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Abstract. The giant magnetically-induced deformation of ferromagnetic shape memory alloys 

results from the magnetic field-induced rearrangement of twinned martensite under the magnetic 

field. This deformation is conventionally referred to as the magnetic-field-induced-strain (MFIS). 

The MFIS is comparable in value with the spontaneous deformation of crystal lattice during the 

martensitic transformation of an alloy. Although the first observations of MFIS were reported more 

than 30 years ago, it has got a world-wide interest 20 years later after the creation of the Ni–Mn–Ga 

alloy system with its practically important room-temperature martensitic structure and experimental 

evidence of the large magnetostriction. The underlying physics as well as necessary and sufficient 

conditions for the observation of MFIS are the main focus of this chapter. A magnetostrictive 
mechanism of the unusual magnetic and magnetomechanical effects observed in Ni–Mn–Ga alloys 

is substantiated and a framework of consistent theory of these effects is outlined starting from the 

fundamental conception of magnetoelasticity and the commonly known principles of 

ferromagnetism and linear elasticity theories. A reasonable agreement between the theoretical 

deductions and available experimental data is demonstrated and, in this way, a key role of 

magnetoelastic coupling in the magnetomechanical behavior of Ni–Mn–Ga alloys is proved. A 

correspondence of magnetostrictive mechanism to the crystallographic features of MFIS and the 

basic relationships of the thermodynamics of solids are discussed.  

Introduction 

Both the spontaneous ferromagnetic ordering and/or externally stimulated magnetization process in 

solids are always accompanied by volume and shape changes, which are termed as a 

magnetostriction [1]. Magnetostriction manifests itself as the magnetically-induced elastic straining 

of the experimental specimen. The magnetically ordered solids show typical values of the 

magnetoelastic strain )(meε  of about 56 1010 −− −  while the strain values inherent to the practically 

used magnetostrictive materials belong to the interval 34 1010 −− − . Magnetostriction arises because 

the intensity of spin exchange between electrons and the force of spin-orbit interaction depend on 

the spatial positions of atoms in the crystal lattice. Thus, these dependencies can be considered at 

the origins of isotropic and anisotropic spin-lattice interactions. 

The magnetically induced volume/shape changes have a great impact on both magnetic and 

elastic properties of a large number of solids. Well-known examples are Invar alloys with a large 

spontaneous volume magnetostriction or MnAs-type compounds exhibiting lattice distortion and 

large volume effect at the Curie temperature. Due to the localized nature of f-electrons in atoms, the 

spin-lattice interactions in the rare-earth elements and compounds are especially strong giving rise 

to the famous phenomenon of giant magnetostriction (TERFENOL-D).  

Curiously, the large magnetostriction of single crystalline Dy and Tb, which was found in 

1970s, proved to be accompanied by a giant magnetoplastic deformation ( 2104 −×≈ε  in the field 

around 10 T). This phenomenon was explained by a magnetic field-induced mechanical twinning 
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[2]. Scientifically sound results, which were obtained for Dy and Tb, did not receive much attention 

due to the obvious lack of practical importance: the magnetoplastic deformation was observed at 4.2 

K and under very high magnetic fields. 

On the other hand, the ferromagnetic shape memory alloys, such as Fe–Pd (30 at.%), Fe3Pt and 

Fe–Ni–Co–Ti, which are Invars exhibiting thermoelastic martensitic transformations (MTs), have 

been known for over 30 years (see, e.g., [3–5]). Particularly, a magnetic field influence on the 

martensitic transformation temperatures has been studied in these alloys (see e.g., [6–9]). The 

obtained results pointed to the possibility of a magnetic-field-induced MT with a certain hysteresis 

and characteristic strain (either volumetric or deviatoric) at a constant temperature above the MT 

temperature. After obtaining experimental confirmation, this MT was tentatively termed as the 

magnetoelastic effect [9]. Such an idea and correspondent research line have led, later on, to the 

development and studies of the magnetostrained materials where the MT temperature is artificially 

merged with the Curie temperature [10–13] and/or natural materials such as, e.g., MnAs [14], FeRh 

[15] or TbMn2 [16] exhibiting spontaneous magnetostructural transformation on cooling. In all 

these materials, the strain usually recovers after the removal of the magnetic field. 

Furthermore, it is interesting to note that the martensitic Invars showing a strong negative slope 

of MT temperature as a function of hydrostatic pressure appeared to be a model object to 

demonstrate the baroelastic effect: the sample, which was preliminary deformed in the martensitic 

state, recovers its shape through the pressure-induced reverse MT transformation [17]. The 

magnetic analog of this effect was recently realized by using Mn-rich Heusler compounds, which 

show the magnetic field-induced shape recovery in the course of reverse MT accompanied by the 

metamagnetic phase transition [18].  

Before the end of 1980s, some of the stoichiometric ferromagnetic X2YZ Heusler compounds, 

where X is 3d-metal, Y is usually Mn but could be other 3d-metal or rare-earth elements, Z is one 

of the elements from groups III or IV of the periodic table, have been already known to exhibit a 

lattice instability towards a martensitic transformation (see, e.g.,[19,20] and references therein). 

Upon an analogy with Cu-base shape memory alloys (SMAs), such martensitic Heusler alloys were 

later considered as Hume-Rothery alloys exhibiting a Zener-type lattice instability [10]. 

Particularly, the low-temperature MT and the formation of martensitic plate-like morphology in 

Ni2MnGa compound (both features are the prerequisites of the thermoelastic MT) were described in 

1984 [20]. This information, together with the long-term experience with thermoelastic martensitic 

transformations in the Fe-base Invar alloys, prompted us to verify experimentally the thermoelastic 

nature and related shape memory and superelastic properties of this compound in 1989 [21].  

Furthermore, the enormous shift of MT temperature towards the high temperatures was found 

by variations of alloy composition beyond stoichiometry, which has led to the creation of the family 

of non-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys (FSMAs) with practically 

attractive MT temperatures, which are close to the room temperature [22,23].  

The magnetostriction measurements of one of the Ni–Mn–Ga single crystals listed in Ref.[23] 

were carried out in 1996 by two research groups using pulse [24] and quasi-static [25] magnetic 

fields. An abnormally large magnetostriction of about 0.2% was measured in the latter case. It was 

explained by the magnetic field-induced twin boundary motion [25]. This mechanism of magnetic 

field-induced strain (MFIS) differs from all the aforementioned mechanisms because it proceeds in 

the martensitic phase and comprises a field-induced conversion of one twin component into another, 

the process being inherently dependent on the mutual orientation of the magnetic field and hard 

magnetic directions of twin components.  

As follows from the diagram in Fig.1, the world-wide research/publication boom on MFIS in 

Ni–Mn–Ga materials started three years later, after 1996. As a result, the record-breaking reversible 

magnetostrain values of 6% and 10% were achieved experimentally as a consequence of the large 

magnitudes of the tetragonal or orthorhombic distortions of crystal lattice in the martensitic phase, 

respectively [26–29]. Fig.1 and the available review articles [13,30–37] demonstrate that Ni–Mn–

Ga alloys are the most intensively studied FSMA systems so far. 
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Fig.1. Dynamics of the annual amount of 

publications devoted to Ni–Mn–Ga FSMAs 

(white columns) and alternative FSMA 

systems (black columns). The expected 

amount of delayed publications is marked by 

dash. 

 

The amount of publications displayed in Fig.1 as the black columns are related to the other 

FSMA systems such as Fe-Pd [31,38,39], Fe3Pt [31,39], Ni-Mn-(Al, Sn, Sb, In) [18,40-43], Co-Ni-

(Al, Ga) [44-48] and Ni-Fe-(Al,Ga) [49-53]. The black part of the diagram in Fig.1 and overview 

articles [54,55] prove an increasing interest towards the alternative systems as well. 

The best-working room-temperature easy-axis Ni-Mn-Ga FSMAs and the phenomena which 

they exhibit continue to be the scope of intense fundamental and applied research nowadays. The 

aforementioned record-breaking values of magnetostrain, the high values of estimated 

magnetocaloric effect [56-58], and the effect of twinning-strain-induced rotation of the 

magnetization vector [59-61] are the phenomena in the focus of current research and development. 

A highlight of the necessary and sufficient conditions of MFIS as well as the analysis of the 

underlying physics are the main subject matters of this chapter. The lattice instability in Ni–Mn–Ga 
FSMAs is described as the main prerequisite of MFIS. Thermodynamic arguments are used to 
remove an apparent gap between the physics of ordinary magnetostriction and large MFIS. A 

magnetostrictive mechanism of the unusual magnetic and magnetomechanical properties of Ni–

Mn–Ga alloys is substantiated and a consistent theory of these effects is developed starting from the 

fundamental conception of magnetoelasticity and the commonly known principles of the theory of 

ferromagnetism. This approach to comprehension of MFIS was already formulated by the authors 

and their co-workers in the past as a magnetoelastic model. The microscopic features of 

ferromagnetic martensite are demonstrated to be in line with a magnetoelastic model.  

Structural instability and magnetostriction 

One might say that an inherent lattice instability towards thermoelastic MT [10,20] is a primary 

reason explaining the ability of the ferromagnetic Ni–Mn–Ga alloys to exhibit the giant MFIS. This 

instability is mainly related to the uniform (110)[1 1 0] shear often accompanied by shuffling in the 

same system. It belongs to a Zener-type instability typical of β-alloys (see [10,62] and references 
therein) when a parent phase with bcc open lattice transforms during cooling into a lower-symmetry 

close-packed martensitic phase characterized by the invariant-plane Bain deformation. A Zener-

type instability implies a low-restoring force towards aforementioned shear and high entropy of 

cubic phase due the low-lying phonon modes. In order to accommodate large Bain strains exhibited 

by the differently oriented martensitic variants, secondary invariant-lattice strains occur involving 

the same shear system so that a twinned microstructure is formed.  
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It is of a great significance that the aforementioned shear in Ni–Mn–Ga intermetallics, as well as 

in other β-alloys [62] and In-Tl [63] or Fe-Pd alloys [64], is characterized by a low restoring force, 

i.e. their shear elastic modulus C C C' ( ) /= −11 12 2  is very small. Moreover, 'C  demonstrates a well-

pronounced softening of these alloys on cooling in the cubic phase and reaches a minimum of about 

a few GPa near MT [65,66]. Fig. 2(a) illustrates a typical temperature evolution of the low-

frequency elastic modulus for the single crystalline Ni2MnGa sample on cooling [65]. The 

resonance   ultrasonic  measurements  of  the  polycrystalline  samples   show  similar   temperature 

 

 

 

 
 

 

 

 

 

Fig.2. Temperature dependence of the 

elastic modulus on cooling (a) and cooling-

heating curves of longitudinal 

magnetostriction in the field of 5 kOe (b) 

for two Ni2MnGa single crystals of close 

compositions [65,70,71]. TM and TA are 

characteristic temperatures of the forward 

and reverse martensitic transformations, 

respectively; TI is the temperature of 

premartensitic transformation into the 

intermediate phase. 

 

 

dependence in shear modulus as in Fig. 2(a) [67]. The two minimums of modulus and 

magnetostriction in Fig.2 are associated with the premartensitic, forward and reverse martensitic 

transformations at IT , MT  and AT  temperatures, respectively. The lattice instability of the parent 

phase arises when approaching the premartensitic transformation temperature IT . The 

premartensitic transition is preceded by an almost linear decrease of the elastic modulus reflecting 

the precursor events. According to Fig. 2(a), the total decrease of this modulus in the cubic phase is 

about 30–40 %. The premartensitic transition is associated with the soft 1/3[110]TA2-phonon 

condensation (energy of the whole TA2 branch lowers during cooling as well) [65–69]. The 

modulus stiffening in the premartensitic phase (Fig.2a) slows down but does not prevent the crystal 

lattice to be globally unstable towards the mechanism of its uniform distortion during MT. This fact 

seems to indicate that the martensitic transformation is not directly controlled by a phonon 

mechanism of instability. The MT may be rather a consequence of the instability of electronic 

subsystem and the lattice anharmonicity (see, e.g., [13,20,65]). It is well known that in view of the 

low values of second-order shear modulus (usually measured under the assumption that Hook’s law 

is valid, which is not strictly true), the higher order elastic modules play an important role in the 

occurrence of MT.  
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It is clearly seen in Fig.2 that one of the consequences of a reduced modulus, especially in the 

temperature range of structural transformations, is a considerably enhanced ordinary 

magnetostriction characterized by the magnetoelastic strain )(meε . For instance, at the parent-to-

intermediate phase transition in Fig. 2(b) it is about 0.06% (the measurements were carried out in a 

cyclic magnetic field [70,71]). According to the expression '/2 1

)( Cme δε ≈  [70], where 1δ  is the 

magnetoelastic parameter, the occurrence of the right-hand-side minimum in the curve of Fig.2(b) is 

described by the concurrent minimum of elastic modulus in Fig.2(a).  

In the temperature range of MT, the cyclic magnetostrain is much larger, up to 0.4 % 

{Fig.2(b)}. This value implies a predominant contribution of the reversible magnetic-field-induced 

motion of twin boundaries operated by the twinning dislocations, as it cannot be explained simply 

by an ordinary magnetostriction. A reverse motion of some of the twinning dislocations is possible 

under the action of local internal stresses developed during their forward pass under magnetic field 

or external stress [36,37,72,73]. 

The fascinating feature of Ni–Mn–Ga alloys in single-crystalline form is a combination of 

abnormally low values of elastic modulus and extremely high mobility of twin boundaries. In our 

opinion this combination is the main factor, which must be taken into account to explain the very 

low values of twinning stress (about few MPa) estimated from the experimental stress–strain 

dependencies in the martensitic state [28,59,73,74]. This twinning stress could be smaller than the 

equivalent mechanical stress (magnetostress) produced by a magnetic field. Whenever this 

condition holds, it is sufficient for the occurrence of the giant MFIS. The magnetoelastic mechanism 

of MFIS and the role of magnetostriction in the magnetic properties of ferromagnetic shape-

memory alloys are explained in the next sections.  

Magnetoelastic model of magnetostrain effect 

This section is devoted to an application of the consistent phenomenological theory of 

magnetoelasticity (see, e.g., [75,76]) to the ferromagnetic Ni–Mn–Ga alloys. Evidences are given 

below that the magnetic and magnetomechanical properties of these magnetostrictive alloys are 

governed by the magnetoelastic interactions inherent to all magnetic solids. In particular, a 

magnetoelastic origin of MFIS is substantiated. It is demonstrated that the macroscopic models of 

MFIS, which disregard the theory of magnetoelastic interactions (explicitly set forth in 

Refs.[75,76]), are self-contradictory and incompatible with the fundamental principles of linear 

elasticity of solids. 

Preliminary considerations. The MFIS is related to a transformation of the specimen 

microstructure in an increasing magnetic field. In accordance with existing experimental data, the 

microstructure of single crystalline specimens exhibiting MFIS can be modeled by alternating 

domains (variants) of tetragonal crystal lattice, which form a sequence of crystallographic twins 

(Fig. 3). 
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Fig. 3. Schematic representation of two-

twin-variants configuration in a tetragonal 

ferromagnetic martensite. 

 

 
Let the coordinate axes be aligned with 100  crystallographic directions and the magnetic field 

be applied in y direction. Field application breaks the equivalence of twin components, and hence, 

initiates the growth of the volume fraction of y-variant to the expenses of the x-variant. In this way 

it induces the deformation of the specimen. An absolute value of the appropriate strain tensor 
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component may be estimated as ε ~ ( / ) /1 2− c a , where c and a are short and long lattice 

parameters of the tetragonal unit cell shown in Fig.3. Moreover, if the magnetic field is applied 

along the hard direction (a-axis) of the one-variant specimen, it will cause its twinning and 

subsequent detwinning with a final formation of a one-variant specimen, but with easy direction (c-

axis) aligned with the magnetic field. In this case, the observed deformation is close to the 

theoretical limit (1− c a/ ). 

The large value of magnetostriction constant λ ≈ ⋅ −13 10 4.  was reported and the reversible 

magnetostrictive deformation ε ( ) .me ≈ −0 01%  was observed for the cubic (austenitic) phase of Ni–

Mn–Ga alloy in a saturating magnetic field [25], see also Fig.2. On the other hand, the compressive 

stress MPa 75.1≈σ  applied along one of the 100  crystallographic directions of the single-variant 

martensite is sufficient for the accomplishment of the twinning-detwinning cycle [73]. The 

abnormally low value of the shear elastic modulus 11CGPa 5~' <<C  reported for the cubic phase 

of a number of Ni–Mn–Ga alloys [65,77] results in the following estimations for the Young 

modulus E and the elastic strain )( fε , needed for the accomplishment of the twinning-detwinning 

process: 
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Thus, the elastic strain, which is induced by the detwinning stress, is numerically close to the 

magnetostrictive deformation of the cubic phase. 

It may be assumed that the magnetostriction of the tetragonal phase is close in value to the 

magnetostriction of the cubic phase. In this case, the magnetostrictive deformation of twinned 

crystal lattice would exceed the value needed for the start of twining-detwinning process when the 

increasing magnetic field exceeds some threshold value. In other words, the magnetostrictive 

deformation triggers the twinning-detwinning process, and so, a magnetoelastic interaction is the 

physical origin of the giant MFIS observed in Ni–Mn–Ga alloys. This idea was first formulated in 

Refs. [78-81] and verified by the qualitative and quantitative comparison of theoretical results with 

experimental data [73, 82-84]. 

Arguments will be given that the magnetoelastic model of MFIS is compatible with the 

fundamental crystallographic concepts of martensitic transformation, such as a Wechsler –Liberman 

– Read theory [85]. According to these concepts, the spatial orientation of twin boundaries can be 

definitely calculated from the values of lattice parameters. Small changes in these parameters result 

in an appreciable reorientation of the boundaries. 

It will be clarified below that the magnetoelastic model is compatible with the microscopic 

mechanism of MFIS studied in [36,37,86].  

Model formulation. The cubic-tetragonal martensitic transformation is characterized by the 

diagonal components of strain tensor εii  and so, the non-diagonal components may be disregarded. 

According to the commonly recognized theory of magnetoelasticity [75,76], the free energy F is the 

sum of elastic, magnetic and magnetoelastic energies denoted as Fe, Fm and Fme, respectively. Thus, 

 

F F F Fii e ii m me ii( , , ) ( ) ( , ) ( , )ε ε εM H M H M= + + ,    (2) 

 

where M is the magnetization vector and H is the magnetic field applied to the specimen.  

In the harmonic approach, the expression for the elastic energy of the cubic phase is: 

 

F C C u C u ue = + + +3 2 2 611 12 1

2

2

2

3

2( ) / ' ( ) / ,     (3) 

 

6 Advances in Shape Memory Materials



where C11, C12 and C C C' ( ) /= −11 12 2  are elastic modules,  

 

u u uxx yy zz xx yy zz yy xx1 2 33 3 2= + + = − = − −( ) / , ( ),ε ε ε ε ε ε ε ε .  (4) 

 

The magnetic energy of the cubic phase is expressed as: 

 

F Jy M Mm = + ⋅ ⋅ −2 22 2/ ( ) / ,m D m mH      (5) 

 

where the first, second and third terms are the exchange, magnetostatic and Zeeman energies 

respectively, J is the spin exchange parameter, D is demagnetization matrix, the dimensionless 

variables y M T M= ( ) / ( )0  and m M= ( ) / ( )T M T  characterize the absolute value and direction of 

the magnetization vector, respectively [82].  

The expression for the magnetoelastic energy of the cubic phase has the form: 

 

F y u m m u m m m ume x y z y x= − − − + − −δ δ0

2

1 1

2 2

2

2 2 2

33 2[ ( ) ( ) ],    (6) 

 

where 0δ  and 1δ are the magnetoelastic energy parameters characterizing the isotropic and 

anisotropic parts of the spin-lattice interaction in the cubic phase, respectively [78,87]. Strictly 

speaking, the anisotropic spin-lattice interaction in the tetragonal phase is characterized by two 

magnetoelastic parameters, but the difference in these parameters is of the order of 

δ δ1 11( / ) .− <<c a  The energy terms of the fourth order in the magnetic vector and of the second 

order in the strain tensor components are comparatively small, and therefore, are omitted in Eqs.5 

and 6.  

The cubic-tetragonal MT transformation in Ni2MnGa single crystals results in the spontaneous 

deformation of the cubic lattice, which is characterized by the strains u c aM

2 3 1 0 05, ~ / .− ≈ − . Let the 

deformation of the stressed tetragonal lattice be counted off the spontaneous value, i.e. 

u u uM

α α α→ + , α = 1 2 3, , . By virtue of the fairly small values of spontaneous strains, Eq.2 for the 

elastic energy is approximately valid for the tetragonal lattice, i.e. F const Fe

t

e

( ) ≈ +  as long as uM

α  

values are constant. The magnetic energy Eq. 5 does not depend on strains, and therefore, 

F Fm

t

m

( ) = . Finally, using the condition m 2 1= , the magnetoelastic energy of the j-variant of the 

tetragonal phase can be expressed as: 

 

F V V y K m Fme

t

u j me

( ) ( / ) /= − − +δ0
2 23∆ ,     (7) 

 

where ∆V V/  is the fractional change in specific volume of the specimen; magnetic anisotropy 

constant: 

K c a au = −6 1δ ( ) /                    (8) 

        

is positive for the Ni–Mn–Ga martensites with c a< , because the fourfold symmetry axis is parallel 

to the direction of easy magnetization. Hence, magnetoelastic parameter 1δ  is negative. For more 

details concerning Eq. 7 and its consequences see Refs. [78,82,88]. 

According to the fundamental principle of the Thermodynamics of solids, the equilibrium 

values of elastic strains correspond to the minimum of Gibbs potential: 

 

G F u u u= − + +( ) /σ σ σ1 1 2 2 3 3 6 ,      (9) 

 

where 
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σ σ σ σ σ σ σ

σ σ σ σ

1 2

3

3 3

2

= + + = −

= − −

( ) / , ( ),

.

xx yy zz xx yy

zz yy xx

    (10) 

 

Hence, the equilibrium values of strain tensor components satisfy the conditions: 
 

∂ ∂ αG u/ = 0 .         (11) 

 

Conditions expressed by Eq.11 result in the generalized Hooke's law establishing interrelation 

between strains and stresses. It says that every stressed state of a solid is elastically deformed and 

every elastically deformed state is stressed. In particular, for α = 2  , Eq.11 results in the 

relationship: 
 

( )u Cme

2 2 2 2= +σ σ( ) / ' ,       (12) 

 

where the value 
 

σ δ2 1

2 26 3( ) ( )me

x ym m= −        (13) 

 

must be interpreted as the magnetomechanical stress (magnetostress), which is linearly related to 

square of magnetization and magnetostrictive deformation u Cme me

2 2 2( ) ( ) / '= σ . 

It should be now clearly specified, that both the magnetic anisotropy energy K mu j

2  and Zeeman 

energy mHM  cannot contribute to the magnetomechanical stress, because both energies are not 

any explicit functions of strains and their partial derivatives in αu  are equal to zero. It means that 

these energies do not contribute to Eq.11 or Hooke's law (Eq.12). Therefore, all theoretical models, 

which disregard the magnetostrictive strains and derive the magnetomechanical stress from the 

anisotropy and/or Zeeman energies, are incompatible with both the equilibrium conditions for 

Gibbs potential and Hooke's law. 

Model results: Effect of the isotropic spin-lattice interaction. The isotropic part of spin-lattice 

interaction manifests itself in a considerable shift of the Curie temperature under the action of 

hydrostatic pressure; the experimental value of this shift is ( / )dT dPC = 8 K / GPa [21]. The shift is 

caused by the magnetoelastic renormalization of spin exchange parameter: 

 
J T J T V V( ) *( ) ( / ) /→ − 2 30δ ∆      (14) 

 

(see Eqs.5 and 7). The volume change accompanies not only the hydrostatic compression, but also 

the martensitic transformation of the alloy. Therefore, the value of the exchange parameter jumps 

(according to Eq.14) when the temperature of the specimen during its cooling reaches the MT 

temperature, TM. The jump of the exchange parameter results in an abrupt change of magnetization 

value in the saturating magnetic field. The magnetoelastic model involves both the conventional 

temperature dependence of the exchange parameters J T T T TCA CA( ) ( ) /= −ζ or 

CMCM TTTTJ /)()(* −= ζ  and standard equations for the temperature dependencies of 

magnetization values in austenitic and martensitic phases:  
 

[ ]
[ ].)()/(tanh)(

,)()/(tanh)(

TyTTTy

TyTTTy

CM

CA

=

=
      (15) 
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For the tetragonal martensites with c a< , the temperature of ferromagnetic ordering exceeds the 

MT temperature, and therefore, TCA is a Curie temperature, which can be experimentally 

determined. The temperature: 
 

]3/)/)(/(21[ 0 VVTT CACM ∆+= ζδ      (16) 

 

is a characteristic parameter, which prescribes the temperature dependence of magnetization below 

the MT temperature. 

The experimental value of dT dPCA /  (see above) and relationship ζ = nk TB CA  (n is the number 

of magnetic atoms in the unit volume, kB is Boltzmann’s constant) result in the estimations 

ζ ≈ 01.  GPa  and δ0 0 4≈ − .  GPa [70]. With these parameters, the best fit between theoretical and 

experimental temperature dependencies of magnetization is achieved when the values 

∆V V/ = − ⋅ −3 10 2  and T TCM CA≈ + 30 K are used for computations [88].  

A theoretical temperature dependence of magnetization, as computed using Eqs.15 and 16, is 

presented in Fig. 4 (upper branch) together with experimental values measured in the saturating 

magnetic field, H = 10 kOe. The computations were carried out taking into account the statistical 

spread of "local" Curie temperatures in the spatially inhomogeneous martensitic state (for more 

details, see [88]). Fig. 4 demonstrates an excellent agreement between the model results and 

experimental data. 
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Fig.4. Experimental (open circles) and 

theoretical (solid line) temperature 

dependencies of the saturation 

magnetization obtained for the Ni–Mn–

Ga alloy with c/a = 0.94, TC = 375 K, 

and TM = 285 K. The dotted and dashed 

lines show the magnetization curves 

computed for the labile phases. The 

dash-doted line and closed circles show 

the temperature dependence of 

magnetization under the external 

magnetic field 0.8 kOe.  

 

It is worth noting, that a five-times-larger value of the magnetoelastic parameter, GPa 20 −≈δ , 

was reported recently [89]. This high value was estimated from the anomalous change of thermal 

expansion coefficient at the Curie temperature. In this case, the agreement between theoretical and 

experimental temperature dependencies of magnetization takes place for 3106/ −⋅−=∆ VV . 

Unfortunately, the uncertainty in VV /∆  values determined by different methods (for more details, 

see Ref. [90]) makes it difficult to choose between two the 0δ  values estimated in Refs. [88] and 

[89].  

Model results: Effects of the anisotropic spin-lattice interaction. An abrupt drop in the  

magnetization value measured under an external magnetic field of 0.8 kOe accompanies martensitic 

transformation in Ni2MnGa alloy (see the lower branch in Fig. 4). The magnetoelastic model relates 

this effect to the second term in the energy Eq.6 and explains it as follows: (i) martensitic 

transformation results in the tetragonal deformation of cubic crystal lattice, which leads to the 

appearance of a mixture of x-, y-, and z-variants of martensite; (ii) each variant is characterized by a 
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magnetic anisotropy constant Ku (Eqs.7,8) and an internal anisotropy field 

H M c a aA = −6 10δ ( ) / ~  kOe  [78,88], where δ δ= ≈ −1

2 23/ M  is the dimensionless 

magnetoelastic constant introduced for the sake of convenience; (iii) for the x- and z-variants of 

martensite, the anisotropy field is orthogonal to the external field yH , and so, the magnetic 

moments of these variants are almost perpendicular to the magnetization vector of the y-variant 

when H H A<< ; (iv) the magnetic anisotropy of the cubic phase is small, and therefore, the 

direction of the magnetic vector for the whole specimen is close to the direction of the external 

field, while magnetization is approximately 3 times larger than the magnetization of a tetragonal 

phase. 

In a magnetically non-saturated specimen, the model expression for magnetization is: 

 

M H T M y T s H H H HD S( , ) ( , )[( / )( / ) ( / )( / )],= +0 1 3 2 3    (17) 

 

where HD ≈ 1 kOe  is the demagnetization field and H HS A≈ = 10 kOe  is the field of magnetic 

saturation (for more details, see [78,82,88]). The theoretical dependence M T( )  computed by using 

Eq.17 for kOe 8.0=H  agrees with the experimental results (see Fig. 4). 

The magnetoelastic model relates the giant field-induced deformation of Ni–Mn–Ga alloy to the 

field-induced stress defined as the difference σ σ2 2 0( ) ( )( ) ( )me meH − . As it was proved in Ref. [73], 

that the application of a field  || yH  to the martensitic structure depicted in Fig. 3 is physically 

equivalent to an axial mechanical compression in y direction when the compressive stress is equal 

to: 

 

[ ]σ σ σyy

eq me meH H( ) ( ) ( )( ) ( ) ( ) /= −2 2 0 2 3 .     (18) 

 

The equivalent stress can be computed using Eqs.5,7,13 and 18. Eqs.5 and 7 result in the linear 

dependence m H H Hx S( ) /= , where H K M D D MS u yy xx= + −( / ) ( )2 , and so, the theoretical field 

dependence of the stress is quadratic (Eqs.13 and 18).  

The quadratic dependence, which was computed for M HS( ) .= 059 T  and T 5.00 =SHµ , is 

presented in Fig. 5. In the field range T 4.00 <SHµ , this dependence agrees with the experimental 

values of the equivalent stress determined directly from the stress–strain loops measured at different 

values of the external magnetic field (the details of the experimental procedure resulting in these 

values can be found elsewhere [73]). The experimental dependencies M Hx ( )  are not linear and the 

larger the field value, the more pronounced is the deviation from linearity. Due to this deviation, the 

field dependence of the equivalent stress is far from a quadratic function in the high-field range. 

Instead, in some cases, the equivalent stress is proportional to the second power of M Hx ( ) [73,91]. 
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Fig. 5. Equivalent stress found from 

experimental stress–strain loops [73] 

(open circles).  The solid line 

represents dependence, which is 

calculated using Eq.18 and linear field 

dependence of magnetization. 

 

 

In those cases, in which the equivalent stress function is known, it can be proved that 

magnetostrictive deformation is sufficient for the conversion of martensitic twins and to trigger 

large MFIS. To this end, experimental strain–stress and strain–field dependencies would be used. 

The strain–stress dependence shows that the variant conversion starts at stress value 

σ ( ) .s ≈ 0 9 MPa and finishes at σ ( ) .f ≈ 175 MPa  (see Fig. 6). Moreover, the final segment of the 

stress-strain loop, which is an extraction of the elastic part from the total deformation (Fig. 6, Inset), 

makes it possible to state that  the  elastic   stiffness  of   martensitic   single-variant   specimen  is 
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Fig. 6. Experimental strain–stress curve 

for the Ni–Mn–Ga alloy in the 

martensitic state [73]. Inset: zoom of the  

linear part of its final segment. 

Characteristic stresses indicating the 

start and finish of variant conversion are 

denoted as σ
(s)
 and σ

(f)
, respectively. 

 

 

S ≈ 19.  GPa . The elastic deformation, which was found in such a way, is shown in Fig. 7 by the 

straight solid line. The elastic strains values ε ( ) .s ≈ × −4 5 10 4  and ε ( ) .f ≈ × −9 2 10 4 , corresponding  

to the start and finish of the variant conversion process are shown by horizontal dashed lines. These 

strains exceed the value presented in Eq.1 due to the very low value of stiffness coefficient inherent 

to the studied alloy. Then, the magnetoelastic strain: 

 

u H Seq eq( ) ( )( ) /≡ σ        (19) 

 

is computed using Eqs.13 and 18 and depicted by the solid curve in Fig. 7. The cross points of this  

curve with the horizontal dashed lines result in the magnetic field values H s( ) .= 0 27 T  and 

H f( ) .= 0 38 T , which must correspond to the characteristic fields of start and finish of magnetically 

induced twin variant conversion in the specimen. As evidenced from Fig.8, these quantitative 

predictions have found an experimental confirmation. 
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Fig. 7. The elastic part of strain obtained 

from the final segment of strain–stress 

loop (straight solid line); stresses and 

elastic strains corresponding to the start 

and finish of variant conversion process 

(down-arrows and horizontal dashed 

lines, respectively); magnetostrictive 

strain (solid curve) and magnetic field 

values (up-arrows) corresponding to the 

start and finish of magnetically induced 

deformation accompanying the variant 

conversion process. 

 

 

 

 

Fig. 8.Giant magnetically induced 

deformation versus magnetic field of the 

martensitic single-variant Ni-Mn-Ga sample. 

The values of characteristic fields determined 

by using the elastic and magnetostrictive 

strains in Fig.7 are shown by the arrows. 

Experimental values (open circles) were 

obtained by P. Müllner for the same sample 

as described in Ref.[73]. 

 

Fig. 8 depicts the experimental strain–field dependence measured by P. Müllner using the same 

Ni–Mn–Ga sample studied in Ref.[73]. The values H s( )  and H f( ) estimated from Fig.7  are shown 

in Fig.8 by the arrows. It is seen, that these values are, indeed, very close to the experimental 

magnetic filed values corresponding to the start and finish of magnetically induced twinning-

detwinning cycle in the sample.  

The aforementioned experimental results for (magneto)strain obtained on a single-variant 

martensitic sample are in line with the principle of equivalence between magnetostress and 

mechanical stress, which follows from the magnetoelastic model (Eq.18, see also Refs.[82,84,86]). 

Note, that the MFIS and stress-strain tests made on the polyvariant Ni–Mn–Ga sample also support 

this principle. For instance, it was found in Refs.[59,72] that, experimentally, the maximum strain 

during compression of the polyvariant specimen is 2%, irrespective of whether magnetic or 

mechanical force was applied.  

The developed magnetoelastic model shows that the magnetoelastic coupling, assumed to be 

approximately the same in cubic and tetragonal phases, is responsible for the occurrence of 

magnetostress. The important issue is that the same value of magnetostress may result in different 

strains in the cubic and martensitic phases, giving rise to the ordinary magnetostriction in the former 

phase, and with ordinary magnetostriction superimposed on large MFIS in the latter. It becomes 

clear from the magnetoelastic model that both magnetostriction and large MFIS are caused by 

magnetoelastic energy Eq. 6 and only the magnetostrictive strain misfit between different 

components of elastic twins causes the twinning-detwinning cycle and the large MFIS. 
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Theoretical resume 

Origin of the magnetically induced stress. The magnetoelastic model states that the giant 

magnetically-induced deformation of Ni–Mn–Ga martensitic alloys originates from the large 

magnetostriction inherent to them. The model enables evaluation of both magnetostrictive elastic 

strain and magnetomechanical stress, which are strictly related to the elastic strain in accordance 

with Hooke's law. The results presented in Figs. 6 – 8 prove that the magnetostrictive elastic strain 

is sufficiently large for the accomplishment of the twinning/detwinning cycle in the experimental 

specimen. It should be emphasized, that these results may be reformulated in terms of 

magnetomechanical stress using Hook's law as expressed by the Eq.19. In contrast, all theoretical 

models, which disregard magnetoelastic interaction and deduce the magnetomechanical stress from 

the difference of the magnetic anisotropy energies as: 

 

ac

mKmK yuxumi

/1

22

)(

−

−
=σ ,     (20) 

 

are not self-consistent because: (i) in the absence of a magnetoelastic interaction, the 

magnetostrictive strain would be equal to zero so, according to Hooke's law, the stiffness coefficient 

of an alloy should be equal to infinity in order to provide the finite stress defined in accordance to 

Eq.20; (ii) the stress tends to infinity when (1− c a/  ) goes to zero; it means that Eq.20 is obviously 

not valid in this limit case. 

However, the magnetoelastic model "saves" relationship Eq.20 by establishing direct 

proportionality between Ku and (1− c a/ ) through Eq.8: in this case (1− c a/ ) vanishes from the 

formula. That's why this relationship is a reasonable guide for the interpretation of experimental 

results. For instance, the form of the magnetically induced stress function, which was determined in 

Ref.[91] by using both Eq.20 and experimental magnetization curves, is correct and close to the 

function presented in Fig. 5. 

 

Impossibility of a linear strain–field dependence. Magnetoelastic model proves that in the low-

field limit the magnetically-induced stress is a quadratic function of the magnetic field. This 

conclusion must certainly be highlighted in view of the numerous publications reporting the 

experimental observation or/and theoretical substantiation of the linear stress – field or strain – field 

relationships. For example, Eq.2 for magnetostrain given in Ref. [92] yields, in the low-field limit, 

the relationship: 

 

ε ε( ) / ( )H M H CS= 0 ,      (21) 

 

where MS is the saturation magnetization, C is the elastic modulus and ε0  is the MT strain. 

Obviously, the strain described by Eq.21 tends to infinity when ε0  tends to zero. Moreover, a linear 

dependence of giant magnetostrain cannot be correct in principle, because, in reality, the 

experimentally measured value of deformation is a diagonal component of a symmetric tensor. 

Should this component be linearly related to the magnetic field, it ought to have a form such 

asε yy y yB H= , where By  is a component of some vector, which is independent from the field value 

(see Fig.3). Let By  be positive, for the sake of definiteness. In this case, the magnetic field applied 

parallel to y-axis (H y > 0 ) would result in the elongation of the specimen in y-direction because 

ε yy > 0, while the field applied in the opposite direction (H y < 0 ) would result in the contraction of 

the specimen in the same direction, because in this case ε yy < 0 . However, this cannot be true for 

the giant magnetically induced deformation, because for both field directions, this deformation is 

caused by an increase of the volume fraction of the y-variant of martensite. This leads to the 
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contraction of the specimen in y direction as follows from Fig 3, where the twin structure with 

Ku > 0  and c a/ < 1 is depicted. 

It is to be concluded therefore, that the development of a self-consistent phenomenological 

theory of ferromagnetic shape memory effect is possible only with a proper regard to the 

fundamental principles of magnetoelasticity formulated, e.g., in Refs. [75,76]. 

Microscopic features of alloys exhibiting giant MFIS 

Naturally, the phenomenological magnetoelastic model is unable to describe directly the process of 

magnetoplastic yielding of martensite, or dynamic properties or micromechanics of FSMAs. These 

features are controlled by the twinning dislocations (disconnections) which are the elementary 

carriers of twin-boundary motion under magnetic field or mechanical force. The dislocation-type 

microscopic picture of MFIS has been developed by P. Müllner et al. in a number of publications 

(see, e.g., [35-37,72,86,93]). Alternative modeling of twin interfaces and their motion can be found 

in Refs.[94-96].  

Generally, twinning involves the shear  of specific crystallographic planes along specific 

crystallographic directions. The twinning is always directional in nature which is the main 

difference as compared to a slip. Fig. 9 shows a schematic of the yielding event due to detwinning 

caused by the mobile disconnection. 

 

 

Fig. 9. Schematic of twinning dislocation 

(disconnection) which moves along a twin 

boundary under shear stress, τ, and by virtue of its 
stepwise nature, the twin boundary moves in 

perpendicular direction thus increasing the volume 

fraction of the y-variant. The thick arrow points the 

direction of the disconnection movement. The 

coordinate system, two twin variants and the 

direction of magnetic field are the same as shown 

in Fig.3. For more details see text and Ref.[86]. 

 

The x-variant and y-variant are present in a rectangular prismatic sample having all the 100  faces 

in the cubic phase. These two variants are shown in Fig. 9 by shadings of different intensity. The 

crystallographic orientation of twins relative to the coordinate system is the same as in Fig. 3. In 

this configuration, the twin boundary is parallel to the {110} plane. In accordance to Eq.18, a 

magnetic field applied along y direction creates an equivalent compression stress along the same 

direction whereby the shear stress 2/)(eq

yyστ =  along the twin boundary is exerted. In the 

configuration shown in Fig. 9, the disconnection starts to move in the direction shown by the arrow 

when the shear stress becomes larger than some threshold value. By virtue of the stepwise nature of 

disconnections, the twin boundary moves in a perpendicular direction, thus increasing the volume 

fraction of the y-variant.  

Note that the microscopic features of the twin boundary motion just described are in line with 

the magnetoelastic model. For some more evidences and explanations, let us return to Fig.3. A 

magnetic field applied in y direction rotates the magnetic moment of the x-variant, thus deforms it 

due to magnetostriction, while leaving the y-variant undeformed and its magnetic moment 

unrotated. Therefore, the resultant lattice misfit between points A and B is estimated as 

ABAB

me

AB lll 4)( 10~ −≈∆ ε . Thus, the lattice misfit exceeds the value 10/c  (where c is lattice 

parameter) when the distance ABl  between points A and B (which are considered here as the pinning 

centers) satisfies inequality m 5.0~103 µclAB > . According to microscopic analysis of Ni–Mn–Ga 
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alloys (see, e.g.,[86,97]), the ends of twin boundaries can be pinned at the cores of twinning 

dislocations situated at the dislocation walls and the distance between the pinning centers may be of 

the order of 0.5 µm or even more. The dimensions of cores are of the order of the lattice parameter, 
and therefore, according to the Wechsler –Liberman – Read theory [85], the estimated lattice misfit 

induced by magnetostriction is sufficient for the rearrangement of twinning dislocations and the 

initiation of a detwinning process. 

The distance traveled by the twin boundary should be dependent not only on the applied stress, 

but also on the spatial distribution and the strength of the pinning centers. The experiment confirms 

these dependencies [98]. The pinning forces were introduced in the framework of theoretical 

models of MFIS [83,99]. The following "memorandum" concerning the general physical picture of 

magnetostrain effect can be found in Ref. [99]:  

i) the martensitic state, which exists in the alloy at zero magnetic field may be conventionally 

considered as the undeformed (and therefore unstressed) reference state; 

ii) a magnetic field application results in internal mechanical stressing of the reference state with 

the stresses being different for the differently oriented martensite variants, and therefore, a 

microstressed martensitic state arises; 

iii) quick partial relaxation of microstresses takes place due to the presence of mobile coherent 

interfaces, thus the quick magnetoelastic response arises; 

iv) the quick relaxation of the field-induced microstresses is not complete because of the 

imperfectness of the crystal lattice and the incoherent character of some interfaces; 

v) the thermal fluctuations of the residual microstresses result in the slow increase of the field-

induced strains up to saturation. 

The imperfection of the crystal lattice and resultant pinning of twin boundaries were described 

then in a phenomenological way by considering the jump-like displacements of twin boundaries and 

the statistically-distributed critical  stress values, which initiate these displacements [83]. The 

approach to a theoretical description of MFIS formulated in Ref. [83] is now referred to as the 

statistical model of the magnetostrain effect. This model enabled the qualitative description of 

MFIS in the mechanically loaded specimen [73,83] and an explanation of abrupt change of 

magnetization in the course of twinning-detwinning cycle [84].  

Basic idea (v) about the role of thermal fluctuations in the magnetostrain effect was 

essentially advanced in publications [100–104]. It was shown that thermal fluctuations of internal 

microstress: a) promote magnetically-induced deformation and cause its slow evolution under the 

stationary magnetic field [100–103]; b) contribute to the temperature dependence of MFIS [95,103]; 

c) manifest themselfs in the ultrasonic experiments with martensitic alloys [104]. 

Summary 

In the present paper, the magnetic properties of ferromagnetic shape-memory alloys and large MFIS 

produced by the magnetic field-induced twin rearrangement in the martensitic phase are considered. 

The magnetic/mechanical stress-induced conversion of one crystallographic twin variant into the 

other is accompanied by a strain, which is close in value to the spontaneous lattice distortion during 

martensitic transformation. In order to exhibit these effects on a macroscale, materials, such as Ni–

Mn–Ga ferromagnetic shape memory alloys, must have particular physical properties as the 

necessary prerequisites. Then, a sufficient condition is deduced from the balance of these properties. 

Generally, it can be said that the material must be easily-twinned and mechanically soft martensite 

with enhanced magnetoelastic interaction. In this context, a lattice instability, low-elastic shear 

modulus (~1 GPa) and low twinning stress (~1 MPa) of the high magnetostrictive crystal lattice 

( 4)( 10~ −meε ) can be considered as the necessary prerequisites of a large MFIS in Ni-Mn-Ga alloys. 

The sufficient condition of a large MFIS appears when magnetically-induced equivalent mechanical 

stress (magnetostress) exceeds by its magnitude the twinning stress. 

The main part of the present paper is devoted to the underlying physical mechanism of the 

magnetostress and giant MFIS in FSMAs. Thermodynamic considerations are used to remove an 
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apparent gap between the physics of ordinary magnetostriction and large MFIS. Some key 

experimental results obtained on the prototype Ni–Mn–Ga FSMA system are considered as a model 

to illustrate a correspondence with theory. 

A magnetostrictive mechanism of the unusual magnetic and magnetomechanical responses 

observed in the Ni–Mn–Ga alloys is substantiated by a proper using of fundamental concepts such 

as magnetoelasticity and the commonly known principles of the theory of ferromagnetism and 

linear elasticity. An agreement between the magnetostrictive mechanism and the crystallographic 

features of twin rearrangement is demonstrated.  
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