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ABSTRACT 

The restoration of spontaneous symmetry breaking for a scalar field theory for an accelerated observer is discussed by 
the one-loop effective potential calculation and by considering the effective potential for composite operators. Above a 
critical acceleration, corresponding to the critical restoration temperature, , for a Minkowski observer by Unruh rela- 

tion, i.e. 
cT

2πc ca T , the symmetry is restored. This result confirms other recent calculations in effective field theories 

that symmetry restoration can occur for an observer with an acceleration larger than some critical value. From the 
physical point of view, a constant acceleration mimics a gravitational field and the critical acceleration to restore the 
spontaneous symmetry breaking corresponds to a huge gravitational effect which prevents boson condensation. 
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1. Introduction 

In quantum field theory in flat space-time a spontane- 
ously broken symmetry can be restored above some 
critical temperature [1-3]. On the other hand, whenever 
the background geometry is endowed with a black-hole 
or an event horizon, the related vacuum physically be- 
haves like a thermal bath of quanta with a temperature, 

HT , proportional to the surface gravity [4]. Therefore 
one expects that symmetry restoration occurs also in 
strong enough gravitational fields, i.e. near a horizon [5]. 
On the other hand, the near horizon approximation of a 
black-hole metric corresponds to a Rindler metric, i.e. the 
metric of  an observer with constant acceleration, a, 
equal to the surface gravity and Unruh [6,7] showed that 
for any accelerated observer there is an intrinsic thermal 
nature of the ground state: he/she feels a thermal bath 
with temperature 2πT a=

0a =

. Moreover, a broken sym- 
metry can be also restored if a classical external field 
strength (a magnetic field, for example) exceeds a critical 
value. Infact a particle coupled with an external field 
suffers a proper acceleration depending on the field 
strength. 

The previous discussion clearly indicates that a resto- 
ration of the symmetry can occur for an observer with an 
acceleration larger than some critical value independ- 
ently on the specific dynamical mechanism that produces 
the acceleration. 

Indeed in Reference [8] it has been shown that for the 
Nambu-Jona Lasinio (NJL) model in an accelerated 

frame, the chiral symmetry (broken for ) is re- 
stored for acceleration larger than a critical value ca , 
corresponding to 2πa Tc c , where cT  is the critical 
temperature for the restoration of the symmetry due to 
standard (flat space-time) thermal fluctuactions. In Ref- 
erence [9] the behavior of quark and diquark condensates 
as seen by an accelerated observer has been studied and 
critical values of the acceleration for the restoration of 
chiral and color symmetries have been estimated. The 
dissociation of mesons, described as rotating string in 
Rindler space, by acceleration has been analyzed in ref. 
[10] with the conclusion that above a critical acceleration 

c , where a J   is the string tension and J  is 
the angular momentum, mesons undergo dissociation. In 
this letter we discuss the restoration of spontaneous 
symmetry breaking for 4  theory with similar results: 
above a critical acceleration, corresponding to the critical 
restoration temperature by Unruh relation, i.e.  

2πa Tc c , the symmetry is restored. The calculations 
are based on the one-loop effective potential evaluation 
and its generalization for composite operators [11] (CJT- 
method) which gives the resummation of an infinite set 
of diagrams by self-consistent gap equations. Initially 
(Sec.1) we recall briefly some general features of a scalar 
field theory in Rindler metric. In Section 2 we discuss the 
one-loop calculation of the effective potential for 4  
theory for an accelerated frame and the results by the 
CJT method. General considerations about the symmetry 
breaking due to acceleration and the Hawking-Unruh 
radiation are in the final section devoted to comments 
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and conclusions. Lastly the effective action and effective 
potential methods for composite operators (CJT) are 
briefly reviewed in the appendix. 

 

2. 4λ  Theory in Rindler Metric 

The action for the 4  scalar theory in Rindler space- 
times [12] can be written as follow: 

  4 1
d

2 2
I x g g

 
2 2 41
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m
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   (1) 

where ,  , ,   x x yx  and the Rindler met- 
ric tensor g  is given by: 
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Since the two Rindler wedge are causally disconnected 
from each other [12] we restrict our consideration to the 
right Rindler wedge. Calculation in the left wedge can be 
performed in the same way. The Klein-Gordon equation 
for the scalar field x  is 
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Taking the Fourier transform with respect to  , x : 
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the normalized solution turns out 
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where is the modified Bessel function of second kind and 
2 2k m   . The two-point Green’s function of the 

free scalar field in the right Rindler wedge  2, ,m x x q , 
is defined by the equation: 
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By substituting back into Equation (6) one finds: 

 2 1
, , , ,m
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where  
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a

The world line in Rindler coordinates of a uniformly 
accelerated observer with proper constant acceleration 

 is given as, 

1
consta

a
     x

0

         (11) 

and it has been generally proved [7] that Euclidean two 
point functions in Rindler coordinates are periodic in the 
direction of time with period a.  

Since the Euclidean Rindler spacetime has a singular- 
ity at    one requires that the period of the imagi- 
nary time is 2π  . With this particular choice the 
Euclidean formalism in Rindler coordinates coincides 
with the finite temperature Matsubara formalism and 
therefore the following substitutions will be necessary in 
evaluating the effective potential in the next sections: 

0d d 1

2π 2π n
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3. Effective Potential for Accelerated 
Observer 

Let us now study the effective potential for a Rindler 
observer when for a Minkowski observer the effective 
potential is assumed to possess a symmetry breaking 
solution. For classical constant field configuration, cl , 
the one loop effective action in Rindler coordinates turns 
out to be: 
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where    clI and   is given by  
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The effective potential (  1

   
, ) is defined as 

0
0 4d
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and by the following relation, 
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where M  is defined by previous Equations 
(7)-(10) with the substitution,  it turns out to 
be 
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In Euclidean space with the periodic boundary condi- 
tion in Equations (12) and (13) and by introducing the 
Fourier transform of the Green’s function, Equation (7), 
the previous equation gives 
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and  is now solu- 
tion of the equation 
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which, according to Equation (5) can be written as 
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Since the world line in Rindler coordinates of a uni- 
formly accelerated observer with proper constant accel- 
eration  is given by Equation (11), one sets  

a     and 1 a    and by changing the 
integration variable in Equation (23) from   to a , 
it turns out 
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By performing the sum on the Matsubara frequencies 
the final result for the effective potential is 
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with     and 
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In order to calculate the critical acceleration c  for 
symmetry restoration we will impose the following con- 
dition [3]: 
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where we set  k  for notation convenience. The 
computation of the integrals is straithforward and one 
gets 
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in complete analogy with the finite temperature case [3]. 
Indeed by defining the renormalized mass to cancel the 
quadratic divergence 

                 (29) 

the critical acceleration is obtained by the equation  
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which, for large acceleration, gives 
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in agreement with the one-loop calculation in Minkowski 
space-time at finite temperature [3] ( ). The pre- 
vious expression in brackets might be confusing. Hence 
let me briefly clarify it. As we know the phenomenon of 
spontaneous symmetry breaking is characterized by the 
existence of a non-vanishing vacuum expectation value 
of the field  x  which minimize the effective poten- 
tial  V 0 . The (renormalized) mass square  is 
defined as the functional second derivative of the effec- 
tive action 

2m

 cl . For classical constant field configu- 
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rations 0cl  we can define the effective 
potential as we did in Equation (17) and the mass is 
given by: 

 x const  

 

0

2
0

2
0 0

d

d

V








0

2m  .             (33) 

If the symmetry is unbroken then 0 
 

 is a mini- 
mum for 0V   and the second derivative is positive. 
However in our case the symmetry is spontaneously 
broken and the effective potential develops two symmet- 
ric non-vanishing minima while 0 0 

2 0m 

0n =

 becomes a 
maximum. Then the fact that  does not mean 
that the mass square is negative but simply tells us that 
we are computing the mass square in the wrong vacuum 
state i.e. in a field configuration which, because of sym- 
metry breaking, is not the true vacuum state (the mini- 
mum) anymore (indeed it is a maximum and hence the 
second derivative is negative). 

Although the final result is as expected, the calcula- 
tion in not entirely trivial. Moreover the determination of 
the critical acceleration from one loop effective potential 
suffers the same infrared problem of the finite tempera- 
ture calculation related with the mode . As well 
known, in finite temperature field theory a reliable 
evaluation of the critical temperature requires the re- 
summation of an infinite subset of diagrams [3]. This can 
be more easily done by considering the effective poten- 
tial for composite operators (CJT) [11], extensively ap- 
plied at finite temperature [13], since the relevant, infi- 
nite, subset of diagrams is automatically resummed by 
the gap equations corresponding to the minimum condi- 
tions of the effective potential with respect to the relevant 
physical parameters in the theory. In the analysis of the 
spontaneous symmetry breaking and its restoration for 

4

 ˆ

 theory by CJT method in the Hartree-Fock ap- 
proximation (i.e. by considering the lowest order contri- 
bution to the gap equation) the relevant operators are 

x  and    ˆ ˆx y   and the corresponding parame- 
ters are the vacuum expectation value of the field and the 
mass in the two-point function. Calculations at finite 
temperature have been carried out in [14]. Since the gap 
equation in the Hartree-Fock approximation correspond 
to one-loop selfconsistent calculation of the self-energy 
(see [14] for details) from our previous, explicit, one- 
loop calculation and from the complete analogy of the 
Green’s functions between a Minkowski observer at fi- 
nite temperature and an accelerated observer with 

2πT a=  [7], it follows that a more reliable evaluation 
of the critical acceleration 2πa T

170

c c  with respect to 
the one-loop result in Equation (32) can be obtained by 
following the same analysis of [14]. However the most 
interesting aspect is not the exact value of the critical ac- 
celeration but the restoration of the symmetry for an ac- 

celerated observer (see [7], Section 4, for a different 
point of view). 

4. Comments and Conclusions 

The restoration of chiral and color symmetries in the 
Nambu Jona-Lasinio model for an observer with a co- 
stant acceleration above a critical value [8,9] and the 
calculation performed in the previous section clearly in- 
dicate that one can restore broken symmetries by accel- 
eration. Although the technical aspects of the previous 
calculations are sound, the physical mechanism of the 
restoration is unclear if one does not recall that a constant 
acceleration is locally equivalent to a gravitational field. 
The critical acceleration to restore the spontaneous sym- 
metry breaking corresponds to a huge gravitational effect 
which prevents boson condensation as in the case of a 
non relativistic, ideal Bose gas [15]. 

More generally, the acceleration associated with the 
Hawking-Unruh temperature (and radiation) due to the 
observed gravitational fields is too small to produce 
measurable effects. There are very interesting attempts to 
find gravity-analogue of the Hawking-Unruh radiation 
[16,17] and, in our opinion, high energy particle physics 
seems the more promising sector to observe this effect. 
Indeed, a temperatute T  MeV, corresponding to 
an acceleration  35 210 cm sO  can be reached in rela- 
tivistic heavy ion collisions and the hadronic production 
can be understood as Hawking-Unruh radiation in Quan- 
tum Chromodynamics [18-20]. 
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Appendix: The Effective Action for 
Composite Operators      

An efficient way to perform systematic selective summa- 
tions is to use the method of the effective action for 
composite operators [11]. In this case, the effective ac- 
tion is the generating functional of the two-particle ire- 
ducible (2PI) vacuum graphs (a graph is called two-par- 
ticle irreducible if it does not become disconnected upon 
opening two lines). Now, the effective action  ,G , 
depends not only on  x , but on , as well. 
These two quantities are to be realized as the possible 
expectation values of a quantum field 

 , y



G x

ˆ x  and as the 
time ordered product of the field op- erator    ˆ ˆx y   
respectively. There is an advantage in using the CJT 
method to calculate the effective potential in certain ap-
proximations as is, for example, the Har- tree-Fock ap-
proximation of the 4



 theory. Indeed, if we use an 
ansatz for a dressed propagator, we need to evaluate only 
the double bubble graph in Figure 1 (with lines repre-
senting dressed propagators), instead of sum- ming the 
infinite class of daisy and super-daisy graphs. In order to 
define the effective action for composite op- erators, we 
can follow a path analogous to the one lead- ing to the 
ordinary effective action. The essential differ- ence is 
that the partition function depends also on a bilo- cal 
source  ,K x y , in addition to the local source  J x . 
As an example, we consider the 4  theory with La-
grangian: 
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According [11], the generating functional for the 
Green functions in the presence of sources  J x
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K x y  is given by (we set ) 1
 

 

Figure 1. The double bubble graph contributing to the ef- 
fective potential in the CJT method. The lines represent 
dressed propagators G(x, y). 
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where ,W J K , is the generating functional for the 
connected Green functions, while   is the classical 
action. The effective action for composite operators 

 ,W J K , is obtained through a double Legendre trans- 
formation of    , ln ,W J K J K 
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Physical processes correspond to vanishing sources, so 
the stationarity conditions which determine the expecta- 
tion value of the field  and the (dressed) propagator 
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As it was shown by in [11], the effective action 
  is given by 
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where in this last equation 2  is the sum of all 
two-particle irreducible (2PI) diagrams in which all lines 
represent full (dressed) propagators G , while   is 
the inverse of the tree-level propagator. When translation 
invariance is not broken it is sufficient to consider a clas- 
sical constant field configuration cl const  . Under this 
assumption we can factorize an overall four-dimensional 
volume factor and define the effective potential for 
composite operators  ,V G  exactly as we did for the 
standard effective potential. Then the stationary condi- 
tion are given by Equations (37) and (38) with  ,G  
re- placed by  ,V G . 
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