
The Graphics Processor as a Mathematical Coprocessor in
MATLAB ∗

André Rigland Brodtkorb

2008

Abstract

We present an interface to the graphics processing unit
(GPU) from MATLAB, and four algorithms from nu-
merical linear algebra available through this interface;
matrix-matrix multiplication, Gauss-Jordan elimination,
PLU factorization, and tridiagonal Gaussian elimination.
In addition to being a high-level abstraction to the GPU,
the interface offers background processing, enabling com-
putations to be executed on the CPU simultaneously. The
algorithms are shown to be up-to 31 times faster than
highly optimized CPU code. The algorithms have only
been tested on single precision hardware, but will easily
run on new double precision hardware.

1 Introduction

The graphics processing unit (GPU) is the processor on
graphics cards, dedicated to rendering images on screen.
The rendered images typically consist of millions of pix-
els that can be computed in parallel. The GPU exploits
this fact, and exhibits high levels of parallelism with up-
to several hundred processors. Recent generations of off-
the-shelf GPUs have become programmable, enabling the
use of GPUs for general purpose computations. This has
opened a new field of research called GPGPU.

The reason for interest in GPUs is their massive float-
ing point performance. They offer far higher peak per-
formance than CPUs, and the performance gap is in-

∗This is a draft of the following article: A. R. Brodtkorb, The Graph-
ics Processor as a Mathematical Coprocessor in MATLAB, The Second
International Conference on Complex, Intelligent and Software Inten-
sive Systems, pp. 822–827, March 2008, DOI: 10.1109/CISIS.2008.68.

creasing. While the processing power of CPUs has fol-
lowed Moore’s law closely, doubling every 18-24 months,
the processing power of the GPU has doubled every 9
months [OLG+07]. An argument against using GPUs,
however, has been the lack of double precision. This is
now outdated with new double precision hardware.

Numerical linear algebra includes many computation-
ally heavy operations that are central in many fields, rang-
ing from search engines to games, cryptology and solv-
ing partial and ordinary differential equations numeri-
cally. Using the GPU to speed up such computations is
important for all these applications. Harvesting the raw
power of the GPU, however, is nontrivial and not even
possible for some problems. In order to solve a prob-
lem using the GPU, it has to fit the GPU programming
model and have a highly parallel nature. Traditionally,
the GPU had to be accessed via a graphics API such as
OpenGL [SWND05] and DirectX [Mic07], requiring that
the problem is rewritten in terms of operations on graphi-
cal primitives. New vendor-specific APIs such as “Close
To the Metal” (CTM) [Adv06] from AMD and “Com-
puter Unified Device Architecture” (CUDA) [NVI07b]
from NVIDIA, however, offer access to the hardware
without going through the graphics API. There also ex-
ists two free APIs for GPGPU: Brook [BFH+04] and
Sh [MDP+04]. These two, however, do not seem to be
actively developed, as Sh has been commercialized as
RapidMind [MD06], and Brook has been commercialized
as Brook+ from AMD [Adv07].

This article presents four selected operators from nu-
merical linear algebra implemented on the GPU. We have
used OpenGL to access the GPU, as this was our best al-
ternative before CUDA was released. The algorithms are
chosen because of their importance and how they fit the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357615899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


GPU programming model: Full matrix-matrix multipli-
cation is one of the building blocks in numerical linear
algebra; Gauss-Jordan elimination is a direct solver that
fits the GPU programming model well; PLU factoriza-
tion is another direct solver, efficient for solving a sys-
tem for multiple right hand sides; tridiagonal Gaussian
elimination solves a tridiagonal system of equations ef-
ficiently. The four operators are accessed via MATLAB
using familiar MATLAB syntax, and the MATLAB inter-
face uses a processing queue and background processing
on the GPU. This enables the use of the GPU and the CPU
simultaneously for maximum performance.

2 Related work
Coupling the GPU and MATLAB has been shown by
NVIDIA, who presented a MATLAB plug-in for 2D FFT
using CUDA [NVI07a]. This speeded up simulation
of 2D isotropic turbulence by almost a factor 16 on a
1024× 1024 grid.

Larsen and McAllister [LM01] were the first to present
matrix-matrix multiplication on the GPU, prior to the
arrival of programmable hardware. Hall, Carr and
Hart [HCH03] presented a way of blocking the compu-
tation by using several passes, and reported 25% less data
transfer and executed instructions compared to the for-
mer. Jiang and Snir [JS05] showed a way of tuning matrix
multiplication automatically to the underlying hardware,
and reported 13 GFLOPS for a hand-tuned version, com-
pared to 9 GFLOPS for the automatically tuned version
on an NVIDIA GeForce 6800 U. For other hardware se-
tups, the automatically tuned version outperformed hand-
tuned equivalents. The efficiency of using blocking tech-
niques for the matrix-matrix product was analyzed by
Govindaraju et al. [GLGM06], where they reported less
than 6% cache misses when using efficient block-sizes,
and 17.6 GFLOPS on an NVIDIA GeForce 7900 GTX.
Peercy, Segal and Gerstmann [PSG06] presented an im-
plementation of matrix-matrix multiplication using CTM
on an ATI X1900 XTX graphics card, where they reported
their implementation to perform 110 GFLOPS.

Galoppo et al. [GGHM05] presented PLU factorization
using the Doolittle algorithm on the GPU, and single-
component textures to store the data. Using consecutive
passes, they first located the pivot element. Then the rows

(and columns for full pivoting) were interchanged in yet
another pass, and finally the matrix was reduced. This
process was repeated until the whole matrix was decom-
posed. They claimed their algorithm to be 35% faster than
ATLAS [WD98] for PLU factorization with partial pivot-
ing, and an order of magnitude faster than the Intel Math
Kernel Library (MKL) [Int07] for full pivoting. However,
the benchmarks were highly synthetic, and assumed no
cache misses.

Bolz et al. [BFGS03] presented a conjugate gradient
algorithm using the GPU, where they stored their sparse
matrices using two textures. The first texture simply con-
tained all nonzero elements in the matrix packed row by
row. The second texture contained pointers to the first ele-
ment in each row. Their conjugate gradient algorithm was
implemented using the GPU to compute sparse matrix-
vector multiplication and sparse vector-vector inner prod-
uct. They reported overhead connected with pixel buffer
switching as the limiting factor. This overhead is now
far less when using framebuffer objects instead of pixel
buffers. Krüger and Westermann [KW03] used another
storing strategy for banded sparse matrices, where each
diagonal-vector was stored in a separate texture. They re-
ported precision issues, and claimed a speedup over their
reference CPU implementation. Vectorized SSE imple-
mentations, however, are supposed to be 2 − 3× faster
than their CPU implementation.

Part of the material presented here is a result of the mas-
ter’s thesis “A MATLAB Interface to the GPU” [Bro07].
The reader is encouraged to consult the master’s thesis for
implementation and other details.

3 A GPU toolbox for MATLAB
MATLAB is a standard tool for scientists and engineers
all over the world. Utilizing the GPU as a mathematical
coprocessor will not only offload the CPU, but possibly
also increase performance.

MATLAB supports user-defined classes and operator
overloading for these classes. This enables us to imple-
ment a gpuMatrix class, which can be programmed to ex-
ecute custom code for all standard MATLAB operators
and functions. These functions can be programmed in
C/C++ as a MATLAB executable (MEX) file. By pro-
gramming the MEX file to use the GPU as the computa-

2



MATLAB toolbox

MEX thread

GPU thread
Operations

Results

GPU

MATLAB

Figure 1: Splitting of program execution into one part deal-
ing with MATLAB, and one part dealing with the GPU

tional engine, we can utilize the GPU in MATLAB. How-
ever, using the GPU most often excludes use of the CPU
simultaneously because many calls to OpenGL are block-
ing. Synchronous data transfer to or from the CPU are
examples of blocking calls where both the CPU and the
GPU stop executing while data is transferred. Using the
GPU to compute results in the background, however, will
enable the use of the CPU simultaneously.

To use the GPU as a mathematical coprocessor, work-
ing in the background, we utilize threads that execute
code independently from each other. Because neither
MATLAB [K0̈7] nor most OpenGL driver implementa-
tions are thread-safe, we cannot arbitrarily call MATLAB
and OpenGL functions from different threads. To circum-
vent this, the program execution is split into two separate
threads, as shown in Figure 1. The MEX thread holds
a MATLAB context and communicates with MATLAB,
while the GPU thread holds an OpenGL context and com-
municates with the GPU. The two threads communicate
with each other via a queue of operations, and a map of
results.

When MATLAB operates on a gpuMatrix object, the
MEX thread is called. It then creates the wanted oper-
ation, adds it to the operations queue, notifies the GPU
thread of a change, and returns a unique ID to the oper-
ation. The GPU thread receives the notification, and ex-
ecutes all elements in the operations queue. Every com-
pleted operation is moved from the operations queue to
the results map, where the ID of the operation is the key.
When the result is requested by the user via a new call
from MATLAB, the MEX file simply waits until the cor-
rect ID appears in the results map. When it is found, the
result returned to MATLAB. The conversion between an
operation ID and the corresponding matrix is transparent

for the user, and an operation ID can be enqueued in fur-
ther operations even before the result is computed.

4 Operators on the GPU
Data transfer between the GPU and the CPU has to
pass through the 4GB/s full duplex PCI Express 16×
bus [Mic04]. To prevent the need to repack data (and
transfer it over the PCI Express bus again) for reuse in
other GPU computations, we have implemented all algo-
rithms using a consistent data-structure. We have used
the 2 × 2 packing scheme proposed by Hall, Carr and
Hart [HCH03], where 2× 2 sub-matrices are packed into
the four color vectors in each pixel (red, green, blue and
alpha). This packing utilizes the vectorized arithmetic
found in many GPUs, and offers good performance for
most applications, even though other packing schemes
might fit specific algorithms better.

4.1 Full matrix-matrix multiplication
We have implemented two versions of matrix multipli-
cation. One single-pass, and one multi-pass. Hall, Carr
and Hart [HCH03] presented a multi-pass algorithm that
views the matrix-matrix product as a sum of individual
multiplications. But because the matrix is packed using
the 2×2 schema, the algorithm computes the “inner prod-
uct” of two 2× 2 matrices as

Ck+1
i,j = Ck

i,j+[
ai,2k+1 ai,2k+2

ai+1,2k+1 ai+1,2k+2

] [
b2k+1,j b2k+1,j+1

b2k+2,j b2k+2,j+1

]
,

(1)

where Ck+1
i,j is the result buffer, and Ck

i,j is an interme-
diate accumulation buffer. The result is computed in n/2
passes, so that the product AB = Cn/2. Here the role
of the accumulation and destination buffers are swapped
each pass.

This algorithm forms the basis for our implementation
of the multi-pass algorithm. Instead of using an extra ac-
cumulation buffer, we accumulate using a single buffer.
Writing to a texture which is also input to the computation
is undefined [GGHM05], because the order of computa-
tion is unknown, i.e., you do not know which pixels are

3



computed first. Nevertheless, our empirical tests on the
NVIDIA GeForce 7800 GT show that writing to the same
buffer works as long as the input and output texels are at
the exact same position. Utilizing this eliminates the need
for a separate accumulation buffer in our algorithm, thus
significantly lessening memory requirements.

Fatahalian, Sugerman and Hanrahan [FSH04] pre-
sented a single-pass matrix multiplication algorithm that
corresponds to viewing the matrix multiplication as a se-
ries of vector-vector inner products. Each output element
is then computed as

(AB)i,j =

n/2−1∑
k=1

[
ai,2k+1 ai,2k+2

ai+1,2k+1 ai+1,2k+2

] [
b2k+1,j b2k+1,j+1

b2k+2,j b2k+2,j+1

]
.

(2)

The main difference from the multi-pass algorithm is that
the for-loop is moved from the CPU to the GPU, elimi-
nating the need for several passes. Our algorithm is im-
plemented as a GPU program that runs once, where one
2×2 sub-matrix of the result matrix is computed for each
pixel.

Jiang and Snir [JS05] reported the single-pass algo-
rithm as faster than the multi-pass algorithm for all the
hardware setups they benchmarked on. Nevertheless,
they did not benchmark on the hardware used here, the
NVIDIA GeForce 7800 GT and 8800 GTX. Since we are
operating on new hardware setups, we have implemented
both the single- and multi-pass algorithms.

4.2 Gauss-Jordan elimination
We have implemented Gauss-Jordan elimination with par-
tial pivoting. Gauss-Jordan elimination fits the GPU pro-
gramming model better than standard Gaussian elimina-
tion because only half the number of passes are needed.
Because we have packed 2 × 2 sub-matrices into each
pixel, we exchange rows of 2×2 elements. This optimiza-
tion increases performance since we only need half the
number of passes compared to exchanging single rows,
but will possibly create larger numerical errors than stan-
dard partial pivoting.

Finding the largest element of our pivot candidates re-
quires a measure for each candidate. We use the value of

the diagonal-elements after forward substitution,[
r g
b a

]
Subst.−−−→

[
r g
0 a− b

rg

]
. (3)

This gives us the diagonal-elements q1,1 = r and q2,2 =
a− b

rg, where we compute

k =
q1,1 · q2,2
q1,1 + q2,2

(4)

similarly to the harmonic mean. We have experimentally
found k to be a good measure for our application.

Finding the pivot element is done using a multi-pass
reduction shader (GPU program) that first computes k for
each element, and then reduces the vector down to one
element, the maximum. In addition to finding the largest
element, we also need to find the corresponding coordi-
nate. It is not trivial to compute both the maximum and
its norm effectively in one shader on the GPU. The naïve
approach of using if-tests is a possibly expensive task, as
all processors in the same single instruction multiple data
(SIMD) group have to execute the same instructions; if
one of the processors branches differently from the others,
all processors have to evaluate both sides of the branch.
We can, however, rewrite the branches into implicit if-
tests, e.g., float(a == b)*result. This gives us
the maximum, as well as the correct coordinate. If two
elements have identical norms, the largest coordinate is
selected.

When the reduction is complete, we are left with the
greatest coordinate of the largest norm. If the largest norm
is sufficiently close to zero, the matrix is assumed to be
singular or near-singular.

After we have located the pivot element we need to
swap the top row with the pivot row, convert the leading
element to a leading one, and reduce all elements above
and below to zero. Since we are using 2× 2 packing, we
normalize two rows, and eliminate two columns. This is
done in a ping-pong fashion reading from the previously
computed values, writing to the destination buffer. The
pivot row is normalized when it is written to the position
of the top row. The top row is simultaneously written at
the position of the pivot row, and eliminated. The rest
of the matrix is then eliminated in the next pass. This
process is repeated until the matrix is reduced to the iden-
tity in the left part of the matrix, with the solution to the

4



right. It should be noted that the algorithm easily can be
extended to full pivoting as well.

4.3 PLU factorization
The Doolittle algorithm for computing the PLU factoriza-
tion is a small alteration of Gaussian elimination. The
pivoting order is used to construct P , the multipliers used
in the elimination are stored to create the unit lower tri-
angular matrix L, and the matrix resulting from pivoting
and forward substitution is the upper triangular U . The
algorithm is executed as follows:

1. Find the pivot element.

2. Calculate two rows of U from the pivot row. Render
the top row at the position of the pivot row simulta-
neously, thus swapping the two rows.

3. Eliminate below the top row, using the normalized
pivot row.

The pivoting strategy used is the same as described for
Gauss-Jordan elimination, and the pivoting order is stored
on the CPU to construct P . When using the 2×2 packing
scheme, we have to calculate two rows of U simultane-
ously. We do not need to alter the top row in the 2 × 2
row, but we have to reduce the bottom row in the same
fashion as shown in Eq. (3). The last step of the algorithm
calculates the multipliers needed to eliminate the rest of
the column, and reduces the lower right part of the ma-
trix accordingly. This process is repeated until the whole
matrix is factorized.

When the matrix is factorized, we have L and U stored
on the GPU as one texture. After transferring back to the
CPU, L is constructed by adding the lower part of the
texture with the identity matrix, and U is simply the upper
triangular part of the texture.

4.4 Tridiagonal Gaussian elimination
Tridiagonal systems of equations arise e.g., when solv-
ing PDEs and ODEs numerically. Solving these systems
using a full matrix solver is highly inefficient, as most el-
ements are known to be zero. We can exploit the structure
of the matrix to provide an efficient tridiagonal solver. We
store the non-zero diagonals and the right hand side of the

system in the four color channels red, green, blue and al-
pha:

g1 b1 0 0 0 a1
r2 g2 b2 0 0 a2
0 r3 g3 b3 0 a3
0 0 r4 g4 b4 a4
0 0 0 r5 g5 a5

→


0 g1 b1 a1
r2 g2 b2 a2
r3 g3 b3 a3
r4 g4 b4 a4
r5 g5 0 a5

 .

We perform n − 1 passes where we forward substitute,
thus eliminating ri+1 at pass i, followed by n − 1 passes
where we backward substitute, eliminating bn−i in pass i.

This is, however, a highly serial computation, as only
one row of the matrix is updated in each pass. In order
to benefit from the parallel execution mode of the GPU,
we solve many such systems in parallel. Our tridiago-
nal solver is created specifically to solve many tridiagonal
systems of equations, such as those that arise in the semi-
implicit alternating direction discretization of the shallow
water equations [Cas90]. It is also possible to solve a sin-
gle tridiagonal system in parallel (see e.g., [Sto75]), but
this is not the focus of our approach. To solve many sys-
tems in parallel, we stack our systems beside each other
so that system i is in column i of the texture. This allows
us to solve up-to 8192 tridiagonal systems of up-to 8192
equations in parallel on the NVIDIA GeForce 8800 GTX,
which is the maximum texture size.

5 Results
The algorithms presented in the previous section all
have native MATLAB implementations as well. MAT-
LAB uses ATLAS [WD98], LAPACK [DW99], and
BLAS [LHKK79] routines for its numerical linear al-
gebra algorithms [The06, Mol00]. The routines offered
by these libraries are regarded as highly optimized, and
the MATLAB interface to them is considered efficient as
well [MY02]. It should be noted, however, that the GPU
does not offer fully IEEE-754 compliant floating point
(there are some anomalies with e.g. denormals), which
might be discerning for some uses.

The following compares the time used by the native
MATLAB algorithm and the GPU algorithm. The bench-
mark times are measured using MATLABs internal tim-
ing mechanism. Time spent packing and transferring data
between the GPU and the CPU is not included, as these

5



are looked upon as constant startup costs. When we reuse
data in multiple computations as described in Section 4
this cost will become insignificant. For single computa-
tions, however, the startup-cost will have a larger influ-
ence on the runtime, and should be included.

To measure how fast the GPU is, we have approximated
a polynomial, a + bn + cn2 + dn3, to the measured run-
times using the method of weighted least squares. In our
experiments, we found this to give good approximations
to the data-points, even though we do not know the spe-
cific complexity of the native MATLAB implementation.
By comparing the dominant factor, d, we can compute
a more realistic speedup-factor than by only comparing
peak measured GFLOPS. We have used this approach for
all algorithms except the tridiagonal Gaussian elimina-
tion.

The algorithms have been benchmarked on two GPUs,
an NVIDIA GeForce 7800 GT (G70), and an NVIDIA
GeForce 8800 GTX (G80). The CPU used for the native
MATLAB implementation is a 3 GHz Pentium IV sys-
tem (P IV) with 2GB of RAM. The matrices being used
for the benchmarks are random matrices, as neither con-
dition number, sparsity or structure influences the runtime
of the algorithm. Since the tested hardware only supports
single precision, there are precision issues for poorly con-
ditioned matrices.

5.1 Full matrix-matrix multiplication

Figure 2 shows the execution times of MATLAB and the
presented toolbox. The GPU implementation is slower
than the highly optimized CPU code for small matrices.
This is because there is a larger overhead connected with
starting computation on the GPU than on the CPU. For
large matrices, however, we experience a speedup. We
computed the coefficient, dCPU, of our polynomial approx-
imating the CPU runtime to be 8.36e-10, while the single-
pass coefficients for the G70 and G80 GPUs are 4.26e-10
and 2.67e-11. This gives us speedup factors of 1.96× and
31.29× for the G70 and G80 GPUs respectively. Using
the same approach for the multi-pass algorithm, we get
speedup factors of 3.04× and 14.25×. These speedup
factors are good approximations for matrices larger than
∼ 500× 500.

5.2 Gauss-Jordan elimination
MATLAB implements Gauss-Jordan elimination as the
function rref(). Benchmarking the GPU version
against the native MATLAB implementation, however,
gave a speedup of 170× and 680× for the G70 and G80
GPUs respectively. This indicates that the MATLAB ver-
sion is sub-optimal. To give a more appropriate speedup
factor, we have chosen to compare against the PLU factor-
ization in MATLAB. However, Gauss-Jordan elimination
is a far more computationally heavy operation than PLU
factorization. PLU factorization is also a far less memory
heavy operation. In effect, our speedup factors are highly
modest.

Figure 2a shows the execution time of the PLU fac-
torization in MATLAB, and Gauss-Jordan elimination on
the GPU. By comparing the dominant coefficient of our
approximating polynomial, we can estimate the speedup
factor to be 1.07× and 4.27× for the G70 and G80 GPUs.
This speedup seems to fit the sample points well for ma-
trices larger than ∼ 1000× 1000.

5.3 PLU factorization
Figure 2b shows both the measured times for the CPU and
the GPU, as well as the least squares approximation of
the sample points. The approximated speedup over MAT-
LAB is 1.48× for the G70 GPU, and 7.55× for the G80.
These speedup factors seem to be valid for matrices larger
than ∼ 1000× 1000.

5.4 Tridiagonal Gaussian elimination
Benchmarking the tridiagonal solver is done using sparse
storage on both the CPU and GPU. On the CPU, the sys-
tems have to be solved sequentially in a for-loop, while
the systems are solved with one call to the GPU. On the
GPU, the time includes time spent transferring data be-
tween MATLAB and the GPU, as this algorithm does not
use the 2× 2 packing.

Figure 3a shows a plot of the execution time for MAT-
LAB, and Figure 3b shows the execution time for the
GPU. Figure 3c shows the computed speedup-factors.
Notice that there is almost no speed-up gain by increasing
the size of the systems, whilst increasing the number of
systems solved in parallel yields massive speedups. The

6



(a) Single-pass

500 1000 2000 4000

0.01

0.1

1

10

Matrix size

Ti
m

e
(s

ec
on

ds
)

G80
G70
P IV

(b) Multi-pass

500 1000 2000 4000

0.1

1

10

Matrix size

Ti
m

e
(s

ec
on

ds
)

G80
G70
P IV

Figure 2: The weighted least squares approximation to the execution time for full matrix multiplication, and a subset of
the measured execution times. Notice that the G70 GPU performs best using single-pass algorithm, and the G80 using the
multi-pass algorithm.

(a) Gauss-Jordan

500 1000 2000 4000

0.1

1

10

100

1000

Matrix size

Ti
m

e
in

se
co

nd
s

G80
G70
P IV
P IV (PLU)

(b) PLU

1

1000 2000 4000

10

Matrix size

Ti
m

e
(s

ec
on

ds
)

G80
G70
P IV

Figure 3: The weighted least squares approximation to the execution time for Gauss-Jordan elimination and PLU factorization
with a subset of the measured execution times. Notice that Gauss-Jordan on the GPU is compared to PLU factorization on the
CPU.

7



maximum observed speedup is 125× for solving 4096
systems of 2048 equations in parallel.

5.5 Background computation
In addition to using the GPU alone, the presented in-
terface also offers background computation. This back-
ground processing enables us to utilize both the CPU and
the GPU simultaneously for maximum performance. Be-
cause they operate asynchronously, we can compute a
crude approximation to a good load balance by timing the
CPU and the GPU.

Using the load ratio to distribute work between the
CPU and the GPU, we achieve background computation
on the GPU that is virtually free. The load ratio is set to
solve two systems on the CPU while one system is solved
simultaneously on the GPU. Figure 5 shows the average
time per system for the GPU, the CPU, and the total aver-
age time when using background processing. The largest
cost connected with using the GPU is copying the data
into memory allocated by MATLAB. Unfortunately this
step is required, as MATLAB has internal memory man-
agement, disabling thread-safe use of its memory. Be-
cause we now include the overhead imposed by packing,
transferring and unpacking each matrix in our timings, we
experience less speedups than previously reported. This
is the worst case scenario. Typical use should try to reuse
data that resides on the GPU in multiple computations to
hide the overhead of data-transfer. Nevertheless, the back-
ground processing decreases the overall execution time,
and we can compute the speedup-factor to be 1.68× over
using just the CPU.

6 Conclusions and further research
We have presented an interface to the GPU from MAT-
LAB, enabling the use of both the CPU and the GPU for
maximum performance. In addition, four algorithms from
numerical linear algebra have been presented for this in-
terface, and shown to be up to 31× faster than highly op-
timized CPU equivalents. Furthermore, a new pivoting
strategy, and the use of 2 × 2 packing for Gauss-Jordan
and PLU factorization has been presented.

The presented interface can be used to utilize both the
CPU and the GPU simultaneously, and an automatically

512 1000 2000 4000

0.01

0.1

1

10

Matrix size

Ti
m

e
(s

ec
on

ds
)

G80 + P IV
G80
P IV

Figure 5: Average time spent computing the PLU factoriza-
tion of 30 systems using both the CPU and the GPU. The
graphs show time spent waiting for the result to be com-
puted on the CPU, the GPU and total average time. Notice
that utilizing the GPU is very inexpensive.

tuned load distributor will be of great interest in such a
setting. The presented algorithms, matrix multiplication,
Gauss-Jordan elimination and PLU factorization, are all
implemented using 2 × 2 storage. The G80 GPU from
NVIDIA implements scalar arithmetic, eliminating the
need for this packing. Jiang and Snir [JS05] have pre-
sented an approach to automatic tuning of matrix-matrix
multiplication on the GPU to the underlying hardware.
Such an automatic tuning of the presented algorithms will
further increase the usefulness the GPU toolbox for MAT-
LAB. Utilizing APIs such as CUDA and CTM instead of
OpenGL will probably also increase performance, as we
do not need to rephrase the problem in terms of graph-
ics. An optimized high-level mathematical interface to the
GPU, such as described in this article, is not only inter-
esting for MATLAB, but also other high-level languages,
e.g., Python.

Acknowledgments

I would like to thank K.-A. Lie, T. R. Hagen, T. Dokken,
J. Hjelmervik and J. Seland for their guidance and help
with this document.

References

[Adv06] Advanced Micro Devices Inc. ATI CTM
guide, 2006.

8



(a) CPU execution time (P IV) (b) GPU execution time (G80) (c) Speedup factor

Figure 4: The measured execution time for tridiagonal Gaussian elimination using sparse storage. Notice that it is highly
efficient to solve many systems in parallel on the GPU.

[Adv07] Advanced Micro Devices Inc. AMD deliv-
ers first stream processor with double preci-
sion floating point technology, 2007.

[BFGS03] J. Bolz, I. Farmer, E. Grinspun, and
P. Schröder. Sparse matrix solvers on the
GPU: conjugate gradients and multigrid. ACM
Trans. Graph., 22(3):917–924, 2003.

[BFH+04] I. Buck, T. Foley, D. Horn, J. Sugerman,
K. Fatahalian, M. Houston, and P. Hanrahan.
Brook for GPUs: stream computing on graph-
ics hardware. In SIGGRAPH ’04, pages 777–
786. ACM Press, 2004.

[Bro07] André Rigland Brodtkorb. A MATLAB inter-
face to the GPU. Master’s thesis, University of
Oslo, May 2007.

[Cas90] V. Casulli. Semi-implicit finite difference
methods for the two-dimensional shallow wa-
ter equations. Journ. of Comp. Phys., 86:56–
74, 1990.

[DW99] J. Dongarra and J. Wasniewski. High per-
formance linear algebra package - lapack90.
volume 5 of Combinatorial Optimization, Ad-
vances in Randomized Parallel Comp. Kluwer
Academic Publishers, 1999.

[FSH04] K. Fatahalian, J. Sugerman, and P. Hanra-
han. Understanding the efficiency of GPU al-
gorithms for matrix-matrix multiplication. In

Graph. Hardw., pages 133–137. ACM Press,
2004.

[GGHM05] N. Galoppo, N. K. Govindaraju, M. Hen-
son, and D. Manocha. LU-GPU: Efficient al-
gorithms for solving dense linear systems on
graphics hardware. In Supercomputing ’05,
page 3. IEEE CS, 2005.

[GLGM06] N. K. Govindaraju, S. Larsen, J. Gray, and
D. Manocha. A memory model for scientific
algorithms on graphics processors. In Super-
computing ’06, page 89. ACM Press, 2006.

[HCH03] J. D. Hall, N. A. Carr, and J. C. Hart. Cache
and bandwidth aware matrix multiplication on
the GPU, 2003.

[Int07] Intel Corporation. Intel math kernel library 9.1
– product brief, 2007.

[JS05] C. Jiang and M. Snir. Automatic tuning matrix
multiplication performance on graphics hard-
ware. In Parallel Arch. and Compilation Tech-
niques, pages 185–196. IEEE CS, 2005.

[K0̈7] A. Källander. Multithreading in MEX files.
Personal email communication, 2007.

[KW03] J. Krüger and R. Westermann. Linear al-
gebra operators for GPU implementation of
numerical algorithms. ACM Trans. Graph.,
22(3):908–916, 2003.

9



[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid,
and F. T. Krogh. Basic Linear Algebra Subpro-
grams for Fortran Usage. ACM Trans. Math.
Softw., 5(3):308–323, 1979.

[LM01] E. S. Larsen and D. McAllister. Fast matrix
multiplies using graphics hardware. In Su-
percomputing ’01, pages 55–55. ACM Press,
2001.

[MD06] M. D. McCool and B. D’Amora. Program-
ming using RapidMind on the Cell BE. In
Supercomputing ’06, page 222. ACM Press,
2006.

[MDP+04] M. D. McCool, S. Du Toit, T. Popa, B. Chan,
and K. Moule. Shader algebra. ACM Trans.
Graph., 23(3):787–795, 2004.

[Mic04] Microsoft Corporation. PCI Express FAQ for
graphics, 2004.

[Mic07] Microsoft Corporation. Microsoft DirectX,
2007.

[Mol00] C. Moler. MATLAB news & notes - winter
2000, 2000.

[MY02] I. Mcleod and H. Yu. Timing comparisons of
Mathematica, MATLAB, R, S-Plus, C & For-
tran, 2002.

[NVI07a] NVIDIA Corporation. Accelerating MATLAB
with CUDA using MEX files, 2007.

[NVI07b] NVIDIA Corporation. CUDA programming
guide, 2007.

[OLG+07] J. D. Owens, D. Luebke, N. Govindaraju,
M. Harris, J. Krüger, A. E. Lefohn, and T. J.
Purcell. A survey of general-purpose compu-
tation on graphics hardware. Comp. Graph.
Forum, 26(1):80–113, 2007.

[PSG06] M. Peercy, M. Segal, and D. Gerstmann. A
performance-oriented data parallel virtual ma-
chine for gpus. In SIGGRAPH ’06, page 184.
ACM Press, 2006.

[Sto75] Harold S. Stone. Parallel tridiagonal equation
solvers. ACM Trans. Math. Softw., 1(4):289–
307, 1975.

[SWND05] D. Shreiner, M. Woo, J. Neider, and T. Davis.
OpenGL Programming Guide. Addison-
Wesley, fifth edition, 2005.

[The06] The MathWorks. MATLAB software ac-
knowledgements, 2006.

[WD98] R. C. Whaley and J. J. Dongarra. Automati-
cally tuned linear algebra software. In Super-
computing ’98, pages 1–27. IEEE CS, 1998.

10


	Introduction
	Related work
	A GPU toolbox for MATLAB
	Operators on the GPU
	Full matrix-matrix multiplication
	Gauss-Jordan elimination
	PLU factorization
	Tridiagonal Gaussian elimination

	Results
	Full matrix-matrix multiplication
	Gauss-Jordan elimination
	PLU factorization
	Tridiagonal Gaussian elimination
	Background computation

	Conclusions and further research

