve the problem differently from each other, we choose
unique initial variable activities for each of them.

Operating of mhsat can be seen as a serial implementation of the following
steps:

1. The stage of accumulating conflict clauses in the ROBDD form. Each node
generates conflict clauses irrespective of each other and constructs its local
ROBDD in accordance with its current variable activities.

2. The stage of merging accumulated conflict databases. There is a number of
alternatives on how to make this step. Here we describe the simplest one:

(a) Exchanging local variable activities to construct the common variable
ordering;

(b) Reconstructing each local ROBDD according to the common variable
ordering;

(c) Exchanging conflict databases and joining them (we use recursive dou-
bling [21] and Apply for this purpose). The result of this stage is a final
ROBDD which is constructed on some computing node and represents
the complete array of conflict clauses with respect to the common vari-
able ordering;

(d) Sharing the final ROBDD to all the other nodes;

(e) Reconstructing the final ROBDD according to a local variable ordering
on each of the computing nodes.

10 A. Ignatiev and A. Semenov

It should be noted that joining the ROBDDs with the use of Apply is optional.
Instead it is possible to make each node store local copies of all the ROBDDs
made by other nodes. In this case, each of the nodes has an array of the ROBDDs
and runs a derivation process for all the ROBDDs separately. Such approach
can improve the solver’s performance when the serial use of Apply leads to an
exponential growth of the output ROBDD’s size.

4 Experimental Results

We experimented on CNFs which encode a cryptanalysis of the weakened key-
stream generator used in the cipher A5/1. This generator is used to encrypt
the traffic in GSM networks. The authors of [19] minutely described procedures
for constructing a CNF encoding cryptanalysis of the generator A5/1. They
also presented results on coarse-grained approach to logical cryptanalysis of the
generator in a Grid system. This approach is based on the technology of de-
composition of a SAT problem encoding the generator algorithm into a family
of SAT problems of lower dimension. By C(A5/1) we denote the CNF encod-
ing the algorithm of the generator A5/1, and by X(A5/1) we denote the set of
Boolean variables appeared in C(A5/1). In accordance with the technique de-
scribed in [19], from X(A5/1) one can select a subset of Boolean variables, each
corresponds to initial contents of a cell of a register of the generator. Cardinality
of this subset is d, d ≤ 64. This set is called a decomposition set and denoted
by Xd. Substituting all possible truth values for variables of Xd in C(A5/1)
generates a decomposition family consisting of 2d CNFs. This family forms a
parallel task list that can be processed in a distributed computing environment.
Inter-processor communications are extremely rare here.

The coarse-grained approach shows the best results in the case of decompos-
ing by 31 variables. In Fig. 4 shown below the cells corresponding to this set of
31 variables are dark shaded.

In our experiments we used the decomposion set X20 shown in Fig. 5. Sub-
stituting all possible truth values for variables of X20 in C(A5/1) generates a
decomposition family consisting of 220 CNFs. As the test material we consid-
ered 50 CNFs, chosen randomly from this decomposition family. All selected in
such a way CNFs were unsatisfiable. Tests were run on a platform of Intel Xeon
E5345 (4 cores, 2.33 GHz), 8 GB RAM. To evaluate efficiency of the hybrid
DPLL+ROBDD derivation we used approaches listed below:

1. Coarse-grained parallelization without sharing clauses. For each of the fifty
CNFs we constructed 4 simpler CNFs obtained by substituting all the possi-
ble values of two variables x23 and x45 into the original one. Thus, each of the
4 CPU cores solved its own fifty SAT problems irrespective of other cores. In
this series of experiments we used the following solvers: hsat, dminisat [19]
and MiniSat 2.2.0 [7].

2. The use of solvers with parallel architecture. In this series of experiments
there were involved multi-threaded solvers MiraXT 1.1 [18] and ManySAT 1.1
[10], as well as mhsat, which is an MPI application.

DPLL+ROBDD Derivation in Inversion of Some Cryptographic Functions 11

Fig. 4: Schema of the A5/1 keystream generator which consists of 3 LFSRs, given
by the following connection polynomials over GF(2): LFSR 1: X19+X18+X17+
X14 + 1; LFSR 2: X22 + X21 + 1; LFSR 3: X23 + X22 + X21 + X8 + 1. The
algorithm of A5/1 keystream generator is encoded by CNF in accordance with
the technique described in [19].

Fig. 5: Schema of the decomposition set X20.

12 A. Ignatiev and A. Semenov

3. Sequential solving all the considered tests by hsat using one CPU core.

We emphasize that the original versions of ManySAT and MiniSat cannot
cope with tests of the set under consideration. But it is possible to solve this
problem by assigning nonzero values to initial activity for those variables which
correspond to initial contents of A5/1’s registers (in Table 1 this modification
is denoted by “mod”). In contrast to ManySAT and MiniSat even the original
version of MiraXT can handle the considered tests. However, increasing initial
activity of the same variables doubles its performance on average.

Table 1: Average solving time for each of the solvers.

place solver mode of operating number of cores avg. time (seconds)

1 mhsat parallel 4 569.016
2 hsat coarse-grained 4 644.254
3 MiraXT (mod) parallel 4 1639.192
4 hsat sequential 1 2385.578
5 dminisat coarse-grained 4 2750.486
6 MiraXT (orig) parallel 4 3214.178
7 ManySAT (mod) parallel 4 3378.078
8 MiniSat (mod) coarse-grained 4 5836.782

Note the fact that mhsat taking 4 CPU cores is more than 4 times faster
than its sequential version (hsat).

In addition to the parallel solvers listed above, we tried to use the well-known
solvers CryptoMiniSat 2.9.0 [20] and Plingeling 276 [2]. However, these solvers
could not cope with the tests in a reasonable time.

5 Conclusions and Future Work

According to the experimental results we can conclude that the hybrid DPLL+
+ROBDD derivation techniques described in the paper may be useful in solving
the function inversion problems that are difficult for the solvers performed better
on the well-known test libraries.

We suppose that our hybrid methods have potential to be heavily improved.
In particular, some improvements of the basic hsat’s algorithms are expected in
the near future. In addition, we also project to analyze various alternatives on
inter-process sharing the arrays of conflict clauses generated by different nodes
of a large-scale distributed computing environment.

Despite the interesting experimental results we realize that they are not
enough to justify the efficiency of our approach to a wide class of functions.
Therefore, we hope to succeed in expanding the class of tests, which can be
solved by the described algorithms much more efficiently in comparison with
traditional DPLL-based derivation methods.

DPLL+ROBDD Derivation in Inversion of Some Cryptographic Functions 13

6 Acknowledgements

The authors would like to thank Alexei Hmelnov, Dmitry Bespalov and Stepan
Kochemazov (ISDCT SB RAS) for their help and numerous valuable advices.
This work is supported by Russian Foundation for Basic Research (Grant No. 11-
07-00377-a).

References

1. Aloul, F.A., Mneimneh, M.N., Sakallah, K.A.: ZBDD-Based Backtrack Search SAT
Solver. In: Proceedings of International Workshop on Logic and Synthesis (IWLS).
pp. 131–136 (2002)

2. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech.
Rep. 10/1, FMV Reports Series, Institute for Formal Models and Verification,
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2010)

3. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

4. Chatalic, P., Simon, L.: Zres: The old Davis-Putnam procedure meets ZBDDs.
In: McAllester, D. (ed.) 17th International Conference on Automated Deduc-
tion (CADE’17). pp. 449–454. No. 1831 in Lecture Notes in Artificial Intelligence
(LNAI) (June 2000)

5. Damiano, R.F., Kukula, J.H.: Checking satisfiability of a conjunction of BDDs. In:
40th Design Automation Conference. pp. 818–823. DAC’03 (2003)

6. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional horn formulae. The Journal of Logic Programming 1(3), 267–284
(1984)

7. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer
(2003)

8. Ganai, M., Gupta, A.: SAT-Based Scalable Formal Verification Solutions (Series
on Integrated Circuits and Systems). Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2007)

9. Gopalakrishnan, S., Durairaj, V., Kalla, P.: Integrating CNF and BDD based SAT
solvers. High-Level Design, Validation, and Test Workshop, IEEE International
pp. 51–56 (2003)

10. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a Parallel SAT Solver. Journal on
Satisfiability, Boolean Modeling and Computation. Special Issue on Parallel SAT
Solving 6, 245–262 (2009)

11. Huang, J., Darwiche, A.: The Language of Search. Journal of Artificial Intelligence
Research 29, 191–219 (2007)

12. Järvisalo, M., Junttila, T.: Limitations of restricted branching in clause learning.
Constraints 14(3), 325–356 (2009)

13. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean Reasoning
for Equivalence Checking and Functional Property Verification. IEEE Transactions
on Computer-Aided Design 21(12), 1377–1394 (2002)

14. Lee, C.Y.: Representation of Switching Circuits by Binary-Decision Programs. Bell
Systems Technical Journal 38, 985–999 (1959)

15. Lynce, I., Marques-Silva, J.: Efficient data structures for backtrack search SAT
solvers. Annals of Mathematics and Artificial Intelligence 43(1), 137–152 (2005)

14 A. Ignatiev and A. Semenov

16. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th annual Design Automation
Conference. pp. 530–535. DAC ’01, ACM, New York, NY, USA (2001)

18. Schubert, T., Lewis, M., Becker, B.: PaMiraXT: Parallel SAT Solving with Threads
and Message Passing. Journal on Satisfiability, Boolean Modeling and Computa-
tion. Special Issue on Parallel SAT Solving 6, 203–222 (2009)

19. Semenov, A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel algorithms for SAT
in application to inversion problems of some discrete functions. arXiv:1102.3563v1
[cs.DC]

20. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic
Problems. In: Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing. pp. 244–257. SAT ’09, Springer-Verlag (2009)

21. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communica-
tion Operations in MPICH. Int’l Journal of High Performance Computing Appli-
cations 19(1), 49–66 (2005)

22. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic 2, 234–259 (1968)

