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Abstract

We introduce a model for directed scale-free graphs that

grow with preferential attachment depending in a natural

way on the in- and out-degrees. We show that the resulting

in- and out-degree distributions are power laws with different

exponents, reproducing observed properties of the world-

wide web. We also derive exponents for the distribution

of in- (out-) degrees among vertices with fixed out- (in-)

degree. We conclude by suggesting a corresponding model

with hidden variables.

1 Introduction

Recently many new random graph models have been
introduced and analyzed, inspired by certain common
features observed in many large-scale real-world graphs
such as the ‘web graph’, whose vertices are web pages
(or sites), with a directed edge for each link between
two web pages. For an overview see the survey pa-
pers [2] and [15]. Other graphs studied are the ‘internet
graph’ [18], movie actor [28] and scientific [25] collab-
oration graphs, cellular networks [21] and many other
examples.

In addition to the ‘small-world phenomenon’ of
logarithmic diameter investigated originally by Strogatz
and Watts [28], one of the main observations is that the
graphs are ‘scale-free’ (see [5, 7, 24] and the references
therein); the distribution of vertex degrees follows a
power law, rather than the Poisson distribution of the
classical random graph models G(n, p) and G(n,M) [16,
17, 19], see also [9].

Many models have been suggested to explain this
and other features of the graphs studied. One of
the basic ideas is the combination of growth with
‘preferential attachment’; the graph grows one vertex
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at a time, and edges are added, perhaps only from
the new vertex to old vertices, or perhaps also between
old vertices, where the old vertices involved are chosen
with probabilities proportional to their degrees. One
of the simplest and earliest models is that outlined by
Barabási and Albert in [5], made precise in [11]. The
degree sequence of this model was analyzed heuristically
in [5, 6], and rigorously in [12]. Many generalizations
have been suggested and studied heuristically; a few
have been analyzed precisely, see [27]. In a complicated
paper Cooper and Frieze [14] have analyzed rigorously
a very general version of the model allowing for (finite)
distributions of out-degrees and mixtures of uniform and
preferential attachment.

The models mentioned above essentially describe
undirected graphs. The only exception is [14], where
the authors treat either in-degrees or out-degrees, but
not both simultaneously; a full treatment of directed
graphs was announced there, but has not yet appeared.
However, in many contexts – for example the web graph
– it is natural to look at directed graphs, and to study
the (often different) power laws for in- and out-degrees.
Here we propose a very natural model of directed web
graphs and show that it gives power laws consistent with
those that have been observed in the world-wide web.

Before turning to our model let us briefly mention
two rather different kinds of model: Newman, Strogatz
and Watts [26], Aiello, Chung and Lu [1] and other
groups have studied random graphs chosen by first
fixing the (scale-free) degree distribution, and then
choosing a graph with this degree distribution. This is
very different from our aim here, which is to explain the
power-law distributions. Also, instead of preferential
attachment, copying models have been studied [22, 24];
for the web this is very natural, and something like
this is needed to explain the high density of small
subgraphs. Again, however, such models are not what
we are concerned with here: firstly they do not model
out-degree distributions (the out-degrees are fixed).
Secondly, they are rather specific. By keeping the
model simple we hope that it can give insight into
many different scale-free graphs, rather than just the
web graph. Also, Cooper and Frieze [14] note that for
(in-)degree distribution there is little difference between
copying and preferential attachment.
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2 The model

We consider a directed graph which grows by adding
single edges at discrete time steps. At each such
step a vertex may or may not also be added. For
simplicity we allow multiple edges and loops. More
precisely, let α, β, γ, δin and δout be non-negative
real numbers, with α + β + γ = 1. Let G0 be any
fixed initial directed graph, for example a single vertex
without edges, and let t0 be the number of edges of
G0. (Depending on the parameters, we may have to
assume t0 ≥ 1 for the first few steps of our process
to make sense.) We set G(t0) = G0, so at time t the
graph G(t) has exactly t edges, and a random number
n(t) of vertices. In what follows, to choose a vertex v
of G(t) according to dout + δout means to choose v so
that Pr(v = vi) is proportional to dout(vi) + δout, i.e.,
so that Pr(v = vi) = (dout(vi) + δout)/(t+ δoutn(t)). To
choose v according to din + δin means to choose v so
that Pr(v = vi) = (din(vi) + δin)/(t + δinn(t)). Here
dout(vi) and din(vi) are the out-degree and in-degree of
vi, measured in the graph G(t).

For t ≥ t0 we form G(t+1) from G(t) according the
the following rules:

(A) With probability α, add a new vertex v together
with an edge from v to an existing vertex w, where w is
chosen according to din + δin.

(B) With probability β, add an edge from an
existing vertex v to an existing vertex w, where v and
w are chosen independently, v according to dout + δout,
and w according to din + δin.

(C) With probability γ, add a new vertex w and an
edge from an existing vertex v to w, where v is chosen
according to dout + δout.

The probabilities α, β and γ clearly should add up
to one. To avoid trivialities, we will also assume that
α + γ > 0. When considering the web graph we take
δout = 0; the motivation is that vertices added under
step (C) correspond to web pages which purely provide
content - such pages never change, are born without
out-links and remain without out-links. Vertices added
under step (A) correspond to usual pages, to which links
may be added later. While mathematically it seems
natural to take δin = 0 in addition to δout = 0, this
gives a model in which every page not in G0 has either
no in-links or no out-links, which is rather unrealistic
and uninteresting! A non-zero value of δin corresponds
to insisting that a page is not considered part of the
web until something points to it, typically one of the
big search engines. It is natural to consider these
edges from search engines separately from the rest of
the graph, as they are of a rather different nature;
for the same reason it is natural not to insist that
δin be an integer. We include the parameter δout to

make the model symmetric with respect to reversing
the directions of edges (swapping α with γ and δin with
δout), and because we expect the model to be applicable
in contexts other than that of the web graph.

Our model allows loops and multiple edges; there
seems no reason to exclude them. However, there
will not be very many, so excluding them would not
significantly affect our conclusions.

Note also that our model includes (a precise version
of) the m = 1 case of the original model of Barabási and
Albert as a special case, taking β = γ = δout = 0 and
α = δin = 1. We could introduce more parameters,
adding m edges for each new vertex, or (as in [14]) a
random number with a certain distribution, but one of
our aims is to keep the model simple, and the main
effect, of varying the overall average degree, can be
achieved by varying β.

3 Analysis

Having decided on the model it is not hard to find the
power laws for in- and out-degrees. Throughout we fix
constants α, β, γ ≥ 0 summing to 1 and δin, δout ≥ 0,
and set

c1 =
α+ β

1 + δin(α+ γ)
and c2 =

β + γ

1 + δout(α+ γ)
.

We also fix a positive integer t0 and an initial graph
G(t0) with t0 edges. Let us write xi(t) for the number
of vertices of G(t) with in-degree i, and yi(t) for the
number with out-degree i.

Note that the in-degree distribution becomes trivial
if αδin + γ = 0 (all vertices not in G0 will have in-
degree zero) or if γ = 1 (all vertices not in G0 will have
in-degree 1), while for γδout + α = 0 or α = 1 the out-
degree distribution becomes trivial. We will therefore
exclude these cases in the following theorem.

Theorem 3.1. Let i ≥ 0 be fixed. There are constants
pi and qi such that xi(t) = pit+o(t) and yi(t) = qit+o(t)
hold with probability 1. Furthermore, if αδin+γ > 0 and
γ < 1, then as i→∞ we have

pi ∼ CIN i−XIN ,

where XIN = 1 + 1/c1 and CIN is a positive constant.
If γδout + α > 0 and α < 1, then as i→∞ we have

qi ∼ COUT i−XOUT ,

where XOUT = 1+1/c2 and COUT is a positive constant.

In the statement above, the o(t) notation refers to t→
∞ with i fixed, while a(i) ∼ b(i) means a(i)/b(i) → 1
as i→∞.



Proof. Note first that if the initial graph has n0 vertices
then n(t) is equal to n0 plus a Binomial distribution
with mean (α + γ)(t − t0). It follows from standard
results (e.g., the Chernoff bound) that there is a positive
constant c such that for all sufficiently large t we have

Pr
(∣∣n(t)− (α+ γ)t

∣∣ ≥ t1/2 log t
)
≤ e−c(log t)2

.(3.1)

In particular, the probability above is o(t−1) as t→∞.
We consider how the vector (x0(t), x1(t), . . . ), giv-

ing for each i the number of vertices of in-degree i in
the graph G(t), changes as t increases by 1. Let G(t) be
given. Then with probability α a new vertex with in-
degree 0 is created at the next step, and with probability
γ a new vertex with in-degree 1 is created. More im-
portantly, with probability α+β the in-degree of an old
vertex is increased. In going from G(t) to G(t+1), from
the preferential attachment rule, given that we perform
operation (A) or (B), the probability that a particular
vertex of in-degree i has its in-degree increased is ex-
actly (i + δin)/(t + δinn(t)). Since the chance that we
perform (A) or (B) is α+ β, and since G(t) has exactly
xi(t) vertices of in-degree i, the chance that one of these
becomes a vertex of in-degree i+1 in G(t+1) is exactly

(α+ β)xi(t)
i+ δin

t+ δinn(t)
,

so with this probability the number of vertices of in-
degree i decreases by 1. However, with probability

(α+ β)xi−1(t)
i− 1 + δin
t+ δinn(t)

a vertex of in-degree i − 1 in G(t) becomes a vertex of
in-degree i in G(t), increasing the number of vertices of
in-degree i by 1. Putting these effects together,

(3.2) E
(
xi(t+ 1)

∣∣∣G(t)
)

= xi(t)

+
α+ β

t+ δinn(t)

(
(i− 1 + δin)xi−1(t)− (i+ δin)xi(t)

)
+ α1{i=0} + γ1{i=1},

where we take x−1(t) = 0, and write 1A for the indicator
function which is 1 if the event A holds and 0 otherwise.

Let i be fixed. We wish to take the expectation of
both sides of (3.2). The only problem is with n(t) in
the second term on the right hand side. For this, note
that from a very weak form of (3.1), with probability
1 − o(t−1) we have |n(t) − (α + γ)t| = o(t3/5). Now
whatever value n(t) takes we have

α+ β

t+ δinn(t)
(j + δin)xj(t) = O(1)

for each j, so

E
(

α+ β

t+ δinn(t)
(j + δin)xj(t)

)
=

α+ β

t+ δin(α+ γ)t
(j + δin)Exj(t) + o(t−2/5),

and, taking the expectation of both sides of (3.2),

Exi(t+ 1) = Exi(t)

+
α+ β

t+ δin(α+ γ)t

(
(i−1+δin)Exi−1(t)−(i+δin)Exi(t)

)
+ α1{i=0} + γ1{i=1} + o(t−2/5).

Let us write xi(t) for the ‘normalized expectation’
Exi(t)/t. Recalling that c1 = (α+ β)/(1 + δin(α+ γ)),
we have

(3.3) (t+ 1)xi(t+ 1)− txi(t)

= c1

(
(i− 1 + δin)xi−1(t)− (i+ δin)xi(t)

)
+ α1{i=0} + γ1{i=1} + o(t−2/5).

Now let p−1 = 0 and for i ≥ 0 define pi by

(3.4) pi = c1

(
(i− 1 + δin)pi−1 − (i+ δin)pi

)
+ α1{i=0} + γ1{i=1}.

Our first claim is that for each i we have

E(xi(t)) = pit+ o(t3/5)(3.5)

as t→∞; later we shall show that xi(t) is concentrated
around its mean, and then finally that the pi follow the
stated power law. To see (3.5), set εi(t) = xi(t) − pi.
Then subtracting (3.4) from (3.3),

(t+ 1)εi(t+ 1)− tεi(t)
= c1(i− 1 + δin)εi−1(t)− c1(i+ δin)εi(t) + o(t−2/5),

which we can rewrite as

εi(t+ 1) =
t− c1(i+ δin)

t+ 1
εi(t) + ∆i(t),(3.6)

where ∆i(t) = c1(i− 1 + δin)εi−1(t)/(t+ 1) + o(t−7/5).
To prove (3.5) we must show exactly that εi(t) =

o(t−2/5) for each i. We do this by induction on i;
suppose that i ≥ 0 and εi−1(t) = o(t−2/5), noting that
ε−1(t) = 0, so the induction starts. Then ∆i(t) =
o(t−7/5), and from (3.6) one can check (for example
by solving this equation explicitly for εi(t) in terms of



∆i(t)) that εi(t) = o(t−2/5). This completes the proof
of (3.5).

Our next aim is to show that, with probability 1,
we have

xi(t)/t→ pi,(3.7)

as claimed in the statement of the theorem. To do this
we show concentration of xi(t) around its expectation
using, as usual, the Azuma-Hoeffding inequality [4, 20]
(see also [10]). This can be stated in the following form:
if X is a random variable determined by a sequence of
n choices, and changing one choice changes the value of
X by at most θ, then for any x ≥ 0 we have

Pr
(
|X −EX| ≥ x

)
≤ 2e−x

2/(2nθ2).(3.8)

To apply this let us first choose for each time step which
operation (A), (B) or (C) to perform. Let A be an event
corresponding to one (infinite) sequence of such choices.
Note that for almost all A (in the technical sense of
probability 1), the argument proving (3.5) actually gives

E(xi(t) | A) = pit+ o(t).(3.9)

(We leave out the straightforward but somewhat tech-
nical details.)

Given A, to determine G(t) it remains to choose at
each step which old vertex (for (A) or (C)), or which old
vertices (for (B)) are involved. There are at most 2t old
vertex choices to make. Changing one of these choices
from v to v′, say, only affects the degrees of v and v′ in
the final graph. (To preserve proportional attachment
at later stages we must redistribute later edges among
v and v′ suitably, but no other vertex is affected.) Thus
xi(t) changes by at most 2, and, applying (3.8), we have

Pr
(∣∣xi(t)−E (xi(t) | A)

∣∣ ≥ t3/4 | A) ≤ 2e−
√
t/16.

Together with (3.9) this implies that (3.7) holds with
probability one, proving the first part of the theorem.
(Note that with a little more care we can probably re-
place (3.7) with xi(t) = pit+O(t1/2 log t). Certainly our
argument gives an error bound of this form in (3.5); the
weaker bound stated resulted from replacing t1/2 log t
in (3.1) by o(t3/5) to simplify the equations. However,
the technical details leading to (3.9) may become com-
plicated if we aim for such a tight error bound.)

We now turn to the more substantial part of the
result, determining the behaviour of the quantities pi
defined by (3.4).

Assuming γ < 1, we have α + β > 0 and hence
c1 > 0, so we can rewrite (3.4) as

(i+ δin + c−1
1 )pi = (i− 1 + δin)pi−1

+ c−1
1 (α1{i=0} + γ1{i=1}).

This gives p0 = α/(1 + c1δin),

p1 = (1 + δin + c−1
1 )−1

(
αδin

1 + c1δin
+
γ

c1

)
,

and, for i ≥ 1,

pi =
(i− 1 + δin)i−1

(i+ δin + c−1
1 )i−1

p1

(3.10)

=
(i− 1 + δin)!

(i+ δin + c−1
1 )!

(1 + δin + c−1
1 )!

δin!
p1.

Here, as usual, for x a real number and n an integer we
write (x)n for x(x−1) · · · (x−n+1). Also, we use x! for
Γ(x+1) even if x is not an integer. We skip some detail
in the derivations, as equations such as (3.4) clearly have
unique solutions, and it is straightforward to check that
the formulae we obtain do indeed give solutions. One
can check that, as expected,

∑∞
i=0 pi = α+ γ; there are

(α+ γ + o(1))t vertices at large times t.
From (3.10) we see that as i → ∞ we have pi ∼

CIN i
−XIN with

XIN = (δin + c−1
1 )− (−1 + δin) = 1 + 1/c1,

as claimed.
For out-degrees the calculation is exactly the same

after interchanging the roles of α and γ and of δin and
δout. Under this interchange c1 becomes c2, so the
exponent in the power law for out-degrees is XOUT =
1 + 1/c2, as claimed.

We now turn to more detailed results, considering
in- and out-degree at the same time. Let nij(t) be the
number of vertices of G(t) with in-degree i and out-
degree j.

Theorem 3.2. Assume the conditions of Theorem 3.1
hold, that α, γ < 1, and that αδin + γδout > 0.
Let i, j ≥ 0 be fixed. Then there is a constant fij
such that nij(t) = fijt + o(t) holds with probability 1.
Furthermore, for j ≥ 1 fixed and i→∞,

fij ∼ Cj i−X
′
IN ,(3.11)

while for i ≥ 1 fixed and j →∞,

fij ∼ Di j
−X′OUT ,(3.12)

where the Cj and Di are positive constants,

X ′IN = 1 + 1/c1 + c2/c1(δout + 1{γδout=0})

and

X ′OUT = 1 + 1/c2 + c1/c2(δin + 1{αδin=0}).



Note that Theorem 3.2 makes statements about the
limiting behaviour of the fij as one of i and j tends to
infinity with the other fixed; there is no statement about
the behaviour as i and j tend to infinity together in some
way.

The proof of Theorem 3.2 follows the same lines as
that of Theorem 3.1, but involves considerably more
calculation, and is thus given as an appendix. The
key difference is that instead of (3.10) we obtain a two
dimensional recurrence relation (6.13) whose solution is
much more complicated.

Before discussing the application of Theorems 3.1
and 3.2 to the web graph, note that if δout = 0 (as we
shall assume when modelling the web graph), vertices
born with out-degree 0 always have out-degree 0. Such
vertices exist only if γ > 0. Thus γδout > 0 is exactly
the condition needed for the graph to contain vertices
with non-zero out-degree which were born with out-
degree 0. It turns out that when such vertices exist
they dominate the behaviour of fij for j > 0 fixed and
i → ∞. A similar comment applies to αδin with in-
and out-degrees interchanged. If αδin = γδout = 0 then
every vertex not in G0 will have either in- or out-degree
0.

Note also for completeness that if γδout > 0 then
(3.11) holds for j = 0 also. If γ = 0 then fi0 = 0
for all i. If γ > 0 but δout = 0, then among vertices
with out-degree 0 (those born at a type (C) step), the
evolution of in-degree is the same as among all vertices
with non-zero out-degree taken together. It follows from
Theorem 3.1 that in this case fi0 ∼ C0i

−XIN .

4 Particular values

An interesting question is for which parameters (if
any) our model reproduces the observed power laws for
certain real-world graphs, in particular, the web graph.

For this section we take δout = 0 for the reasons
explained in section 2. We assume that α > 0, as
otherwise there will only be finitely many vertices (the
initial ones) with non-zero out-degree. As before, let
c1 = (α + β)/(1 + δin(α + γ)) and note that now c2 =
1−α. We have shown that the power-law exponents are

XIN = 1 + 1/c1

for in-degree overall (or in-degree with out-degree fixed
as 0),

XOUT = 1 + 1/c2

for out-degree overall, and that if δin > 0 we have
exponents

X ′IN = 1 + 1/c1 + c2/c1

for in-degree among vertices with fixed out-degree j ≥ 1,
and

X ′OUT = 1 + 1/c2 + δinc1/c2

for out-degree among vertices with fixed in-degree i ≥ 0.
For the web graph, recently measured values of the

first two exponents [13] are XIN = 2.1 and XOUT = 2.7.
(Earlier measurements in [3] and [23] gave the same
value for XIN but smaller values for XOUT .) Our model
gives these exponents if and only if c2 = .59, so α = .41,
and c1 = 1/1.1, so

δin =
1.1(α+ β)− 1

1− β
.

This equation gives a range of solutions: the extreme
points are δin = 0, β = .49, γ = .1 and δin = .24, β =
.59, γ = 0.

As a test of the model one could measure the ex-
ponents X ′IN and X ′OUT (which may of course actually
vary when the fixed out-/in-degree is varied). We ob-
tain 2.75 for X ′IN and anything in the interval [2.7, 3.06]
for X ′OUT .

5 Other models

In many contexts, such as the web graph, it is clear
that while preferential attachment is important, it is not
the only, or perhaps even the main, reason for widely
varying degrees. Another underlying cause which can
produce this effect is the varying fitness or attractiveness
of vertices or web pages; some web pages are just
more interesting than others. This can be modelled
mathematically using ‘hidden variables’; each vertex has
a random attractiveness, and preferential attachment
depends on this and on degree. A model along these
lines has been proposed by Bianconi and Barabási [8]
(see also [15]).

Here we would like to propose a corresponding
model for directed graphs: when a vertex v is created,
two random numbers are associated with it, λv and µv,
its in- and out-fitness. Let us fix two distributions DIN

and DOUT on the non-negative real numbers. (The
simplest examples would be exponential or power-law
distributions.) In what follows, for each new vertex
v created we choose independently λv from DIN and
µv from DOUT , these choices being independent of all
earlier choices. As before we fix α, β, γ ≥ 0 with
α+ β+ γ = 1, and also δin, δout ≥ 0. At time t0 ≥ 0 we
start with an initial graph G0 with t0 edges and n0 ≥ 1
vertices, with certain fitnesses λv, µv for the vertices v
of G0.

For t ≥ t0 we form G(t+ 1) from G(t) as follows:
(A) With probability α, add a new vertex v together



with an edge from v to an existing vertex w, where w is
chosen according to λ(din + δin).

(B) With probability β, add an edge from an
existing vertex v to an existing vertex w, where v and w
are chosen independently, v according to µ(dout + δout),
and w according to λ(din + δin).

(C) With probability γ, add a new vertex w and an
edge from an existing vertex v to w, where v is chosen
according to µ(dout + δout).

Here, to choose v according to λ(din + δin) means
to choose v so that Pr(v = vi) is proportional to
λvi(din(vi)+ δin), and to choose v according to µ(dout+
δout) means to choose v so that Pr(v = vi) is propor-
tional to µvi(dout(vi)+δout), where the degrees are mea-
sured in G(t).

Since the in- and out-degrees of vertices with dif-
ferent fitness will grow at different power-law rates, this
model will produce some vertices of very high in-degree
but low out-degree and vice-versa. This will be the topic
of a forthcoming paper. Of course, one could also con-
sider more general ‘preference functions’, depending on
attractiveness and degree in a more complicated way, as
well as a joint distribution for λv, µv, combined with ex-
tra parameters as in [14]. However, there is always some
benefit in keeping the model simple and the number of
parameters small.
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6 Appendix: Proof of Theorem 3.2

In this appendix we give the proof of Theorem 3.2.
Arguing as in the proof of Theorem 3.1 we see that
for each i and j we have nij(t)/t → fij , where the fij



satisfy

fij = c1(i− 1 + δin)fi−1,j − c1(i+ δin)fij
+ c2(j − 1 + δout)fi,j−1 − c2(j + δout)fij(6.13)
+ α1{i=0,j=1} + γ1{i=1,j=0}.

Of course we take fij to be zero if i or j is −1. (At first
sight there might seem to be a problem caused by the
possibility that a vertex sends a loop to itself, increasing
both its in- and out-degrees in one step. While this does
complicate the equations for E(nij(t)), it is easy to see
that for fixed i and j the effect on this expectation is
o(t), so (6.13) holds exactly.)

We start by finding an expansion for fij when
i→∞ with j fixed.

The recurrence relation (6.13) is of the form

L(f) = α1{i=0,j=1} + γ1{i=1,j=0}(6.14)

for a linear operator L on the two-dimensional array of
coefficients f = fij . We introduce the notation L just
as a convenience; to keep the formulae relatively simple,
and reduce the number of cases, we wish to analyze
the contributions to f arising from the two terms on
the right of (6.14) separately. The only property of L
needed to allow this separation is its linearity.

It is clear from the form of L that there is a unique
solution to equation (6.14). By linearity we can write

fij = gij + hij

where

L(g) = α1{i=0,j=1}(6.15)

and

L(h) = γ1{i=1,j=0}.(6.16)

Let us first consider g. As α, γ < 1 we have
c1, c2 > 0, so setting

bj = δin +
1
c1

+
c2
c1

(j + δout),

dividing (6.15) through by c1 we obtain

(6.17) (i+ bj)gij = (i− 1 + δin)gi−1,j

+
c2(j − 1 + δout)

c1
gi,j−1 +

α

c1
1{i=0,j=1}.

Using (6.17), it is not hard to show that gij = 0 for all
i > 0 if αδin = 0. For the moment, we shall therefore
assume that αδin > 0.

Note that, from the boundary condition, we have
gi0 = 0 for all i. Thus for j = 1 the second term on

the right of (6.17) disappears, and we see (skipping the
details of the algebra) that

gi1 = a
(i− 1 + δin)!

(i+ b1)!

where

a = α
(b1 − 1)!
c1(δin − 1)!

is a positive constant. (Here we have used αδin > 0.)
For j ≥ 2 the last term in (6.17) is always zero.

Solving for gij by iteration, we get

gij =
c2(j − 1 + δout)

c1

i∑
k=0

(i− 1 + δin)i−k
(i+ bj)i−k+1

gk,j−1.

(6.18)

Suppose that for some constants Ajr we have

gij =
j∑
r=1

Ajr
(i− 1 + δin)!

(i+ br)!
(6.19)

for all 1 ≤ j ≤ j0 and all i ≥ 0. Note that we have
shown this for j0 = 1, with A11 = a. Let j = j0 + 1.
Then, using (6.18) and (6.19), we see that

(6.20) gij =
j−1∑
r=1

c2(j − 1 + δout)
c1

Aj−1,r

i∑
k=0

(i− 1 + δin)!
(i+ bj)i−k+1(k + br)!

.

(The sums above are nested.) Now it is straightforward
to verify that if 0 < y < x and s is an integer with
0 ≤ s ≤ i+ 1, then

(6.21)
i∑

k=s

1
(i+ x)i−k+1(k + y)!

=
1

x− y

(
1

(i+ y)!
− (s− 1 + x)!

(i+ x)!(s− 1 + y)!

)
.

(For example one can use downwards induction on s
starting from s = i + 1 where both sides are zero.)
Combining (6.20) and the s = 0 case of (6.21) we see
that

gij =
j−1∑
r=1

c2(j − 1 + δout)
c1

Aj−1,r
(i− 1 + δin)!

bj − br

×
(

1
(i+ br)!

− (bj − 1)!
(i+ bj)!(br − 1)!

)
.



(The last factor is of course inside the sum.) Collecting
coefficients of 1/(i + br)! for different values of r, and
noting that bj − br = (j − r)c2/c1, we see that (6.19)
holds for j = j0 + 1, provided that

Ajr =
j − 1 + δout

j − r
Aj−1,r

for 1 ≤ r ≤ j − 1, and

Ajj = −
j−1∑
r=1

j − 1 + δout
j − r

(bj − 1)!
(br − 1)!

Aj−1,r.

In fact we have the power law we are interested in (for g
rather than f) without calculating the Ajr. Observing
only that A11 > 0, so Aj1 > 0 for every j ≥ 1, the r = 1
term dominates (6.19). Thus for any fixed j > 0 we
have

gij ∼ C ′ji−1+δin−b1 = C ′ji
−(1+1/c1+c2/c1(1+δout)).

(6.22)

Having said that we do not need the Ajr for the
power law, we include their calculation for completeness
since it is straightforward. Skipping the rather unpleas-
ant derivation, we claim that

Ajr = a(−1)r−1 (j − 1 + δout)!
δout!(j − 1)!

(
j − 1
r − 1

)
(br − 1)!
(b1 − 1)!

,

for the same constant a as above. This is easy to verify
by induction on j using the relations above.

We now turn to h, for which the calculation is
similar. From (6.16) we have

(6.23) (i+ bj)hij = (i− 1 + δin)hi−1,j

+
c2(j − 1 + δout)

c1
hi,j−1 +

γ

c1
1{i=1,j=0}.

Again skipping much of the algebra, for j = 0 we see
that h00 = 0, while

hi0 = γ
b0!
c1δin!

(i− 1 + δin)!
(i+ b0)!

for all i ≥ 1.
If γδout = 0, then hij = 0 is zero for all j > 0, so

let us now assume γδout > 0. This time the boundary
condition implies that h0j = 0 for all j. For j ≥ 1 we
thus have from (6.23) that

hij =
i∑

k=1

c2(j − 1 + δout)
c1

hk,j−1
(i− 1 + δin)i−k

(i+ bj)i−k+1
.

(The only difference from (6.18) is that the sum starts
with k = 1.) Arguing as before, using the s = 1 case of
(6.21), we see that, for i ≥ 1 and j ≥ 0,

hij =
j∑
r=0

Bjr
(i− 1 + δin)!

(i+ br)!
,

where

Bjr = (−1)rγ
(j − 1 + δout)!
j!(δout − 1)!

(
j

r

)
br!
c1δin!

.

(This makes sense as we are assuming that δout > 0.)
Here the r = 0 term dominates, and we see that for each
j ≥ 0 we have

hij ∼ C ′′j i−1+δin−b0 = C ′′j i
−(1+1/c1+c2δout/c1)(6.24)

as i → ∞, for some positive constant C ′′j . Returning
now to f = g + h, considering j ≥ 1 fixed and i → ∞
we see that when γδout > 0, the contribution from h
dominates, while if γδout = 0, this contribution is zero.
Thus combining (6.22) and (6.24) proves (3.11).

The second part of Theorem 3.2, the proof of (3.12),
follows by interchanging in- and out-degrees, α and γ
and δin and δout.


