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Abstract

Economists often estimate models with a log-transformed dependent variable. The
results from the log-transformed model are often retransformed back to the unlogged scale.
Other studies have shown how to obtain consistent estimates on the original scale but have
not provided variance equations for those estimates. In this paper, we derive the variance
for three estimates — the conditional mean of y, the slope of y, and the average slope of y
— on the retransformed scale. We then illustrate our proposed procedures with skewed
health expenditure data from a sample of Medicaid eligible patients with severe mental
illness. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Economists often estimate models with a log-transformed dependent variable.
Justifications for using the log transformation include to deal with a dependent
variable badly skewed to the right, and to interpret a covariate as either an

Ž .elasticity or having a multiplicative response Manning, 1998 . The results from
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the log-transformed model are often retransformed back to the unlogged scale to
make inferences in the natural units of, say, dollars instead of log dollars. A
log-transformed model is often the second part of the two-part model of health

Žcare expenditures when some individuals have zero expenditure Duan et al.,
.1983, 1984 .

It is now well known that the retransformed estimate of either the conditional
Ž .mean or the effect of an independent variable on the dependent variable the slope

must adjust for the distribution of the error term and for heteroscedasticity
Ž .Manning, 1998; Mullahy, 1998 . Failure to account for the distribution of the
error term and heteroscedasticity may lead to substantially biased estimates of the
conditional mean and the slope on the original scale.

Many studies have carefully addressed the retransformation problem by ex-
plaining how inferences on the original scale may be biased, providing equations,

Žand illustrating with examples e.g. Duan et al., 1983; Manning, 1998; Mullahy,
.1998 . However, these studies have not fully addressed the standard errors of the

estimates. Like any other estimates, the estimates on the original scale of the
conditional mean and the slope are calculated with uncertainty. Without computing
the correct standard errors, it would be easy to draw incorrect inferences about the
effect of an independent variable on the dependent variable. When testing theory
on the raw scale, the statistical significance of the corresponding parameter is not
always a good guide. An insignificant variable on the log scale can still have a
significant effect on the raw scale, for example if there is heteroscedasticity. A
significant variable on the log scale, on the other hand, may be insignificant on the
raw scale. Significance on the raw scale depends on retransforming both the
predicted value and heteroscedasticity, and these two effects may offset each
other. Theory on the raw scale must be tested on the raw scale, and to test theory
one must have standard errors or confidence intervals. Like the estimates them-
selves, the standard errors require special equations that take into account both the
distribution of the error term and the heteroscedasticity. We are not aware of any
published formulas for computing the standard error of estimates based on the

Ž Ž .retransformed data see Manning 1998 for estimates of the variance of the
.smearing estimate and the raw scale mean of y using the smearing estimator .

We derive the variance of three estimates based on results from a log
transformed model retransformed back to the original scale: the conditional mean
of y, the slope of y, and the average slope of y, where y is the unlogged
dependent variable. The variance can then be used to construct standard errors.
Because construction of confidence intervals requires the central limit theorem to
provide the asymptotic normal approximation to the sampling distribution, and the
normal approximation may not be accurate for a finite sample size, we focus on
the standard errors. We derive variance formulas for normal linear, normal
nonlinear, and nonparametric models, all with possible heteroscedasticity. The
formulas are easy to implement in standard software packages, and a sample
program in Stata is available upon request. We illustrate with skewed health
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expenditure data from a sample of Medicaid eligible patients with severe mental
illness. We derive formulas for the log transformation because it is by far the most
common in the literature. Researchers should read the literature and investigate the
data empirically to decide whether the log transformation is most appropriate for

Ž .their data Jones and Yen, 1999; Manning and Mullahy, 1999 .

2. Framework and methods

Before deriving the variance formulas for the most general case, we start with
the familiar normal linear model for a log-transformed dependent variable. The
normal linear model provides intuition for the more general models, and is the
model that is most often estimated by applied economists. Then we extend the
model to the nonlinear case, which involves only a slight modification, before
presenting the nonparametric model. The nonparametric model has the normal

Ž .linear and nonlinear models as special cases, and we relate it to Duan’s 1983
smearing estimator.

2.1. Model and notation

We start by introducing the general model and notation. Assume that the
Ž .logarithm of the original dependent variable y is a possibly nonlinear function of

K explanatory variables x, including a constant, and a vector of unknown
Ž .parameters b . The model for a single observation we suppress the subscript i

can be written as

ln y sh x ,b q´ ,Ž . Ž .

where ´ is an additive error term. We assume that no regressor can be expressed
as a linear or nonlinear function of the other regressors, e.g. there are no
higher-order or interaction terms. This assumption is not as restrictive as it appears
since it can always be satisfied by redefining the function h. For example, if x

Ž .includes a constant, income, and income squared, then the function h x,b can be
redefined as a function of a constant and income. The error term ´ is the product
of two elements

(´sy s x ,aŽ .

where y is assumed to be independent of x and has zero mean and unit variance,
Ž .the function s P allows for heteroscedasticity conditional on x, and a is a vector

of unknown parameters. The first part of the paper assumes that y has a normal
distribution, but later this assumption is dropped.
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We are interested in three estimands based on the unlogged dependent variable
y. The first is the mean of y conditional on x. This is the predicted value of the

Žraw dependent variable for one specific x. The second is the derivative local
. kslope of the mean with respect to one continuous explanatory variable x

conditional on x, where x k denotes the k th element of x. This is the change in the
predicted value for a change in one independent variable, for one specific x. The
third estimand depends on whether the regressors are treated as nonrandom or
random. If the regressors are nonrandom, the third estimand is the simple average
slope over all observations. If the regressors are random the third estimand is the
average slope over the parent distribution of the regressors.

Ž .We introduce the notation that m x is the mean of y conditional on x and that
u and u denote the two average slopes. This notation will simplify later1 2

formulas. The function also depends on the true values of b and a , but these
arguments will be suppressed for exposition. The estimands are as follows.

Ø Mean of y conditional on x

w xm x sE yNx ,Ž .
Ø Slope of mean with respect to x k

w xEm x EE yNxŽ .
s ,k kEx Ex

Ž .Ø Average slope two versions

N1 Em xŽ .i
for nonrandom x : u s .Ý1 kN Exis1

Em xŽ .
for random x : u sE .2 kEx

2.2. Normal linear model

To present the intuition behind our procedures, we begin with the simple
Ž . Xnormal linear model. The assumption of linearity implies that h x,b sxb and

Ž . Xs x,a sxa . Note that because elements of x are functionally independent, the
Ž . Ž .functions h x,b and s x,a are not only linear in the parameters but also linear

in the regressors. This distinction becomes important when taking derivatives. If
Ž . Ž . Žeither h x,b or s x,a is linear in parameters but nonlinear in regressors e.g.

. khigher-order or interaction terms , then the total derivative with respect to x
involves multiple terms. The assumption of a linear variance is made only for
illustration; an estimated linear variance could be negative. The reader will want to
use the more general model presented later. The choice of model specification for
the variance function is not always clear. One way to choose between two
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nonnested models is to use the J-test for linear specifications, and the P test forE
Ž .nonlinear specifications see Greene, 2000, pp. 302 and 441 .

Consistent estimates for the slope and the average slope for a model nonlinear
in the regressors can be obtained using the formulas in Section 2.3. We also
assume that the random variable y has a standard normal distribution. The

Ž .assumption of normality is attractive because: 1 it is often assumed in the
Ž . Žliterature, and 2 the retransformed estimands are simple to derive Manning,

.1998, pp. 285–287 .
Under the assumptions of linearity and normality the first two estimands for

fixed x are

w x xX bq0.5 xX am x sE yNx se ,Ž .

Em xŽ .
s b q0.5a m x ,Ž . Ž .k kkEx

where the subscript k refers to the k th component of the parameter vector.
Estimate the three estimands by replacing b and a with consistent estimates. To
estimate a , regress the squared residuals from the ordinary least squares model on
x, then multiply x by the estimated parameter vector a . Then the estimated meanˆ
of y conditional on x is the exponentiated predicted value of y, with a correction
for the variance of the normal error term

X ˆ Xx bq0.5 x âm x se .Ž .ˆ

The estimated slope with respect to one continuous variable x k is the mean
Ž .multiplied by the sum of two terms. The following is similar to Manning’s 1998

Ž .Eq. 7 , but we assume a particular form of the heteroscedasticity, namely
Ž . Xs x,a sxa , so the slope isˆ ˆ

Em xŽ .ˆ ˆs b q0.5a m x .Ž .ˆ ˆž /k kkEx

Finally, both versions of the third estimand are estimated by the sample average of
the slope over all observations because the expectation is usually approximated by
the sample average, leading to

N1 Em xŽ .ˆ iˆ ˆu su s .Ý1 2 kN Exis1

ˆUnder standard regularity conditions, the least squares estimator b is normally
distributed. It is less well known, however, that the least squares estimator a isˆ
asymptotically normally distributed. In the case of homoscedastic errors a isˆ
estimated by the sample variance which has a chi-square distribution with degrees
of freedom depending on the sample size N. The chi-square distribution with
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many degrees of freedom looks like a normal distribution and so can be approxi-
mated by a normal distribution when sample size goes to infinity. Hence, the

ˆparameter estimator a is asymptotically normally distributed. Moreover, b and aˆ ˆ
are independent. Thus, applying the delta method gives the scalar variance of these
three estimands

Em x Em x Em x Em xŽ . Ž . Ž . Ž .
v x s S q S , 1Ž . Ž .X X1 b až /ž /Eb Eb Ea Ea

E2m x E2m x E2m x E2m xŽ . Ž . Ž . Ž .
v x s S q S , 2Ž . Ž .X X2 k b ak k k kž /ž /Ex Eb EbEx Ex Ea Ea Ex

N 2 N 21 E m x 1 E m xŽ . Ž .i i
v s SÝ ÝX3k bk kž / ž /ž /N NEx Eb EbExis1 is1

N 2 N 21 E m x 1 E m xŽ . Ž .i i
q S , 3Ž .Ý ÝX ak kž / ž /ž /N NEx Ea Ea Exis1 is1

2 2E m x E m xŽ . Ž .
v s E S EX4 k bk kž /Ex Eb EbEx

2 2E m x E m xŽ . Ž .
q E S E qS , 4Ž .X a mk kž /Ex Ea Ea Ex

Ž .where the terms with Em x in the numerator are first partial derivatives, the terms
2 Ž .with E m x in the numerator are second partial derivatives, and S and S areb a

the heteroscedasticity consistent covariance matrices for b and a , respectively.
ŽThe White heteroscedasticity consistent estimator can be found in Greene 2000,

.p. 463 and can be computed by most regression packages. The third term of Eq.
Ž . Ž . k4 , S , is the sample variance of Em x rEx divided by N. This term is neededm i

because we use the sample average to estimate the average slope over the parent
distribution of the regressors.

Before describing how to estimate these in practice, we first note several
features of these variances. Each variance is a scalar. Each variance is the sum of

Ž .two or three parts; the first part corresponds to the retransformation of the
Ž .predicted value of ln y , and the second part corresponds to the retransformation

of the error term with estimated heteroscedasticity. Each of the first two parts is a
sandwich estimator.

In summary, the computation of the estimated variance for the normal linear
model requires four steps. Estimate the model on the log scale, estimate the form

Ž .of heteroscedasticity, compute several derivatives the hardest step , and plug the
Ž . Ž .MLE estimates for the variance-covariance matrices into Eqs. 1 – 4 .
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Step I: Apply ordinary least squares to the logarithm of y on x . Compute thei i
X ˆscalar predicted value xb for some fixed x. Save the heteroscedasticity-consistent

ˆcovariance matrix as S . Save the residuals ´ , and square them.ˆb i

Step II: Apply ordinary least squares to ´ 2 on x . Compute the scalar predictedˆi i

value xXa for some fixed x. Save the heteroscedasticity-consistent covarianceˆ
ˆmatrix as S .a

Ž . Ž .Step III: Compute m x , and the first derivatives of m x with respect to b ,ˆ ˆ
Ža , and x, and their cross partial derivatives either numerically or analytically see

.Appendix A for formulas . To estimate S , compute the sample variance ofm

Ž . kam x rEx .ˆ i
Ž . Ž .Step IV: Plug the estimated values from Step III into Eqs. 1 – 4 . The

X ˆ X ˆ 2Ž . Ž . Ž . Ž .equation for v x simplifies to v x s x S xq0.25 x S x m x , althoughˆ ˆ ˆ1 1 b a

the other equations do not simplify.

2.3. Normal nonlinear model

Next we extend the linear results to nonlinear models but maintain the
normality assumption. There are three ways the nonlinear model is a generaliza-
tion of the linear model. First, the nonlinear model allows nonlinearity in
regressors. In our notation, the linear specification excludes squared and interac-
tion terms which are commonly used in the empirical economic literature.
Although squared and interaction terms can be estimated using ordinary least
squares, such a specification has more complex derivatives than the simple linear
model, so is included in this section. Second, the nonlinear model allows for
arbitrary nonlinear functions of the dependent variable to be estimated by least

Ž Ž . X .squares. Third, the linear specification of the variance of the error s x,a sxaˆ ˆ
could allow a negative estimate, which is clearly impossible for the variance itself.
The nonlinear specification such as e xX a guarantees that the estimated variance
will always be positive. In addition one may wish to include higher-order and
interaction terms in the variance function.

ˆThe parameter estimates b and a now can be obtained by nonlinear leastˆ
Ž . Ž .squares regressions, or by ordinary least squares if h x,b and s x,a are linear

ˆin the parameters. The parameter estimates b and a are now asymptoticallyˆ
Ž .independent and normally distributed see Appendix A for a formal proof . Hence,

Ž . Ž .Eqs. 1 – 4 are still valid. Despite these changes, the four steps for computing the
three estimands and their respective standard errors are nearly the same as before
except that the derivatives are more complicated.

Ž .Step I: Apply nonlinear least squares, or ordinary least squares if h x,b is
Ž .linear in the parameters, to the logarithm of y on h x ,b . Compute the scalari i

ˆŽ .predicted value h x,b for some fixed x. Save the heteroscedasticity-consistent
ˆcovariance matrix as S . Save the residuals ´ and square them.ˆb i

Ž .Step II: Apply nonlinear least squares, or ordinary least squares if s x,a is
2 Ž .linear in the parameters, to ´ on s x ,a . Compute the scalar predicted valueˆi i
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Ž .s x,a for some fixed x. Save the heteroscedasticity-consistent covariance matrixˆ
ˆas S .a

Ž . Ž .Step III: Compute m x , and the first derivatives of m x of with respect to b ,ˆ ˆ
Ža , and x, and their cross partial derivatives either numerically or analytically see

.Appendix A for formulas . To estimate S , compute the sample average ofm

Ž . kEm x rEx .ˆ i
Ž . Ž .Step IV: Plug the estimated values from Step III into Eqs. 1 – 4

2.4. Nonparametric model with homoscedasticity

The normal linear and nonlinear models both assume that the distribution of the
error term is known and normal. In practice, the distribution of the error term is
often not known and not normal. If the distribution of the error term is not normal,
then the normal linear and nonlinear models will give biased parameter estimates

w x w Ž .xof E yNx , although the models are still consistent for E ln yNx . This section
extends the results of Section 2.2 to the case where the distribution of y is not
known but the error is homoscedastic, and Section 2.5 has the most general model
that is both heteroscedastic and nonparametric.

When the error is not normal, then the conditional mean of y on the natural
scale is the exponentiated predicted value of y multiplied by a smearing factor
adjusted for heteroscedasticity

w x hŽ x ,b .m x sE yNx se D x ,a .Ž . Ž .
Ž .'y s x ,aŽ . w xwhere D x,a sE e Nx is the smearing factor. The smearing factor was

Ž .originally proposed by Duan 1983 to adjust for the retransformation of an error
term with unknown distribution in the case of homoscedasticity, and extended by

Ž .Manning 1998 to the case of heteroscedasticity by groups.
Before analyzing the general case with heteroscedasticity, we analyze the case

Ž .of an error term with unknown distribution under homoscedasticity. If s x,a sa
Ž Ž . .i.e. s P does not depend on x so the error term is homoscedastic then the

Ž .smearing factor simplifies to the one proposed by Duan 1983 . In the ho-
moscedasticity case considered by Duan, the smearing factor is estimated by

y1 ´̂ iN Ýe , where ´ is the least squares regression residual. The three estimandsˆi

are simpler under homoscedasticity than under heteroscedasticity because the
derivative of the heteroscedasticity term disappears. The estimated first two
estimands for the nonparametric model with homoscedasticity are

N1ˆhŽ x ,b . ´̂ im x se e ,Ž .ˆ Ýž /N is1

ˆEm x Eh x ,bŽ .ˆ Ž .
sm x .Ž .ˆk kEx Ex
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The first version of the third estimand is estimated by

N ˆEh x ,b1 ž /j
û s m x .Ž .ˆÝ1 j kN Exjs1

The second version of the third estimand can be estimated in the same way as the
first version. However, due to the presence of the estimated smearing factor, the
computation of the variance is complicated by the randomness of the regressors.
To simplify the computation, we present an equivalent version of u . By manipu-2

lating expectations, we have

(Eh x ,b E s x ,aŽ . Ž .
u sE y qy .2 k kž /Ex Ex

Ž .When the errors are homoscedastic, s x,a does not depend on x, so we estimate
u by2

N ˆ1 Eh x ,bŽ .i
û s yÝ2 i kN Exis1

Removing the normality assumption creates three complications in the compu-
tation of the variances of the three estimands. First, the smearing factor cannot be
computed analytically. Instead, it must be estimated by the sample average. The
sample average introduces a variance term of its own which must be accounted for
when computing the variances of the three estimands.

The other two complications are best understood by examining the Taylor-series
expansion of the smearing factor to the first-order term

N N N1 1 1 Eh x ,bŽ .i´ ´ ´ˆ i i i ˆe ( e y e bybŽ .Ý Ý Ý Xž /N N N Ebis1 is1 is1

The second complication comes in the second term of the expansion, which
ˆobviously depends on the parameter estimates b . This dependency must be

accounted for when computing the derivatives with respect to b . The third
complication is that the smearing factor is a sample average, so the estimated

Ž .smearing factor the first term of the expansion is a function of the residuals
which may be correlated with the parameter estimates. The covariance must also
be accounted for when computing the variances of the three estimands.

Under homoscedasticity, the variances of the three estimands are:

Em x Em x Em xŽ . Ž . Ž .
v x s S q2 S qS , 5Ž . Ž .X X1 b 1Db 1DDž / ž /Eb Eb Eb

E2m x E2m x E2m xŽ . Ž . Ž .
v x s S q2 S qS , 6Ž . Ž .X X2 k b 2 Db 2 DDk k kž / ž /Ex Eb EbEx Ex Eb
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N 2 N 21 E m x 1 E m xŽ . Ž .j j
v s SÝ ÝX3k bk kž / ž /ž /N NEx Eb EbExjs1 js1

N 21 E m xŽ .j
q2 S qS , 7Ž .Ý X 3Db 3DDkž /N Ex Ebjs1

2 2 2E m x E m x E m xŽ . Ž . Ž .
v s E S E q2 E S qS , 8Ž .X X4 k b mb mk k kž / ž /Ex Eb EbEx Ex Eb

Ž Ž . .where S is the covariance between the sample average of exp h x,b q´1Db i
ˆ Ž Ž . .and b , S is the sample variance of exp h x,b q´ , S is the covariance1DD i 2Db

k ˆŽ Ž . .Ž Ž . .between the sample average of and exp h x,b q´ Eh x,b rEx and b ,i
Ž Ž . .Ž Ž . k .S is the sample variance of exp h x,b q´ Eh x,b rEx , S is2DD i 3Db

y1 Ž Ž . .the covariance between the sample average of N Ý exp h x ,b q ´j j i
k ˆ y1Ž Ž . . Ž Ž .Eh x ,b rEx and b , S is the sample variance of N Ý exp h x , b qj 3DD j j

.Ž Ž . k . Ž Ž´ Eh x , b rEx , S is the covariance between the sample average y Eh x ,i j mb i i
k ˆ k. . Ž Ž . .b rEx and b , and S is the sample variance of y Eh x , b rEx .m i i

To estimate the variances, simply replace those derivatives by their estimates.
The proposed procedure is described as follows.

Ž .Step I: Apply nonlinear least squares, or ordinary least squares if h x,b is
ˆŽ .linear in the parameters, to the logarithm of y on h x ,b . Compute the scalari i

ˆŽ .predicted value h x,b for some fixed x. Save the heteroscedasticity-consistent
ˆ Žcovariance matrix as S . Save the residuals ´ , but do not square them. The onlyˆb i

.difference with Step I of Section 2.3 is that the residuals are not squared.
ˆStep II: This step is not needed because S s0.a

Ž . Ž .Step III: Compute m x , and the first derivatives of m x with respect to bˆ ˆ
and x, and their cross partial derivatives either numerically or analytically. To
estimate the vectors S , S , S , and S , run simple regressions and1Db 2Db 3Db mb

save the regression coefficients. To estimate the variances S , S , S , and1DD 2DD 3DD
ŽS , compute the sample variances and divide by N see Appendix A for allm

.formulas .
Ž . Ž .Step IV: Plug the estimated values from Step III into Eqs. 5 – 8 .

2.5. Nonparametric model with heteroscedasticity

In the more general case where the variance depends on regressors, the
Ž .'y1 N y s x ,aˆ ˆismearing factor is estimated by the simple sample average N Ý e ,is1

where y s´ r s x ,a is the estimate of the standardized residuals. The( Ž .ˆ ˆ ˆi i i
Ž .exponent does not simplify to ´ because s x,a is a scalar evaluated at theˆ ˆi

Ž .conditional x, while s x ,a takes on a different value for each observation i.ˆ1
ˆThe estimated smearing factor now depends on both parameter estimates b and

a . These dependencies must be accounted for when taking derivatives withˆ
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Ž .respect to b and a . To simplify later notation, define g x,b ,a to be thei
Ž . Ž .unbiased predicted value of m x based on x and q b ,a to be the unbiasedi i

estimate of the average slope

Ž . x Ž .'hŽ x ,b .qwŽ lnŽ y .yhŽ x ,b ..r s x ,a s x ,a'i i ig x ,b ,a se ,Ž .i

Eh x ,b Eln s x ,aŽ . Ž .i i
q b ,a sy q0.5 ln y yh x ,b .Ž . Ž .Ž .i i i ik kž /Ex Ex

The three estimands are

N1
ˆm x s g x ,b ,a ,Ž .ˆ ˆŽ .Ý iN is1

N ˆEm x 1 Eg x ,b ,aŽ .ˆ ˆŽ .i
s ,Ýk kNEx Exis1

N N ˆEg x ,b ,â1 1 ž /i j
û s ,Ý Ý1 kž /N N Exjs1 is1

N1
ˆ ˆu s q b ,a .ˆŽ .Ý2 iN is1

The heteroscedastic nonparametric model has two further complications. First,
ˆin the normal model the covariance between b and a is zero. However, in theˆ

ˆnonparametric model, b and a are neither independent nor uncorrelated. Second,ˆ
ˆthe covariances between the smearing factor and the parameter estimates b and â

are not zero. Thus, the formulas for the variances include additional terms for the
ˆcovariances between b and a , the functions g and q and their derivatives.ˆ

Em x Em x Em x Em xŽ . Ž . Ž . Ž .
v x s S q SŽ . X X1 b až /ž /Eb Eb Ea Ea

Em x Em x Em x Em xŽ . Ž . Ž . Ž .
q2 S q2 S q2X X Xba 1Dbž /Eb Ea Eb Ea

=S qS , 9Ž .1Da 1DD

E2m x E2m x E2m x E2m xŽ . Ž . Ž . Ž .
v x s S q SŽ . X X2 k b ak k k kž /ž /Ex Eb EbEx Ex Ea Ea Ex

E2m x E2m x E2m x E2m xŽ . Ž . Ž . Ž .
q2 S q2 S q2X X Xba 2Dbk k k kž /Ex Eb Ea Ex Ex Eb Ex Ea

=S qS , 10Ž .2 Da 2 DD
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2 2N N1 E m x 1 E m xŽ . Ž .j j
v s SÝ ÝX3k bk kž / ž /N NEx Eb EbExjs1 js1

2 2N N1 E m x 1 E m xŽ . Ž .j j
q SÝ ÝX ak kž / ž /N NEx Ea Ea Exjs1 js1

2 2N N1 E m x 1 E m xŽ . Ž .j j
q2 SÝ ÝX bak kž / ž /N NEx Eb Ea Exjs1 js1

N 2 N 21 E m x 1 E m xŽ . Ž .j j
q2 S q2 S qS ,Ý ÝX X3Db 3Da 3DDk kž / ž /N NEx Eb Ex Eajs1 js1

11Ž .

2 2 2 2E m x E m x E m x E m xŽ . Ž . Ž . Ž .
v s E S E q E S EX X4 k b ak k k kž /ž /Ex Eb EbEx Ex Ea EaE x

2 2 2E m x E m x E m xŽ . Ž . Ž .
q2 E S E q2 E SX Xba q bk k kž /Ex Eb Ea Ex Ex Eb

2E m xŽ .
q2 E S qS . 12Ž .X qa mkEx Ea

ˆŽ .where S is the covariance between the sample average of g x,b ,a and b ,1Db i
Ž .S is the covariance between the sample average of g x,b ,a and a , Sˆ1Da i 1DD

Ž .is the sample variance of g x,b ,a , S , is the covariance between the samplei 2Db
k ˆŽ .average of Eg x,b ,a rEx and b , S is the covariance between the samplei 2Da

Ž . kaverage of Eg x,b ,a rEx and a , S is the sample variance ofˆi 2DD
Ž . kEg x,b ,a rEx , S and S are the covariances between the samplei 3Db 3Da

y1 k ˆŽ .average of N Ý Eg x ,b ,a rEx and b and a , S is the sample varianceˆj i j 3DD
y1 Ž . kof N Ý Eg x ,b ,a rEx , S is the covariance between the sample averagej i j q b

ˆŽ .of q b ,a and b , S is the covariance between the sample average ofi qa

Ž . Ž .q b ,a and a , and S is the sample variance of q b ,a .ˆi m i
Ž .Step I: Apply nonlinear least squares, or ordinary least squares if h x,b is

Ž .linear in the parameters, to the logarithm of y on h x ,b . Compute the scalari i
ˆŽ .predicted value h x,b for some fixed x. Save the heteroscedasticity-consistent
ˆ Žcovariance matrix as S . Save the residuals ´ , but do not square them same asˆb i

.Section 2.4. .
Ž .Step II: Apply nonlinear least squares, or ordinary least squares if s x,a is

2 Ž .linear in the parameters, to ´ on s x ,a . Compute the scalar predicted valueˆi i
Ž .s x,a for some fixed x. Save the heteroscedasticity-consistent covariance matrixˆ
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ˆ Žas S . Save the residuals as h the only difference with Step II in Section 2.3 isˆa i
.the addition of the last step .

ˆŽ . Ž .Step III: Compute m x and its derivatives using the function g x,b ,a . Toˆ ˆ ˆ
estimate the vectors S , S , S , S , S , S , S , and S ,1Db 1Da 2Db 2Da 3Db 3Da q b qa

run simple regressions and save the regression coefficients. To estimate the
variances S , S , S , and S , compute the sample variances and divide1DD 2DD 3DD m

Ž .by N see Appendix A for all formulas . Estimate S using the formula inba

Appendix A.
Ž . Ž .Step IV: Plug the estimated values from Step III into Eqs. 9 – 12 .

2.6. Bootstrapping

Bootstrapping is an alternative method of computing variances. The bootstrap-
ping method has two advantages compared to the delta methods — it gives a
better approximation to the finite sample distribution in small samples and it does
not require computing derivatives. So far, we have relied on the large sample
approximation to the finite sample distribution of three estimands to compute
confidence intervals. It is well documented that the asymptotic distribution may be
a poor approximation to the finite sample distribution when the sample size is
small. Even if the asymptotic distribution is a good approximation, the analytical
method requires computing many first and second partial derivatives, which can be
more complicated and error-prone than bootstrapping.

The disadvantage of bootstrapping is that it is very costly in terms of computer
time when nonlinear least squares estimation is involved. A rule of thumb is that it
takes about 500 iterations to estimate standard errors, which may be extremely
time-consuming and even more if nonnormality is suspected. The choice between
bootstrap and formula to compute the standard errors depends on the data set and
the model. The important thing is to compute the standard errors.

3. Empirical example

3.1. Data

We illustrate the methods by analyzing Massachusetts Medicaid data, which
were collected by the Massachusetts Division of Medical Assistance. The Medi-
caid data set includes information on all Massachusetts Medicaid claims from
fiscal years 1991 and 1992. We limited the sample to the 9863 persons who were
diagnosed with a severe mental illness and had at least one Medicaid claim in both
years.

The dependent variable is the logarithm of total expenditures, which includes
inpatient, outpatient, and pharmacy. The mean expenditure was just over
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Table 1
Ž .Summary statistics for data on mental health care Ns9863

Variable Minimum Mean Maximum Standard deviation Skewness

Dependent Õariables
Expenditures 5 16,031 273,949 24,440 3.45
Ž .ln Expenditures 1.55 8.80 12.52 1.42 y0.19

Prior health care use
Lagged expenditures 2 15,364 334,725 24,686 4.13
Ž .ln Lagged expenditures 0.78 8.75 12.72 1.41 y0.14

Demographics
Age 18.0 41.1 64.0 11.7
Male 0 0.415 1 0.493
African-American 0 0.077 1 0.267
Hispanic 0 0.020 1 0.139
White 0 0.903 1 0.295

Health status
Schizophrenia 0 0.537 1 0.499
Major affective disorder 0 0.412 1 0.492
Other psychoses 0 0.050 1 0.218
Substance abuse 0 0.100 1 0.301

Ž .US$16,000, but ranged from essentially zero to US$274,000 see Table 1 . One of
the explanatory variables of interest was lagged expenditures, which had a similar
distribution. Taking the logarithm of the dependent variable removed much of the
skewness, although the skewness is negative and significantly different than zero.

We also controlled for the standard demographic characteristics and health
status. The patient population was 41.5% male, 89.5% white, 7.7% black, and 2%
other race. The mean age was 41 years, and ranged from 18 to 64. All of the
patients in the sample had one of the following diagnoses during the year:

Ž . Ž .schizophrenia 53.7% , major affective disorder 41.3% , or other psychoses
Ž .5.0% . Schizophrenia is considered the most serious of these conditions, followed
by major affective disorder and other psychoses. Substance abuse is a comorbidity
strongly associated with mental health problems. Ten percent of our sample have a
substance use comorbidity.

3.2. Results

The regression results are for illustrative purposes only. We treat the indepen-
dent variables x as random because the experiment is not controlled. Also,
because the sample is relatively large, we believe that the normal distribution is a
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good approximation to the finite sample distribution of the three estimands, and
therefore do not report bootstrapping results. If the sample were relatively small,
then the assumption of the normal distribution would be questionable, and
bootstrapping would be preferred.

The results show, not surprisingly for this population with chronic disease, that
logged annual health care expenditures are higher when lagged expenditures are

Ž .higher see Table 2 . Expenditures are also higher for persons who are younger,
female, white, schizophrenic, and have substance abuse comorbidity, results that
are consistent with the literature. The heteroscedasticity regression, which predicts
the squared residuals, has a low adjusted R2, but the estimated parameters of most
of the explanatory variables are statistically significant. The LM form of the White
Ž .1980 heteroscedasticity test, which regresses the squared estimated error term on
the independent variables and their squares and interaction terms, is 106.5, leading

Žto rejection of the null hypothesis of homoscedasticity see second column of
.Table 2 . For this example, we do not include squared terms or interaction terms,

but it would be straightforward to do so. The results are shown for specific values
of x, namely a 40-year-old white female with schizophrenia and no substance
abuse comorbidity. The derivatives with respect to x k are for the continuous
variable age.

Table 2
Regression results for linear model to predict logged health care expenditures

2Ž .Variable OLS: ln Expenditure OLS: ´̂

) ) ) )Ž . Ž .Constant 3.39 0.11 2.23 0.26

Prior health care use
) ) ) )Ž . Ž . Ž .ln Lagged expenditures 0.6421 0.0097 y0.077 0.026

Demographics
) ) ) )Ž . Ž .Age y0.00374 0.00096 y0.0123 0.0020

) ) ) )Ž . Ž .Male y0.105 0.023 0.129 0.049
) )Ž . Ž .African-American y0.055 0.045 0.333 0.095

) ) )Ž . Ž .Hispanic y0.133 0.064 y0.315 0.098

Health status
) )Ž . Ž .Major affective disorder y0.126 0.022 y0.056 0.047
)Ž . Ž .Other psychoses y0.132 0.056 0.25 0.13
) )Ž . Ž .Substance abuse 0.542 0.035 y0.108 0.068

N 9863 9863
2Adjusted R 0.45 0.01

The reference category is a white female with schizophrenia and no substance abuse comorbidity.
Robust standard errors are corrected for heteroscedasticity using Huber–White robust standard errors.

)Statistically significant at the 5% level.
))Statistically significant at the 1% level.
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Table 3
Computation of the conditional mean of y, the slope of y, the average slope of y, and their standard
errors for the normal linear model

Assume hetero- Estimate Standard error
scedasticity

Ž . w xf x s E yN x No 11,884 264
Yes 11,667 314

k kŽ . w xE f x rEx sEE yN x rEx No y44.5 11.7
Yes y115.4 17.1

k kw Ž . x w w x xE E f x rEx s E EE yN x rEx No y66.6 24.6
Yes y170.6 24.5

Calculations are for a 40-year-old white female with schizophrenia and no substance abuse comorbid-
ity. Derivatives are with respect to age.

The three estimands are calculated both with and without the assumption of
heteroscedasticity to show the importance of controlling for it in the normal linear

Ž .model see Table 3 . The results show standard errors that are relatively small
when compared to the magnitude of the three estimates. The estimated expendi-
tures are slightly less than US$12,000, with a standard error of US$264 under
homoscedasticity. The slope and the average slope in particular are quite different
in their point estimates. For example, under homoscedasticity an increase in age
from 40 to 41 for the base-case person would decrease expected expenditures by
US$44.50, but under heteroscedasticity it would decrease by US$115.40. In our
example, the estimates of the slope and average slope are biased towards zero

Table 4
Computation of the conditional mean of y, the slope of y, the average slope of y, and their standard
errors for the nonparametric model

Assume hetero- Estimate Standard error
scedasticity

Ž . w xf x s E yN x No 12,296 327
Yes 12,044 300

k kŽ . w xE f x rEx sEE yN x rEx No y46.0 12.0
Yes y131.1 16.9

k kw Ž . x w w x xE E f x rEx s E EE yN x rEx No y60.6 15.5
Yes y144.9 20.2

Calculations are for a 40-year-old white female with schizophrenia and no substance abuse comorbid-
ity. Derivatives are with respect to age.
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when heteroscedasticity is ignored, and the bias is large enough that the estimate
without controlling for heteroscedasticity falls outside of the 95% confidence
interval. This example shows the importance of controlling for heteroscedasticity
both in the point estimate and in the standard error.

ŽThe three estimands are also calculated for the nonparametric model see Table
.4 . The pattern of results is similar. Controlling for heteroscedasticity is clearly

important for both the point estimates and the standard errors. The point estimates
for the slope and average slope are much larger in absolute value after controlling
for heteroscedasticity. The standard errors for all three stastistics are quite different
after controlling for heteroscedasticity, and in two of the cases are larger.

In this example, however, the difference between the results for the normal and
nonparametric models is small. Comparisons between Tables 3 and 4 show
qualitatively similar results. In our example, the residuals are approximately
normal, so the nonparametric model is not different from the normal model. In
other data sets, however, the nonparametric model may be more appropriate and
could give quite different results.

4. Conclusion

The use of the log-transformed dependent variable in applied economics creates
w xa potential bias when computing estimates of E yNx on the original scale, if the

error term either does not have a normal distribution or is heteroscedastic.
Estimates on the original scale should be reported with standard errors, like all
estimated values. One reason that the calculation of standard errors is not common
is that the equations are not commonly known. This paper provides equations for
the general case of error terms that have any distribution and are heteroscedastic,
as well as for simpler cases. Another reason is that computing the standard errors
is not automatically done in software. The authors will provide sample programs
in Stata to compute the standard errors upon request.

Acknowledgements

Chunrong Ai received financial support through a summer grant from the
Warrington College of Business Administration. We would like to thank Willard
Manning, John Mullahy, and two anonymous referees for their comments on an
earlier draft. An earlier version of this paper was presented at the Second World
Conference of the International Health Economics Association, Rotterdam, the
Netherlands, June 6–9, 1999.



( )C. Ai, E.C. NortonrJournal of Health Economics 19 2000 697–718714

Appendix A

A.1. Formulas for the normal linear model

For the normal linear model the formulas for Step III are:
X ˆ Xx bq0.5 x âŽ .m x se scalarˆ

b̂ ,a scalars, estimated parametersˆk k

for xk

e vector of 0s, with 1 in the k thk

position
Em xŽ .ˆ ˆŽ .Ž .sm x b q0.5a scalarˆ ˆk kkEx
Em xŽ .ˆ

Ž .sm x x vectorˆ
Eb

Em xŽ .ˆ
Ž .s0.5m x x vectorˆ

Ea
2E m x Em xŽ . Ž .ˆ ˆ

Ž .s xqm x e vectorˆ kk kEbEx Ex
2E m x Em xŽ . Ž .ˆ ˆ

s0.5 xqm x e vectorŽ .ˆ kk kž /Ea Ex Ex
2 2E m x 1 E m xŽ . Ž .ˆ iNÊ s Ý vector, simple averageis1k kNEbEx EbEx
2 2E m x 1 E m xŽ . Ž .ˆ iNÊ s Ý vector, simple averageis1k kNEa Ex Ea Ex

A.2. Formulas for the normal nonlinear model

For the normal nonlinear model the formulas for Step III are:
ˆŽhŽ x ,b .q0.5sŽ x ,a ..ˆŽ .m x se scalarˆ

ˆEm x Eh x,bŽ .ˆ Ž .
Ž .sm x vectorˆ

Eb Eb

Em x Es x,aŽ . Ž .ˆ ˆ
Ž .sm x 0.5 vectorˆ

Ea Ea

ˆEm x Eh x,b Es x,aŽ . Ž .ˆ ˆŽ .
Ž .sm x q0.5 scalarˆk k kEx Ex Ex
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2 2ˆ ˆE m x Em x Eh x,b Es x,a E h x,bŽ . Ž . Ž .ˆ ˆ ˆŽ . Ž .
Ž .s q0.5 qm xˆXk k k kEbEx Eb Ex Ex Ex Eb

vector
2 2ˆE m x Em x Eh x,b Es x,a E s x,aŽ . Ž . Ž . Ž .ˆ ˆ ˆ ˆŽ .

Ž .s q0.5 q0.5m xˆXk k k kEaEx Ea Ex Ex Ex Ea

vector

A.3. Formulas for the nonparametric model with homoscedasticity

For the nonparametric model with homoscedasticity the formulas for Step III
are:

2 Nˆ ˆE m x Eh x ,b 1 Eh x ,bŽ .ˆ Ž . Ž .iˆhŽ x ,b . ´̂ ism x ye e vectorŽ .ˆ Ý ž /Eb Eb N Ebis1

The second term in the first derivative above arises from the fact that the
ˆresiduals ´ are estimated and hence depend on the parameter estimate b .ˆi

2 ˆ ˆEm x E h x ,b Em x Eh x ,bŽ . Ž .ˆ ˆŽ . Ž .
sm x q vectorŽ .ˆk k kEbEx Eb Ex Eb Ex

2 2N ˆE m x 1 E h x ,bŽ . Ž .i
Ê s y vectorÝ ik kNEx Eb Ex Ebis1

Four of the S ’s are estimated by running a simple regression, saving the vector
of regression coefficients, and dividing them by N. The part of the dependent
variable that is not ´ or h must have its mean subtracted before multiplying byˆ ˆi i

the estimated error.

Estimated Dependent variable Independent
coefficients variable

ˆ ˆ ˆŽ Ž . . Ž .S exp h x,b q´ =´ Eh x ,b rEbˆ ˆ1Db i i i

ˆ ˆ ˆŽ Ž . . Ž .S exp h x,b q´ Eh x ,b rEbˆ2Db i i
kˆŽ .=Eh x,b rEx = ´̂ i

y1ˆ ˆ ˆw Ž Ž . . Ž .S N Ý exp h x ,b q´ Eh x ,b rEbˆ3Db j j i i
kˆŽ . x=Eh x ,b rEx = ´̂j i

kˆ ˆ ˆw Ž . x Ž .S y = Eh x ,b rEx =´ Eh x ,b rEbˆmb i i i i
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Four of the S ’s are estimated by computing the sample variance divided by N
Ž .scalar .

Estimated variance Sample variance of

ˆ ˆŽ Ž . .S exp h x,b q´1DD i
kˆ ˆ ˆŽ Ž . .Ž Ž . .S exp h x,b q´ Eh x,b rEx2 DD i

y1 kˆ ˆ ˆŽ Ž . . Ž .S N Ý exp h x ,b q´ =Eh x ,b rExˆ3DD j j i j
kˆ ˆŽ Ž . .S y Eh x ,b rExm i i

A.4. Formulas for the nonparametric model with heteroscedasticity

For the nonparametric model with heteroscedasticity the formulas for Step III
are:

N ˆEm x 1 Eg x ,b ,aŽ .ˆ ˆŽ .i
s vectorÝ

Eb N Ebis1

N ˆEm x 1 Eg x ,b ,aŽ .ˆ ˆŽ .i
s vectorÝ

Ea N Eais1

2 N 2 ˆE m x 1 E g x ,b ,aŽ .ˆ ˆŽ .i
s vectorÝk kNEx Eb Ex Ebis1

2 N 2 ˆE m x 1 E g x ,b ,aŽ .ˆ ˆŽ .i
s vectorÝk kNEx Ea Ex Eais1

2 N ˆE m x 1 Eq b ,aŽ . ˆŽ .i
Ê s vectorÝk ž /N EbEx Eb is1

2 N ˆE m x 1 Eq b ,aŽ . ˆŽ .i
Ê s vector.Ýk ž /N EaEx Ea is1

y1
N Nˆ ˆ ˆEh x ,b Eh x ,b Eh x ,b Es x ,aŽ .ˆŽ . Ž . Ž .i i i i

Ŝ s ´ hˆ ˆÝ ÝX Xba i iž / ž /Eb Eb Eb Eais1 is1

y1N Es x ,a Es x ,aŽ . Ž .ˆ ˆi i
= matrixÝ Xž /Ea Eais1

Eight of the S ’s are estimated by running a simple regression, saving the
vector of regression coefficients, and dividing them by N. The part of the
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dependent variable that is not ´ or h must have its mean subtracted beforeˆ ˆi i

multiplying by the estimated error.

Estimated Dependent variable Independent
coefficient variable

ˆ ˆ ˆŽ . Ž .S g x,b ,a =´ Eh x ,b rEbˆ ˆ1Db i i i

ˆ ˆŽ . Ž .S g x,b ,a =h Es x ,a rEaˆ ˆ ˆ1Da i i i

kˆ ˆ ˆŽ Ž . . Ž .S Eg x,b ,a rEx =´ Eh x ,b rEbˆ ˆ2 Db i i i

kˆ ˆŽ Ž . . Ž .S Eg x,b ,a rEx =h Es x ,a rEaˆ ˆ ˆ2 Da i i i

y1 kˆ ˆ ˆŽ Ž . . Ž .S N Ý Eg x ,b ,a rEx =´ Eh x ,b rEbˆ ˆ3Db j i j i i

y1 kˆ ˆŽ Ž . . Ž .S N Ý Eg x ,b ,a rEx =h Es x ,a rEaˆ ˆ ˆ3Da j i j i i

ˆ ˆ ˆŽ . Ž .S q b ,a =´ Eh x ,b rEbˆ ˆq b i i i

ˆ ˆŽ . Ž .S q b ,a =h Es x ,a rEaˆ ˆ ˆqa i i i

Four of the S ’s are estimated by computing the sample variance divided by N
Ž .scalar .

Estimated variance Sample variance of

ˆ ˆŽ .S g x,b ,â1DD i
kˆ ˆŽ .S Eg x,b ,a rExˆ2 DD i

y1 kˆ ˆŽ .S N Ý Eg x ,b ,a rExˆ3DD j i j

ˆ ˆŽ .S q b ,âm i

A.5. Proof of asymptotic independence

ˆLet b denote the least squares estimator of the regression

ln y sh x ,b q´ is1,2, . . . , N.Ž . Ž .i i i

Then applying a Taylor expansion, we obtain

y1N NEh x ,b Eh x ,b Eh x ,bŽ . Ž . Ž .i i i y0.5b̂ybs ´ qo N .Ž .Ý ÝX i pž /Eb Eb Ebis1 is1

Ž .See Amemiya 1985 for a derivation. Let ´ denote the least squares residuals.ˆi

Note that

2E ´ Nx ss x ,a .Ž .i i i
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We can write

´ 2 ss x ,a qhŽ .i i i

where h is the error term. Let a denote the least squares estimator fromˆi

´ 2 ss x ,a qh )Ž .ˆi i i

Applying the first-order Taylor series approximation, we obtain
y1N NEs x ,a Es x ,a Es x ,aŽ . Ž . Ž .i i i y0.5ayas h qo N .Ž .ˆ Ý ÝX i pž /Ea Ea Eais1 is1

ˆ 3w x w xNote that the covariance between b and a depends on E ´ h Nx sE ´ h Nx .ˆ i i i i i i
3 ˆw xFor normal ´ , E ´ Nx s0, implying that b and a are asymptotically indepen-ˆi i i

dent.
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