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Abstract

Economists often estimate models with a log-transformed dependent variable. The
results from the log-transformed model are often retransformed back to the unlogged scale.
Other studies have shown how to obtain consistent estimates on the origina scale but have
not provided variance equations for those estimates. In this paper, we derive the variance
for three estimates — the conditional mean of y, the slope of y, and the average slope of y
— on the retransformed scale. We then illustrate our proposed procedures with skewed
health expenditure data from a sample of Medicaid €eligible patients with severe mental
illness. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Economists often estimate models with a log-transformed dependent variable.
Justifications for using the log transformation include to deal with a dependent
variable badly skewed to the right, and to interpret a covariate as either an
elasticity or having a multiplicative response (Manning, 1998). The results from
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the log-transformed model are often retransformed back to the unlogged scale to
make inferences in the natural units of, say, dollars instead of log dollars. A
log-transformed model is often the second part of the two-part model of health
care expenditures when some individuals have zero expenditure (Duan et a.,
1983, 1984).

It is now well known that the retransformed estimate of either the conditional
mean or the effect of an independent variable on the dependent variable (the slope)
must adjust for the distribution of the error term and for heteroscedasticity
(Manning, 1998; Mullahy, 1998). Failure to account for the distribution of the
error term and heteroscedasticity may lead to substantially biased estimates of the
conditional mean and the slope on the original scale.

Many studies have carefully addressed the retransformation problem by ex-
plaining how inferences on the original scale may be biased, providing equations,
and illustrating with examples (e.g. Duan et al., 1983; Manning, 1998; Mullahy,
1998). However, these studies have not fully addressed the standard errors of the
estimates. Like any other estimates, the estimates on the origina scale of the
conditional mean and the slope are cal culated with uncertainty. Without computing
the correct standard errors, it would be easy to draw incorrect inferences about the
effect of an independent variable on the dependent variable. When testing theory
on the raw scale, the statistical significance of the corresponding parameter is not
always a good guide. An insignificant variable on the log scale can till have a
significant effect on the raw scale, for example if there is heteroscedasticity. A
significant variable on the log scale, on the other hand, may be insignificant on the
raw scale. Significance on the raw scale depends on retransforming both the
predicted value and heteroscedasticity, and these two effects may offset each
other. Theory on the raw scale must be tested on the raw scale, and to test theory
one must have standard errors or confidence intervals. Like the estimates them-
selves, the standard errors require special equations that take into account both the
distribution of the error term and the heteroscedasticity. We are not aware of any
published formulas for computing the standard error of estimates based on the
retransformed data (see Manning (1998) for estimates of the variance of the
smearing estimate and the raw scale mean of y using the smearing estimator).

We derive the variance of three estimates based on results from a log
transformed model retransformed back to the original scale: the conditional mean
of y, the dope of y, and the average sope of y, where y is the unlogged
dependent variable. The variance can then be used to construct standard errors.
Because construction of confidence intervals requires the central limit theorem to
provide the asymptotic normal approximation to the sampling distribution, and the
normal approximation may not be accurate for a finite sample size, we focus on
the standard errors. We derive variance formulas for normal linear, normal
nonlinear, and nonparametric models, al with possible heteroscedasticity. The
formulas are easy to implement in standard software packages, and a sample
program in Stata is available upon request. We illustrate with skewed health
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expenditure data from a sample of Medicaid eligible patients with severe mental
illness. We derive formulas for the log transformation because it is by far the most
common in the literature. Researchers should read the literature and investigate the
data empirically to decide whether the log transformation is most appropriate for
their data (Jones and Yen, 1999; Manning and Mullahy, 1999).

2. Framework and methods

Before deriving the variance formulas for the most general case, we start with
the familiar normal linear model for a log-transformed dependent variable. The
normal linear model provides intuition for the more general models, and is the
model that is most often estimated by applied economists. Then we extend the
model to the nonlinear case, which involves only a dlight modification, before
presenting the nonparametric model. The nonparametric model has the normal
linear and nonlinear models as specia cases, and we relate it to Duan’s (1983)
smearing estimator.

2.1. Model and notation

We start by introducing the general model and notation. Assume that the
logarithm of the original dependent variable y is a(possibly nonlinear) function of
K explanatory variables X, including a constant, and a vector of unknown
parameters B. The model for a single observation (we suppress the subscript i)
can be written as

In(y) =h(x,B) + ¢,

where ¢ is an additive error term. We assume that no regressor can be expressed
as a linear or nonlinear function of the other regressors, eg. there are no
higher-order or interaction terms. This assumption is not as restrictive as it appears
since it can always be satisfied by redefining the function h. For example, if x
includes a constant, income, and income squared, then the function h(x, 8) can be
redefined as a function of a constant and income. The error term ¢ is the product
of two elements

e=vys(X,a)

where v is assumed to be independent of x and has zero mean and unit variance,
the function s(-) allows for heteroscedasticity conditional on x, and « is avector
of unknown parameters. The first part of the paper assumes that v has a normal
distribution, but later this assumption is dropped.
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We are interested in three estimands based on the unlogged dependent variable
y. The first is the mean of y conditional on x. This is the predicted value of the
raw dependent variable for one specific x. The second is the derivative (local
dope) of the mean with respect to one continuous explanatory variable x*
conditional on x, where x¥ denotes the kth element of x. Thisis the change in the
predicted value for a change in one independent variable, for one specific x. The
third estimand depends on whether the regressors are treated as nonrandom or
random. If the regressors are nonrandom, the third estimand is the simple average
slope over al observations. If the regressors are random the third estimand is the
average slope over the parent distribution of the regressors.

We introduce the notation that u(x) isthe mean of y conditional on x and that
0, and 6, denote the two average slopes. This notation will simplify later
formulas. The function also depends on the true values of B and «, but these
arguments will be suppressed for exposition. The estimands are as follows.

+ Mean of y conditional on x

m(x) =E[ylx],
- Slope of mean with respect to x*

ou(x)  OE[yIX]
axk  axk

- Average slope (two versions)

1 N oou(x
for nonrandom x: 6, = — a k')
N, = 0x
ou( X
forrandom x: 0, =E %

2.2. Normal linear model

To present the intuition behind our procedures, we begin with the simple
normal linear model. The assumption of linearity implies that h(x,8) = xB and
s(x,a) = Xa. Note that because elements of x are functionally independent, the
functions h(x,8) and s(x,a ) are not only linear in the parameters but also linear
in the regressors. This distinction becomes important when taking derivatives. If
either h(x,B) or s(x,a) is linear in parameters but nonlinear in regressors (e.g.
higher-order or interaction terms), then the total derivative with respect to x*
involves multiple terms. The assumption of a linear variance is made only for
illustration; an estimated linear variance could be negative. The reader will want to
use the more general model presented later. The choice of model specification for
the variance function is not aways clear. One way to choose between two
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nonnested models is to use the J-test for linear specifications, and the P, test for
nonlinear specifications (see Greene, 2000, pp. 302 and 441).

Consistent estimates for the slope and the average dope for a model nonlinear
in the regressors can be obtained using the formulas in Section 2.3. We aso
assume that the random variable v has a standard norma distribution. The
assumption of normality is attractive because: (1) it is often assumed in the
literature, and (2) the retransformed estimands are simple to derive (Manning,
1998, pp. 285-287).

Under the assumptions of linearity and normality the first two estimands for
fixed x are

M( X) — E[ y| X] — eX’BJrO.SX'a’

du( X)
oxk

= ( B+ 0.5ay) u( X),

where the subscript k refers to the kth component of the parameter vector.
Estimate the three estimands by replacing B and a with consistent estimates. To
estimate e, regress the squared residuals from the ordinary least squares model on
X, then multiply x by the estimated parameter vector @ . Then the estimated mean
of y conditional on x is the exponentiated predicted value of y, with a correction
for the variance of the normal error term

A(x) = eX B+05xa

The estimated slope with respect to one continuous variable x* is the mean
multiplied by the sum of two terms. The following is similar to Manning’s (1998)
Eq. (7), but we assume a particular form of the heteroscedasticity, namely
s(x,&) =Xa, so the dope is

% X)

oxk ( B+ 0-5&k)ﬁ( X).

Finally, both versions of the third estimand are estimated by the sample average of
the slope over all observations because the expectation is usually approximated by
the sample average, leading to

~ o~ 1 Nau(x)
1= 2=N K

-1 0X

Under standard regularity conditions, the least squares estimator ﬁ is normally
distributed. It is less well known, however, that the least squares estimator @ is
asymptotically normally distributed. In the case of homoscedastic errors a is
estimated by the sample variance which has a chi-square distribution with degrees
of freedom depending on the sample size N. The chi-square distribution with
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many degrees of freedom looks like a normal distribution and so can be approxi-
mated by a normal distribution when sample size goes to infinity. Hence, the
parameter estimator & is asymptotically normally distributed. Moreover, 8 and a
are independent. Thus, applying the delta method gives the scalar variance of these
three estimands

ou(X) . (%) du(x) . ou(X)
(X = g 2 g +( o oa ) (1)
Op(x) . %u(x) Ou(x) L (%)
wa( X) = ax<op’ TP apaxk (axkaa' “aaaxk)’ (2)
1N o%u(x) 1N o%u(x)
@k ﬁEl ax o’ ) "(Ni_zl 9B~ ))
1N o%u(x) 1N o%u(x)
" NE‘l ax¥o ')2“ Nizzl da X" ) G)
| (%) 07( x)
ou= | Bl 5xkop” | X2 E| Spaxk )
07u( x) ( X)
+(E axa’ | 7% 7| dadxX i (4)

where the terms with du(x) in the numerator are first partial derivatives, the terms
with 92u(x) in the numerator are second partial derivatives, and 3, and X, ae
the heteroscedasticity consistent covariance matrices for B and «, respectively.
The White heteroscedasticity consistent estimator can be found in Greene (2000,
p. 463) and can be computed by most regression packages. The third term of Eq.
(4), %, isthe sample variance of du(x;)/dx* divided by N. This term is needed
because we use the sample average to estimate the average slope over the parent
distribution of the regressors.

Before describing how to estimate these in practice, we first note severa
features of these variances. Each variance is a scalar. Each variance is the sum of
two (or three) parts; the first part corresponds to the retransformation of the
predicted value of In(y), and the second part corresponds to the retransformation
of the error term with estimated heteroscedasticity. Each of the first two partsis a
sandwich estimator.

In summary, the computation of the estimated variance for the normal linear
model requires four steps. Estimate the model on the log scale, estimate the form
of heteroscedasticity, compute severa derivatives (the hardest step), and plug the
MLE estimates for the variance-covariance matrices into Egs. (1)—(4).
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Step I: Apply ordinary least squares to the logarithm of y; on x;. Compute the
scalar predicted value X8 for some fixed x. Save the heteroscedasticity-consistent
covariance matrix as X . Save the residuas & 8., and square them.

Step 11: Apply ordinary least squaresto &7 on x;. Compute the scalar predicted
value xa for some fixed x. Save the heteroscedastlcny consistent covariance
matrix as X, .

Step 111: Compute a(x), and the first derivatives of a(x) with respect to 8,
a, and X, and their cross partial derivatives either numerically or analytically (see
Appendix A for formulas). To estimate 3,, compute the sample variance of
af(x;)/axk

Step 1V: Plug the estimated values from Step Il into Egs. (1)—(4). The
equation for &,(x) simplifiesto @,(x) = (X%, x+ 0.25x'X, x)a*(x), although
the other equations do not simplify.

2.3. Normal nonlinear model

Next we extend the linear results to nonlinear models but maintain the
normality assumption. There are three ways the nonlinear model is a generaliza
tion of the linear model. First, the nonlinear model alows nonlinearity in
regressors. In our notation, the linear specification excludes squared and interac-
tion terms which are commonly used in the empirical economic literature.
Although sgquared and interaction terms can be estimated using ordinary least
sguares, such a specification has more complex derivatives than the simple linear
model, so is included in this section. Second, the nonlinear model allows for
arbitrary nonlinear functions of the dependent variable to be estimated by least
squares. Third, the linear specification of the variance of the error (s(x,a&) = X&)
could allow a negative estimate, which is clearly impossible for the variance itself.
The nonlinear specification such as e¥* guarantees that the estimated variance
will always be positive. In addition one may wish to include higher-order and
interaction terms in the variance function.

The parameter estimates B and @ now can be obtained by nonlinear least
squares regressions, or by ordinary least squares if h(x,8) and s(x,a) are linear
in the parameters. The parameter estimates B and a are now asymptotically
independent and normally distributed (see Appendix A for aformal proof). Hence,
Egs. (1)—(4) are till valid. Despite these changes, the four steps for computing the
three estimands and their respective standard errors are nearly the same as before
except that the derivatives are more complicated.

Step I: Apply nonlinear least squares, or ordinary least squares if h(x,B) is
linear in the parameters, to the logarithm of 'y, on h(x;, ). Compute the scalar
predicted value h(x,3) for some fixed x. Save the heteroscedasticity-consistent
covariance matrix as X . Save the residuals &, and sguare them.

Step 11: Apply nonlinear least squares, or ordinary least squares if s(x,a) is
linear in the parameters, to &7 on s(x;,a). Compute the scalar predicted value
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s(x, @) for some fixed x. Save the heteroscedasticity-consistent covariance matrix
as,.

Step I11: Compute (), and the first derivatives of 4(x) of with respect to 8,
a, and x, and their cross partial derivatives either numerically or analytically (see
Appendix A for formulas). To estimate 3, compute the sample average of
A x,)/oxk,

Step IV: Plug the estimated values from Step 111 into Egs. (1)—(4)

2.4. Nonparametric model with homoscedasticity

The normal linear and nonlinear models both assume that the distribution of the
error term is known and normal. In practice, the distribution of the error term is
often not known and not normal. If the distribution of the error term is not normal,
then the normal linear and nonlinear models will give biased parameter estimates
of E[y|x], although the models are still consistent for E[In(y | x)]. This section
extends the results of Section 2.2 to the case where the distribution of v is not
known but the error is homoscedastic, and Section 2.5 has the most general model
that is both heteroscedastic and nonparametric.

When the error is not normal, then the conditional mean of y on the natural
scale is the exponentiated predicted value of y multiplied by a smearing factor
adjusted for heteroscedasticity

u(x) =E[yIx] =e"*PD(x,a).

where D(x,a) = E[e*V¥*%) | x] is the smearing factor. The smearing factor was
originally proposed by Duan (1983) to adjust for the retransformation of an error
term with unknown distribution in the case of homoscedasticity, and extended by
Manning (1998) to the case of heteroscedasticity by groups.

Before analyzing the general case with heteroscedasticity, we analyze the case
of an error term with unknown distribution under homoscedasticity. If S(x,a) =
(i.e. S(+) does not depend on x so the error term is homoscedastic) then the
smearing factor simplifies to the one proposed by Duan (1983). In the ho-
moscedasticity case considered by Duan, the smearing factor is estimated by
N-1Xe®, where &, is the least squares regression residual. The three estimands
are simpler under homoscedasticity than under heteroscedasticity because the
derivative of the heteroscedasticity term disappears. The estimated first two
estimands for the nonparametric model with homoscedasticity are

(1N
[L(X)=eh(x,ﬁ) — Y e,
N

op(x)

oh x,ﬁ
axk I“L(X (—k)

X
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The first version of the third estimand is estimated by
ah( X; ,B)

N
§ A ax<

The second version of the third estimand can be estimated in the same way as the
first version. However, due to the presence of the estimated smearing factor, the
computation of the variance is complicated by the randomness of the regressors.
To simplify the computation, we present an equivalent version of 6,. By manipu-
lating expectations, we have

y(ah(x,ﬁ) L ds(xa) ”

0,=E axX VT XK

When the errors are homoscedastic, S(x, a) does not depend on X, so we estimate
0, by

~ 1N
92:_23"
N/

Removing the normality assumption creates three complications in the compu-
tation of the variances of the three estimands. First, the smearing factor cannot be
computed analytically. Instead, it must be estimated by the sample average. The
sample average introduces a variance term of its own which must be accounted for
when computing the variances of the three estimands.

The other two complications are best understood by examining the Taylor-series
expansion of the smearing factor to the first-order term

1N : L1 N ah(xl,B)) }

- = _Yei— — esi| — 77

2 i e (O
The second compllcatlon comes in the second term of the expansion, which
obviously depends on the parameter estimates B. This dependency must be
accounted for when computing the derivatives with respect to B. The third
complication is that the smearing factor is a sample average, so the estimated
smearing factor (the first term of the expansion) is a function of the residuals
which may be correlated with the parameter estimates. The covariance must also
be accounted for when computing the variances of the three estimands.

Under homoscedasticity, the variances of the three estimands are:

A

oh(x.B)

ou(x) _ (X)) [ 3(x)

wy(X) = MB Ep l’;)ﬂ lgB ElDB + oo (%)
w(x) . 0%u(x) 0% ( X)

wy(X) = ax*oB’ P aBox oxop’ 2203 + 3500, (6)
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i)

N, ax*op’ N, IBIXX
1N 0%u(x)
+2 N§1W ESDB+23DD’ (7)
J
0% ( X) () 0% ( X)
=|E|——|34E 2| E +3, (8
Ca axvap’ |70 & agaxt axop’ | See| T (O

where X, is the covariance between the sample average of exp(h(x,B) + &)
and B, 35 isthe sample variance of exp(h(x,8) + &;), 3,5 isthe covariance
between the sample average of and exp(h(x,B) + &)@h(x,8)/0x¥) and B,
3,00 is the sample variance of exp(h(x,B) + £)@h(x,B)/9xY), X4, is
the covariance between the sample average of N™'Y exp(h(x;,B) + &)
(9h(x;,B)/3x*) and B, 355, is the sample variance of N™'L,exp(h(x;, B) +
£)0h(x;, B)/9x"), 3 s isthe covariance between the sample average y;(oh(x;,
B)/9x*) and B, and 3, is the sample variance of y,(8h(x;, B)/9x").

To estimate the variances, simply replace those derivatives by their estimates.
The proposed procedure is described as follows.

Step I: Apply nonlinear least squares, or ordinary least squares if h(x,B) is
linear in the parameters, to the logarithm of y, on h(x;, ). Compute the scalar
predicted value h(x,B) for some fixed x. Save the heteroscedasticity-consistent
covariance matrix as X . Save the residuals &;, but do not square them. (The only
difference with Step | of Section 2.3 is that the residuals are not squared.)

Step 11: This step is not needed because 3, = 0.

Step 111: Compute a(x), and the first derivatives of @(x) with respect to B8
and x, and their cross partial derivatives either numerically or analytically. To
estimate the vectors 55, 3555, 23pg, ad 3,5, run smple regressions and
save the regression coefficients. To estimate the variances 3,55, 3,00, 2app, and
3, compute the sample variances and divide by N (see Appendix A for all
formulas).

Step IV: Plug the estimated values from Step 111 into Eqgs. (5)—(8).

2.5. Nonparametric model with heteroscedasticity

In the more general case where the variance depends on regressors, the
smearing factor is estimated by the simple sample average N"1XN  elivsix.d),
where v, =&,/ys( x;,a) is the estimate of the standardized residuals. The
exponent does not simplify to 2, because s(x,&) is a scalar evauated a the
conditional x, while s(x,,a) takes on a different value for each observation i.

The estimated smearing factor now depends on both parameter estimates 8 and
a. These dependencies must be accounted for when taking derivatives with
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respect to B and «. To simplify later notation, define g,(x,B8,a) to be the
unbiased predicted value of w(x) based on x; and q,( B, ) to be the unbiased
estimate of the average slope

Gi( X, B, @) = eN0B )= hOxiB))/ /0 ) stxia)

oh(x;,B8) +058Ins( xl,a)
axk '

qi(B!a):yi (Inyl_h(XI’B))

The three estimands are

The heteroscedastic nonparametric model has two further complications. First,
in the normal model the covariance between B and & is zero. However, in the
nonparametric model, B and @ are neither independent nor uncorrelated. Second,
the covariances between the smearing factor and the parameter estimates 8 and &
are not zero. Thus, the formulas for the variances include additional terms for the
covariances between B and a, the functions g and g and their derivatives.

C(o(%) . op(x) ap(x) . ou(x)
wl( X) = aﬂ’ B B + ( a’ Ea o )
ou(x) . ou(x) au( ) o (%)
B T T ot 2
X3 ipat 2ipps (9)
oy TR0 () w(x) (X
ka( ) = axkaﬁ’ B aBan Ix*a’ T dadxX
82:U«( X) 82;1,( X) ( X) M( X)
2 axkap’ ~P* dadx" axkaﬁ o0 25 ar

XZZDa+22DD’ (10)
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1 (%) 1 N (%)
(”3k_[ NEl axkoB’ NE‘l aBoIx
1N o) 1N o)
+[ NE’ ax o ) « NE’l dadxX }

1N a,u(x) 1N aZM(xj)
2 N Z axkap )2 (NEl dadxX
1 N ou(x) (%))
+2 Z anaﬂ EBDB N Z axka ' EBDa+23DD’
(11)
0% ( X) () 07u( X) 0% ( X)
wy=|E|——— ——— || + | E|—— |2 E| ——
axkoB’ | 7P 7| apoxk ax oa’ dadx"
07 07 07
o B 0 o] P
] dadX oxXop
0% ( X) s 45
+ 2E W qa+ n (12)

where ¥, is the covariance between the sample average of g,(x,8,a) and B,
3 0. isthe covariance between the sample average of g;(x,8,a) and &, 3,p
is the sample variance of g(x B.a), 3 5 IS the covariance between the sample
average of 3g,(x, B, a)/x* and B, Z2Da is the covariance between the sample
average of 0g,(x,B8,a)/0x* and a, 3,5, is the sample variance of
0g,(x, B, @) /3x*, X4, and ESD are the covariances between the sample
average of N~ 12 ag(xj,ﬁ a)/ax and B and &, 3.pp 1S the sample variance
of N"1Y. ;00 (x],ﬁ a)/ax 3,p is the covariance between the sample average
of q(B, a) ad B, ¥, is the covariance between the sample average of
q(B,a)and &, and 3, is the sample variance of q,( B8, a).

Step I: Apply nonlinear least squares, or ordinary least squares if h(x,B) is
linear in the parameters, to the logarithm of y; on h(x;, ). Compute the scalar
predicted vaue h(x, ﬁ)for some fixed X. Save the heteroscedasticity-consistent
covariance matrix as % z. Save the residuals &;, but do not square them (same as
Section 2.4.).

Step I1: Apply nonlinear least squares, or ordinary least squares if s(x,a) is
linear in the parameters, to &2 on s(x;,a). Compute the scalar predicted value
s(x,a) for some fixed x. Save the heteroscedasticity-consistent covariance matrix
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as 3. Save the residuals as 7, (the only difference with Step 1l in Section 2.3 is
the addition of the last step). ~

Step 111: Compute n(x) and its derivatives using the function §(x,8,a). To
estimate the vectors Y55, Yip,, 2o0p: 2 opar Yappr Y30ar >qpr A X,
run simple regressions and save the regression coefficients. To estimate the
variances 35p, 3opp, 23pp, and 3, compute the sample variances and divide
by N (see Appendix A for al formulas). Estimate 3;, using the formula in
Appendix A.

Step 1V: Plug the estimated values from Step 111 into Egs. (9)—(12).

2.6. Bootstrapping

Bootstrapping is an alternative method of computing variances. The bootstrap-
ping method has two advantages compared to the delta methods — it gives a
better approximation to the finite sample distribution in small samples and it does
not require computing derivatives. So far, we have relied on the large sample
approximation to the finite sample distribution of three estimands to compute
confidence intervals. It is well documented that the asymptotic distribution may be
a poor approximation to the finite sample distribution when the sample size is
small. Even if the asymptotic distribution is a good approximation, the analytical
method requires computing many first and second partial derivatives, which can be
more complicated and error-prone than bootstrapping.

The disadvantage of bootstrapping is that it is very costly in terms of computer
time when nonlinear least squares estimation is involved. A rule of thumb is that it
takes about 500 iterations to estimate standard errors, which may be extremely
time-consuming and even more if nonnormality is suspected. The choice between
bootstrap and formula to compute the standard errors depends on the data set and
the model. The important thing is to compute the standard errors.

3. Empirical example
3.1. Data

We illustrate the methods by analyzing Massachusetts Medicaid data, which
were collected by the Massachusetts Division of Medical Assistance. The Medi-
caid data set includes information on all Massachusetts Medicaid claims from
fiscal years 1991 and 1992. We limited the sample to the 9863 persons who were
diagnosed with a severe mental illness and had at least one Medicaid claim in both
years.

The dependent variable is the logarithm of total expenditures, which includes
inpatient, outpatient, and pharmacy. The mean expenditure was just over
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Table 1

Summary statistics for data on mental health care (N = 9863)

Variable Minimum Mean Maximum  Standard deviation  Skewness
Dependent variables

Expenditures 5 16,031 273,949 24,440 3.45
In(Expenditures) 155 8.80 12.52 142 -0.19
Prior health care use

Lagged expenditures 2 15,364 334,725 24,686 413
In(Lagged expenditures)  0.78 8.75 12.72 141 —-0.14
Demographics

Age 18.0 411 64.0 11.7

Male 0 0.415 1 0.493
African-American 0 0.077 1 0.267

Hispanic 0 0.020 1 0.139

White 0 0.903 1 0.295

Health status

Schizophrenia 0 0.537 1 0.499

Major affective disorder 0 0.412 1 0.492

Other psychoses 0 0.050 1 0.218

Substance abuse 0 0.100 1 0.301

US$16,000, but ranged from essentially zero to US$274,000 (see Table 1). One of
the explanatory variables of interest was lagged expenditures, which had a similar
distribution. Taking the logarithm of the dependent variable removed much of the
skewness, athough the skewness is negative and significantly different than zero.

We also controlled for the standard demographic characteristics and health
status. The patient population was 41.5% male, 89.5% white, 7.7% black, and 2%
other race. The mean age was 41 years, and ranged from 18 to 64. All of the
patients in the sample had one of the following diagnoses during the year:
schizophrenia (53.7%), major affective disorder (41.3%), or other psychoses
(5.0%). Schizophreniais considered the most serious of these conditions, followed
by major affective disorder and other psychoses. Substance abuse is a comorbidity
strongly associated with mental health problems. Ten percent of our sample have a
substance use comorbidity.

3.2. Results

The regression results are for illustrative purposes only. We treat the indepen-
dent variables x as random because the experiment is not controlled. Also,
because the sample is relatively large, we believe that the normal distribution is a
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good approximation to the finite sample distribution of the three estimands, and
therefore do not report bootstrapping results. If the sample were relatively small,
then the assumption of the norma distribution would be questionable, and
bootstrapping would be preferred.

The results show, not surprisingly for this population with chronic disease, that
logged annual health care expenditures are higher when lagged expenditures are
higher (see Table 2). Expenditures are also higher for persons who are younger,
female, white, schizophrenic, and have substance abuse comorbidity, results that
are consistent with the literature. The heteroscedasticity regression, which predicts
the squared residuals, has a low adjusted R?, but the estimated parameters of most
of the explanatory variables are statistically significant. The LM form of the White
(1980) heteroscedasticity test, which regresses the squared estimated error term on
the independent variables and their squares and interaction terms, is 106.5, leading
to rejection of the null hypothesis of homoscedasticity (see second column of
Table 2). For this example, we do not include squared terms or interaction terms,
but it would be straightforward to do so. The results are shown for specific values
of x, namely a 40-year-old white female with schizophrenia and no substance
abuse comorbidity. The derivatives with respect to x* are for the continuous
variable age.

Table 2

Regression results for linear model to predict logged health care expenditures

Variable OLS: In(Expenditure) OLS: &2

Constant 3.39(0.11)" * 2.23(0.26)* *
Prior health care use

In(Lagged expenditures) 0.6421 (0.0097) " * —0.077(0.026) " *
Demographics

Age —0.00374 (0.00096) * * —0.0123 (0.0020) * *
Mae —0.105(0.023)* * 0.129(0.049) " *
African-American —0.055 (0.045) 0.333(0.095) " *
Hispanic —0.133(0.064) * —0.315(0.098) " *
Health status

Major affective disorder —0.126 (0.022)* * —0.056 (0.047)
Other psychoses —0.132(0.056) * 0.25(0.13)
Substance abuse 0.542 (0.035)* * —0.108 (0.068)

N 9863 9863

Adjusted R? 0.45 0.01

The reference category is a white female with schizophrenia and no substance abuse comorbidity.
Robust standard errors are corrected for heteroscedasticity using Huber—White robust standard errors.
" Statistically significant at the 5% level.
“ " Statistically significant at the 1% level.
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Table 3
Computation of the conditional mean of y, the slope of vy, the average slope of y, and their standard
errors for the normal linear model

Assume hetero- Estimate Standard error

scedasticity
f(x)=E[y| x] No 11,884 264

Yes 11,667 314
af(x)/axk =dE[y| x]/ax¥ No —445 117

Yes —115.4 171
E[0f(x)/ax*]= E[0E[ y| x]/9xK] No —66.6 24.6

Yes —170.6 245

Calculations are for a 40-year-old white female with schizophrenia and no substance abuse comorbid-
ity. Derivatives are with respect to age.

The three estimands are calculated both with and without the assumption of
heteroscedasticity to show the importance of controlling for it in the normal linear
model (see Table 3). The results show standard errors that are relatively small
when compared to the magnitude of the three estimates. The estimated expendi-
tures are dightly less than US$12,000, with a standard error of US$264 under
homoscedasticity. The slope and the average slope in particular are quite different
in their point estimates. For example, under homoscedasticity an increase in age
from 40 to 41 for the base-case person would decrease expected expenditures by
US$44.50, but under heteroscedasticity it would decrease by US$115.40. In our
example, the estimates of the slope and average slope are biased towards zero

Table 4
Computation of the conditional mean of y, the slope of v, the average slope of y, and their standard
errors for the nonparametric model

Assume hetero- Estimate Standard error

scedasticity
f(x)=Elyl x] No 12,296 327

Yes 12,044 300
of(x)/axk =0E[y| x]/axX No —46.0 12.0

Yes —131.1 16.9
E[0f(x)/0x¥]= E[E[ y| x]/9x] No —-60.6 155

Yes —144.9 20.2

Calculations are for a 40-year-old white female with schizophrenia and no substance abuse comorbid-
ity. Derivatives are with respect to age.
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when heteroscedasticity is ignored, and the bias is large enough that the estimate
without controlling for heteroscedasticity falls outside of the 95% confidence
interval. This example shows the importance of controlling for heteroscedasticity
both in the point estimate and in the standard error.

The three estimands are also calculated for the nonparametric model (see Table
4). The pattern of results is similar. Controlling for heteroscedasticity is clearly
important for both the point estimates and the standard errors. The point estimates
for the slope and average slope are much larger in absolute value after controlling
for heteroscedasticity. The standard errors for al three stastistics are quite different
after controlling for heteroscedasticity, and in two of the cases are larger.

In this example, however, the difference between the results for the normal and
nonparametric models is small. Comparisons between Tables 3 and 4 show
qualitatively similar results. In our example, the residuals are approximately
normal, so the nonparametric model is not different from the normal model. In
other data sets, however, the nonparametric model may be more appropriate and
could give quite different results.

4. Conclusion

The use of the log-transformed dependent variable in applied economics creates
a potential bias when computing estimates of E[ y|x] on the original scale, if the
error term either does not have a normal distribution or is heteroscedastic.
Estimates on the origina scale should be reported with standard errors, like all
estimated values. One reason that the calculation of standard errors is not common
is that the equations are not commonly known. This paper provides equations for
the general case of error terms that have any distribution and are heteroscedastic,
as well as for ssimpler cases. Another reason is that computing the standard errors
is not automatically done in software. The authors will provide sample programs
in Stata to compute the standard errors upon request.
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Appendix A

A.1l. Formulas for the normal linear model

For the normal linear model the formulas for Step Il are:

a(x) = ex'ﬁ+ 0.5X &
B
€
om(x) .
a—Xk = ,LL( X)( Bk + 0.5ak)
ou(x)
B = (X)X
(X
Ma(a ) =0.5a(x)x
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apoxk
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axk
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A.2. Formulas for the normal nonlinear model
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position
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vector

vector
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vector

vector, simple average

vector, simple average

For the normal nonlinear model the formulas for Step 111 are:
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A.3. Formulas for the nonparametric model with homoscedasticity

For the nonparametric model with homoscedasticity the formulas for Step 111

are:

0%
) o

ah( xﬁ)

hx B 1
—e (X,B) _
B N,

) vector

The second term in the first derivative above arises from the fact that the
residuals &, are estimated and hence depend on the parameter estimate 3.

(X)) - h(x,B) (%) dh(x,B)
axkopg M ax o B oxK
Jou(x)] 1N 9%h(x.B)

ax o _Niglyi ax o vedtor

vector

Four of the 3’s are estimated by running a simple regression, saving the vector
of regression coefficients, and dividing them by N. The part of the dependent
variable that is not & or 1, must have its mean subtracted before multiplying by

the estimated error.

Estimated
coefficients

A

ElDﬂ

A

ZZD[}
Zaop

Zﬂ-ﬁ

Dependent variable

exp(h(x,B) + &) X &,
exp(h(x,B) + &)

X oh(x, B)/dx* x 2
[N~1Z exp(h(x;, B) + &)
xoh (x;,B)/0x] X 8,

y, X [oh(x;, B)/dx¥] X &,

Independent
variable

ah( Xi!ﬁ)/aﬁ
ah( xi,ﬁ)/aﬁ

oh(x;,B)/B

ah( Xi!ﬁ)/aﬁ
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Four of the 3’s are estimated by computing the sample variance divided by N
(scalar).

Estimated variance Sample variance of

%DD exp(h(x,B) + &)

3500 exp(h(x, B) + &)@h(x, B),/8x%)

2300 N~Z,exp(h(x;, B) + &) X ah(x;, B) /X
3, y,(0h(x,, B)/3x)

A.4. Formulas for the nonparametric model with heteroscedasticity

For the nonparametric model with heteroscedasticity the formulas for Step 11
are:

) 1 Noag(x.B.a
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Eight of the 3’'s are estimated by running a simple regression, saving the
vector of regression coefficients, and dividing them by N. The part of the
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dependent variable that is not & or 7, must have its mean subtracted before
multiplying by the estimated error.

Estimated Dependent variable Independent
coefficient variable
2108 9(x.B,&)x 3 oh(x,,B)/2B
3 i0a 9(xB,&) X7 0s(x,, &) /dex
3o (0g,(x,B,&)/0x¥) X & oh(x.,B)/0B
3o (g, (x, B,&)/0x¥) X 7, (%, &) /e
Saog (N"12,00,(x;, B,&),/0x¥) x 3, on(x,,B)/0B
3 iou (N"1Z,00,(x;, B,&)/3x9) X 7 0s(x, &),/ da
ﬁqp qi(ﬁ-&)xg‘i ah(Xi,ﬁ)/GB
S G(B.&) X 7, 0s(x., &) /dex

Four of the s are estimated by computing the sample variance divided by N
(scalar).

Estimated variance Sample variance of

S1DD gi(xaﬁv&)

2500 ag,(x, B, @) /x"

300 Nilzjagi(xjﬁv&)/axk
Z.U« ql(ﬁla)

A.5. Proof of asymptotic independence

Let ﬁ denote the least squares estimator of the regression
In(y;)) =h(x,B) + & i=12,...,N.

Then applying a Taylor expansion, we obtain

iog % oh(x;,B8) ah(x;,B)) N ah(x,,B)

i-1 B p’ i—1
See Amemiya (1985) for a derivation. Let & denote the least squares residuals.
Note that

&+ 0,(N7%9).

E[£21x] =s(x, ).
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We can write
gl =s(x, @)+

where n, is the error term. Let & denote the least squares estimator from
g=s(x,a)+n

Applying the first-order Taylor series approxi mation, we obtain

N ds( x;,a) 9s( X, a) N as(x,,a)
v — = .+ 0,(N709),
a—«o ] o v’ g, i p( )

Note that the covariance between B and & depends on Elemn |x]=Ele*n x]
For normal &;, E[£2|x,]= 0, implying that B and & are asymptotically indepen-
dent.
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