ELSEVIER

Available inine at www.sciencedirect.com
“».” ScienceDirect

Computer Communications 29 (2006) 2770-2780

computer
communications

www.elsevier.com/locate/comcom

A new dependable exchange protocol ™

Hao Wang **, Heqing Guo ?, Manshan Lin ?, Jianfei Yin ¢, Qi He °, Jun Zhang °

* School of Computer Science and Engineering, South China University of Technology, Guangzhou 510640, China
b School of Computer Engineering, Nanyang Technological University, Singapore
¢ College of Information Engineering, Shenzhen University, Shenzhen 518060, China

Available online 6 December 2005

Abstract

As electronic transaction becomes common practice in real-world business, its dependability develops into a major concern, especially
in critical transactions, e.g., electronic payment and electronic contract signing. Many recent fair-exchange protocols can recover the
transaction from network failures; however, few can survive local system failures. In this paper, we propose a new Dependable Exchange
Protocol. With proper convertible signature scheme and message logging method, the exchange protocol provides a recovery method for
network and local system failures. To the best of our knowledge, this protocol is the first fault-tolerant exchange protocol in the context

of offline TTP and asynchronous channels.
© 2005 Elsevier B.V. All rights reserved.

Keywords: E-commerce; Dependability; Exchange protocol; Fairness; Fault tolerance

1. Introduction

As electronic transaction becomes common practice in
real-world business, its dependability develops into a major
concern. When the transaction between organizations is
executed on network, they may face the risks of broken
fairness in case of local system failures [2], network failures,
cheating behavior of either involved organization, etc.
Thus, it is very important for them to follow some kind
of protocol assuring dependability. Dependability guaran-
tees fairness for involved parties and recoverability from
failures. Fairness is a vital requirement for electronic trans-
actions, which means that when the electronic transaction
terminates, either both/all parties get their expected items
or neither does.

We first set up the application scenario for our
transaction protocol: company B (the client, denoted

* A preliminary version of this paper was published at WICS05 [1].
* Corresponding author. Tel.: +86 20 33178911.
E-mail addresses: iswanghao@acm.org (H. Wang), guozhou@scut.
edu.cn (H. Guo), Imshill@hotmail.com (M. Lin), yjhhome@hotmail.com
(J. Yin), qihe0001@ntu.edu.sg (Q. He), jzhang@ntu.edu.sg (J. Zhang).

0140-3664/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2005.10.028

as Bob) is going to purchase some electronic goods
from company A (the merchant, denoted as Alice)
and they have settled on the goods and the price.
Now they need to finish the exchange of Bob’s check
with Alice’s goods. Bob’s check, issued by Bob’s bank,
is an electronic document composed of his bank-certi-
fied account information, and goods information, which
can be validated only after signed by his signature.
With the signed check, Alice can get her money paid
from Bob’s bank. Note that anonymity is not consid-
ered in this scenario and interested readers can find
detailed discussion in [3]. With this scenario set, we
state the assumptions of our protocol explicitly (refer
to Section 3).

To realize fairness, a TTP (trusted third party who is
assumed to be fully trusted) must be included into the pro-
tocol when network or system failures occur [4]. In [5],
Asokan et al. introduce the idea of optimistic approach
and present fair protocols with offline TTP, in which
TTP intervenes only when an error occurs (network error
or malicious party’s cheating). Protocols with offline TTP
can recover network failures between Alice and Bob. Yet
the recovered messages are different from those produced
by the sender or the recipient, which make the protocols

mailto:iswanghao@acm.org
mailto:guozhou@scut. edu.cn
mailto:guozhou@scut. edu.cn
mailto:lmshill@hotmail.com
mailto:yjhhome@hotmail.com
mailto:qihe0001@ntu.edu.sg
mailto:jzhang@ntu.edu.sg

H. Wang et al. | Computer Communications 29 (2005) 2770-2780 2771

suffer from weak fairness, as the recovered messages may
lose some functionality of the original ones. Transparent
TTP is first introduced by Micali [6] to solve this problem.
The TTP-recovered messages are exactly the same as the
ones from the original sender. In this way, the outcome
messages will not indicate whether the TTP has been
involved, so the recovery is done in a transparent way.
Of course, the transparent recovery may decrease observ-
ability of the exchange (for detailed discussion, see Section
5.1.1).

Until now, the best method to realize transparent TTP is
to use convertible signatures (CS). It sends a partial com-
mitted signature that can be converted into a full signature
(that is a normal signature) by both the TTP and the signer.
Recently, Park et al. [7] present a very efficient protocol in
which the output evidences are standard RSA signatures
and the partial signature is non-interactively verifiable.
But very soon, Dodis and Reyzin [8] break the scheme by
proving that the TTP can obtain the signer’s entire secret
key with only her registration information. In the same
paper, they propose a new CS scheme (DR signature
scheme) to produce an equally efficient but more secure
protocol.

Unfortunately, all these protocols do not consider local
system failures and assume that local systems of Alice,
Bob, and TTP are all reliable. To our knowledge, there
are only very few efforts to overcome the local system fail-
ures problem. Liu et al. [2] propose the Semantics-based
Message Logging (SbML method) to enable recovery of
local system failures. The SbML is a logging method
which optimizes the number of messages that need to be
pessimistically logged (log all messages before sending
out). Involved parties can define their critical points
(called point-of-no-return) in the protocol run and message
will be logged before they enter the defined points. This
logging method works in protocols with online TTP [9].
Although they mention offline TTP, fairness after failures
can still be potentially broken (as discussed in Section
5.2). As Ezhilchelvan and Shrivastava [10] argue that as
the number of protocol messages is small, to minimize
the overhead of logging may not worth the effort. In
the same paper, Ezhilchelvan and Shrivastava have pro-
posed a whole set of fault-tolerant protocols. They have
considered different types of misbehaviors, communica-
tion channel, and online/offline TTP. But they have not
proposed any protocol that is fault tolerant of local sys-
tem failures in the context of offline TTP and asynchro-
nous channels.

In this paper, we propose the first dependable
exchange protocol, with transparent TTP (as we already
know, it is an upgraded version of offline TTP) and
asynchronous channels, to be fault tolerant of network
and local system failures. We use the DR signature
scheme and a proper non-interactive zero-knowledge
proof method [11] as the basic cryptographic tools to
realize transparent TTP. To enable recovery of network
and local system failures, we use pessimistic message log-

ging method and introduce a new inquiry sub-protocol.
We prove that the transaction protocol is dependable.
Also we argue that the transparent TTP will not affect
the observability of our protocol. When implementing
the protocols, we incorporate the label and message con-
struction design principles proposed by Gurgens et al.
[12]. When using offline TTP, the problem of encrypted
item validation arises and we propose two methods con-
sidering different application scenarios.

In Section 2, we first lay out all the preliminaries: the
dependability definition of electronic exchange, the cryp-
tographic tools including DR signature scheme and the
zero-knowledge proof method. Then, we present the
exchange protocol in Section 3, with detailed analysis in
Section 4. In Section 5, we compare our protocol with
former ones and discuss several possible extensions: the
observability and encrypted item validation problem with
transparent TTP, unreliable network between Alice/Bob
and the TTP, and protocol information storing issue for
TTP.

2. Preliminaries
2.1. Dependability of electronic exchange

When we design an exchange protocol, what is meant
to be achieved must be made clear at first. Five require-
ments for fair exchange have been formulated by Aso-
kan et al. in [13] and further discussed in [14]. Their
requirement definitions do not presume new advances
in recent years. In [15], Kremer et al. study many form-
er fairness definitions and present a well-knitted defini-
tion. Recently, we present a set of new requirements
for fair protocols with transparent TTP [16]. Based on
that, we extract four properties for dependable protocol
and we define a protocol dependable if it satisfies all
these properties.

Definition 1 (Effectiveness). An exchange protocol is
effective if when both parties are honest, there exists a
successful exchange of both parties’ expected items.

Definition 2 (Fairness). An exchange protocol is fair if
when the protocol run ends, either both parties get their
expected items or neither of them gets anything useful.

Definition 3 (7imeliness). An exchange protocol is timely
if the protocol can be completed in a finite amount of time
while preserving fairness for both exchangers.

Definition 4 (Non-repudiability). An exchange protocol is
non-repudiable if when the exchange succeeds, either payer
or payee cannot deny (partially or totally) his/her
participation.

With the above definitions of properties, we can further
define the dependability as follows:

Definition 5 (Dependability). An exchange protocol is
dependable if it assures effectiveness, fairness, timeliness

2772 H. Wang et al. | Computer Communications 29 (2005) 2770-2780

and non-repudiability even in case of unreliable local
systems and communication channels.

2.2. Cryptographic tools

2.2.1. Dodis—Reyzin convertible signature scheme

The DR signature is based on a recent widely used DSA-
like signature scheme called Gap Diffie-Hellman (GDH)
signature and the corresponding GDH groups (see Section
4 in [8] for detailed description).

GDH signature. Assume G is a multiplicative group of
prime order p. Key generation algorithm of the GDH sig-
nature scheme picks a GDH group of order p, and ran-
dom ge G, xe€Z, It computes h=g", and set the
public key to be (g,/) (G, p is public accessible), and the
secret key to be x. To sign a message m, one computes
o = H(m)*, where H(m) is a random oracle. To verify o,
one outputs Vppu(g,h, H(m),o), that is, test if log.h = -
logsmyo (outputting TRUE means equal). And we use
the non-interactive zero-knowledge proof method pro-
posed in [11].

DR signature. This CS signature scheme contains one
register procedure and several signing/verifying algorithms.
See Fig. 1, (1) in step 0 and 0, the signer registers to the
TTP who will make sure it can convert the signer’s partial
signature into a full one; (2) then the signer sends his/her
partial signature in step 1; (3) if everything is OK (like
the signer gets what s/he wants), the signer will send the full
signature in step 2; if the signer quit prematurely (for cheat-
ing, or system breakdown), the recipient can turn to the
TTP and get the full signature.

Register procedure. Signer (say Alice) chooses random
g€ G, x,x;€Z, computes x,=x—x;modp, h=g",
hy =g, and sets her public key pk =(g,h), secret key

The Signer

2

1
———Partial Signature: PS{m j—=

———Final Signature: FS{m)———»

sk = (x,x;), partial public key ppk = h;, partial secret key
psk = x,, then she sends the pk, ppk, and psk to the TTP,
the TTP will check whether # = ;¢ so that it can finish
the signature conversion, if so, TTP can send back a
confirmation.

Signinglverifying algorithms of full signature. They are
just the signing/verifying algorithms of normal GDH
signature: FS(m) = o= H(m)*, Ver(m,o) = Vppul(g, h, H
(m),o).

Signinglverifying algorithms of partial signature. Similar
to former ones but using the public key /;: PS(m) = ¢’ =
H(m)", PVer(m,c') = Vppulg, 1, H(m),d').

Converting algorithm. The TTP run this algorithm Con-
vert(m,a’) to convert PS(m) to FS(m): it will first check
whether PVer(m,c') = true, if holds, it outputs FS(m) =
o'H(m)™.

Dodis and Reyzin prove the DR signature scheme is just
as secure as the normal GDH signature scheme (Theorem 3
in [8]).

2.2.2. A secure zero-knowledge proof
As described above, to verify DR signature, one must
verify Vppu (g, h, H(m), o), that is to test whether log,h = -
log gm0, where 6 = H(m)*. Alice must generate a proof to
convince the truth to Bob using following method:
Generating proofs. Alice selects a random number u < p
and calculates

Q2 = g"(modp),
M = H(m)"(modp),)
v=hQ,M),

r=u+ vx(modp).

In this way, the proof of the PS(m), denoted by pf(PS (m)),
is (r, 2, M).

The
Recipient

[

[3*]

i

(w)sd
{(w)Sd

'Confirmation

TTP

ik, ppk, psk

Fig. 1. DR signature scheme.

H. Wang et al. | Computer Communications 29 (2005) 2770-2780 2773

Verifying proofs. When Bob gets the PS(m) and
pf(PS(m)), he calculates

v=h(Q,M) (2)
and verifies

{ QPS(g)" = g’(modp),

MPS(H(m))' = H(m)' (modp). G)

If they hold, Bob can be convinced that loge/ = log 0.
2.3. Basic protocol model

As we have mentioned, the exchange protocol involves
three parties: Alice, Bob, and the TTP (see Fig. 2).
Besides the exchange of electronic goods and check, Alice
and Bob also need to exchange non-repudiation evidences
proving they have actually participated in this exchange.
Alice need to give Bob her signed evidence of origin
(NRO) proving she actually send the goods and because
the check will have Bob’s signature, it can be used as
the evidence of receipt (NRR) proving Bob has received
the goods.

The basic idea of the protocol is as follows: (1)
Exchange. Alice and Bob will perform two rounds of
message exchanges and Alice initiates the protocol by
sending out the first message. The first round is to
exchange the encrypted goods and partially signed check
(also known as commitment) and the second round is to
exchange the secret key k for the goods and fully signed
check; (2) Dispute resolution. If Bob does NOT respond
in the first round, Alice will run the abort sub-protocol
with TTP and TTP will not recover messages of this
exchange any more. In the second round, if Alice or

-—Commitment, Encrypted goods—

Bob does NOT receive message from the other party,
s/he will run the recover sub-protocol with TTP and
TTP can recover the k and the fully signed check for
both parties.

Our protocol has following assumptions:

Communication network. We assume the communication
channel between Alice and Bob is unreliable and channels
between exchangers (Alice/Bob) and TTP are resilient (dis-
cussion of unreliable channels between Alice/Bob and TTP
can be found in Section 5). Messages in a resilient channel
can be delayed but will eventually arrive. On the contrary,
messages in unreliable network may be lost. We also
assume that both types of network cannot be eavesdropped
by any third party.

Cryptographic tools. Encryption tools including symmet-
ric encryption, asymmetric encryption, and normal signa-
ture are secure. In addition, the adopted signature
scheme is message recovery.

Honest TTP. The TTP should send a valid and honest
reply to every request. Honest means that when the TTP
is involved, if a recover decision is made, Alice gets the pay-
ment and Bob gets the goods; if a abort decision is made,
Alice and Bob get the abort confirmation and they cannot
recover the exchange in any future time.

Local systems. Local systems of Alice, Bob, and TTP are
recoverable with proper message logging.

To describe the protocol, we need to use some notations
concerning the necessary cryptographic tools:

o E;.()/Dy(): a symmetric-key encryption/decryption func-
tion under key k.

e Eyx()/Dyx(): a public-key encryption/decryption function
under pky/sky.

Bob
k, NRO/NRR—#

Alice
-—Fully signed check,
T &
} ']
F 2
o
& £
T 3
2 S
= =
O -
8 g
E-
TTP
o

[02030ud-qNg 19A0I0 Y — g

Fig. 2. The basic protocol model.

2774 H. Wang et al. | Computer Communications 29 (2005) 2770-2780

e Sy(): ordinary signature function of X.

e k: the key used to cipher goods.

e pky/sky: public key/secret key of X.

e cipher = Ej(goods): the cipher of goods under k.

e X' — Y: transmission from entity X to Y.

e /i(): a collision-resistant one-way hash function.

o PSyx()/FSx(): partial/final signature function of X.

e Check: the check destined for A, it contains transaction
identity, item identity, price information, B’s account
information, etc.

o [: a label that uniquely identifies a protocol run.

e f a flag indicating the purpose of a message.

3. The dependable payment protocol

In this section, we present the dependable protocol
described in the payment scenario mentioned in Section
1. This protocol adds two parts to the basic model
described in Section 2.3: the register sub-protocol and
the inquiry sub-protocol (see Fig. 3). The register
sub-protocol is presented because both parties must
negotiate with TTP on some common parameters like
shared secret keys. The registration protocol between
the Alice/Bob and TTP needs to be run only once.
And the resulting common parameters can be used
for any number of transactions. The inquiry sub-proto-
col is used by Alice/Bob after she/he recovers her/his
system after failures and gets proper messages to pro-
tect her/his own benefits. Also this inquiry sub-protocol
can help recover from some communication failures
with TTP.

When implementing the protocol, we follow the princi-
ples proposed by Gurgens et al. [12] as briefly described
below:

-—Commitment, Encryvpled goods—s

(1) Label design principles
Verifiability. The creation of a label should be verifi-
able by everyone;
Uniqueness. The label should be able to uniquely
identify a protocol run;
Secrecy. The values that are used to compute the label
must not reveal any useful information about the
exchange items (i.e., the goods).
(2) Message construction principles
Authenticity. All message parts should be included in
the respective signature (in plaintext or as hash);
Verifiability. Every recipient should be able to verify
this message;
Context of message. It should be possible for the reci-
pient of a message to identify the protocol run to
which its parts belong.
The protocol is described in the form of program modules
(similar to Vogt et al. [14]) and the notation {event) : (descrip-
tion) to describe the steps of every module. The (event) can be
sending a message from X to Y (denoted by X — Y) or some
local operations of a participant (denoted by his/her name,
i.e., A, B, or TTP). The {description) is a brief explanation
of contents of the message being sent or operations per-
formed locally.
Evidences. During the protocol, following evidences are
generated:

The recovery request: Recy = Sy (frecxs Y5 /).

The inquiry request: Inqy = Sx(finqx> Y. /).

The abort request: Abort = S (faport, TTP,1).

The abort confirmation: Con, = S77p(feona> 4, B, 1).

Registration Sub-protocol. To participate in a payment
protocol, both Alice and Bob need to run the register pro-
cedure with the TTP as required by DR signature.

Bob
k, NRO/NRR—#»

[osoyoud-gng Lrnbuj— g

Alice

-—Fully signed check,
T I Iu
=
e &
g £ =
A2 g
g T
gL w
¥y Tg
=T E o
g 22
= g
583

o= TTP

=

| L
[020)00d-qng 124000 —e|

Fig. 3. The dependable protocol.

H. Wang et al. | Computer Communications 29 (2005) 2770-2780 2775

3.1. Main protocol

After Alice and Bob settle the price and the goods,
they can follow the main protocol. The label for a proto-
col run is computed by Alice: [/=h(A4,B,TTP,h(ci-
pher),h(k)). And the secret key is encrypted with /, i.e.,
Errp(l k), to ensure this encrypted key cannot be decrypt-
ed in a different protocol run. In our protocol, we denote
the content to be signed by Alice as a = (fnro, B, 1, i (k),-
cipher, Errp(l,k)) and Bob’s as b = (4,1, check), so the
signed check will be PSz(b) and FSp(b). With this con-
struction, the signed check can only be used by Alice to
claim the money. The logging function for all parties is
log(m) which will store m into reliable storage and the
message is only accessible by the owner. Note that they
both make their own messages logged on reliable storage
before run the protocol. The main protocol is as follows
(see also Table 1):

Step 1. Alice sends encrypted goods (cipher) with the key
k encrypted by the TTP’s public key (Errp(l,k)), her
partial signature on them to initiate the payment
process.

Step 2. If Bob decides to give up or he does not receive
Alice’s message in time, he can simply quit and retain
fairness. When he receives the message, he will first
run PVer(a,d’,), if it equals true, he will send his check
and his partial signature on it (PSp(b) = o) to Alice.
Otherwise, he quits the protocol.

Step 3. If Alice decides to give up or she does not receive
Bob’s message in time, she can invoke the abort sub-pro-
tocol to prevent a later resolution by the TTP. When she
receives the message, she will first run Pler(b, o)), if it
equals true, she will log the message and the state infor-
mation, then send k and her full signature on «
(FS4(a) = 04) to Bob. Otherwise, she also invokes the
abort sub-protocol.

Step 4. If Bob detects that his channel with Alice is bro-
ken or does not receive the message in time, he can
invoke the recover sub-protocol. When he receives the

Table 1
Main protocol

Main protocol

A: log(B,1,a,cipher, k)
B: log(A, 1, check)
4 — B: froo, B, I, h(k), cipher, Errp(l,k), PS4(a), pf(PS4(a))
B: if not Ver(a,PS 4(a)) then stop
else log(A,1,h(k),cipher, Errp(l,k), PS4(a),pf(PS 4(a)))
B — A: fror, 4, I, PSp(b), pf(PS.4()))
A: if times out then abort
elseif not Ver(b, PSg(b)) then abort
else log(B, I, PSp(b),pf(PS.4(b)))
4 — B: fNROs B, [, k, FSA ((l)
B: if times out then call recover[X:=B, Y:=A4]
else log(A4,1,k,FS4(a))
B — A:.fNRR~ A, l, FSB(b)
A: if A times out then call recover[X:=A4, Y:=B]

message, he will check whether k can decrypt the cipher
and the goods is satisfactory, also he will run Ver(a, o 4),
if all these checking pass, he will log the message and the
state information, then send his check and his full signa-
ture on it (FSz(h) =0p) to Alice. Otherwise, he will
invoke the recover sub-protocol.

Step 5. If Alice detects that her channel with Bob is bro-
ken or does not receive the message in time, she can
invoke the recover sub-protocol. When she receives the
message, she will run Ver (b, o). If it equals true, she will
accept the check. Otherwise, she will invoke the recover
sub-protocol.

3.2. Recover sub-protocol

Whenever necessary, Alice/Bob (noted by X) will
invoke the recover protocol to let the TTP decide whether
finish or abort the payment process. The TTP keeps a
record on whether the protocol has been recovered or
aborted (denoted by two variables: aborted and recov-
ered). The recover sub-protocol is as follows (see also
Table 2):

Step 1. X sends to the TTP Errp(lk), PS4(a) = o/,
check, PSp(b) = g/, to initiate a recover process. Because
of the resilient channel between X and the TTP, this
message will eventually arrive at the TTP.

Step 2. When the TTP receives the message, it will first
check whether the protocol has already been recovered
or aborted. If so, it will stop because it is sure that both
parties have got the recovered items or the abort confir-
mation. Then, it will decrypt E;7p(l,k) with its secret
key skprp, if succeeds, it will run PlVer(a,o’,) and
PVer(b,o}). If both equals true, the TTP will run
Convert(a,d’;) and Convert(b,c}). After all these opera-
tions succeed, TTP will log the message and the variable
recovered, then send the FSz(h)=op to Alice and
FS (a) =04 & k to Bob. If either checking fails, it will
abort the protocol and send confirmations to Alice and
Bob.

Table 2
Recover sub-protocol

IRecover sub-protocol

X — TTP:fReCXaféub! Y, /, h(cipher), h(k), ETTP(L k), RQCX, PSA (a), PSB(b)
TTP: log(frecxsfsubs 4, B, L h(cipher), h(k), Errp(l, k), Recx,
PS4(a). PSy(b))
if (k) # h(Drrp(Erre(l,k))) or aborted or recovered then stop
else if PVer(a,PS,(a))#1 or PVer(a,PS,4(a))# 1 then stop
else recovered = true
Convert(PS 4(a),x,4) and Convert(PSg(b),x2p)
log(A, B,l,recovered, FS 4(a),k, FSp(b))
TTP — A:fNRRa A, l, FSA(H)
TTP — B: faro» B, 1, k, FSp(b)

2776 H. Wang et al. | Computer Communications 29 (2005) 2770-2780

Table 3
Inquiry sub-protocol

[lnquiry sub-protocol

X' — TTP: fingx. Inqx
TTP: if aborted then
TTP — X: fconas A, B, [, Con,
TTP: elseif recovered then
if X = A then
TTP — A:./‘i\JRRa A, l, FSA(G)
else
TTP — B: faro» B, 1, k, FSp(b)
else
TTP — X: null

3.3. Inquiry sub-protocol

After recovering from local system failures, Alice/Bob
(denoted as X) can invoke the inquiry sub-protocol to check
the current status of the transaction and get what s/he
deserves. The inquiry sub-protocol is as follows (see also
Table 3):

Step 1. X sends an inquiry request to the TTP. Because
of the resilient channel between X and the TTP, this
message will eventually arrive at the TTP.

Step 2. On the inquiry request, TTP will check the cur-
rent status of the protocol according to the label /. If no
record is available, that means that protocol has not
been submitted to TTP and X can directly recover the
protocol run with Y. So TTP will just need to return a
null message to X. If the protocol has been recovered,
TTP will send the recovered message to X, that is,
FS 4(a), k (for Bob) or FSg(b) (for Alice). If the protocol
has been aborted, TTP will send the abort confirmation
to X.

3.4. Abort sub-protocol

In step 2 of the main protocol, Alice can invoke this sub-
protocol to make the TTP abort this payment protocol run.
The abort sub-protocol is as follows (also see Table 4):

Step 1. Alice sends an abort request to the TTP. Because
of the resilient channel between X and the TTP, this
message will eventually arrive at the TTP.

Step 2. If the protocol has not been recovered or aborted,
the TTP will abort the protocol and log the message and

Table 4
Abort sub-protocol

IAbort sub-protocol

X = TTP: faport» [, B, abort
TTP: if aborted or recovered then stop
else aborted=true
log(A, B,1,aborted)
TTP — A: fcona A, B, I, Con,
TTP — B: fconas 4, B, I, Con,

the variable aborted, then send confirmations to both
parties.

4. Analysis of the protocol

Following is the analysis with respect to the dependabil-
ity definition in Section 2.

Claim 1. Assuming the channel between Alice and Bob is
unreliable and adopted cryptographic tools are secure, the
protocol satisfies the effectiveness requirement.

Proof. When both Alice and Bob are honest, thus they
will follow the protocol to send messages. If the proba-
bility of successful transmission in the unreliable channel
is 0, then the probability of successful execution of one
main protocol run will roughly be 6*. Even it is small,
successful execution without TTP’s involvement is still
possible. Thus, the protocol satisfies the effectiveness
requirement. []

Claim 2. Assuming the channels between the TTP and
Alicel Bob are resilient, adopted cryptographic tools are
secure and the TTP is honest, the protocol satisfies the fair-
ness requirement.

Proof. The fairness can be proved considering three
aspects: fairness for Alice, fairness for Bob, and recovered
fairness after system failures at TTP.

Fairness for Alice. Assuming Alice is honest, then risks she
may face include:

(1) She did not receive any message or the message is
invalid in Step 3. She can request abort to prevent
that Bob may call a recovery later. If Bob’s recov-
ery request arrives at the TTP before her abort
request, the TTP still will send the recovered item
and evidence to her. Thus, will not affect her
benefit.

(2) She did not receive any message or the message is
invalid in Step 5. She can submit a recovery request,
because the TTP is honest, the exchange will be
forced to complete. If Bob sent a recovery request
during this period, the result will be the same; if
Bob sent an abort request which arrived before
Alice’s recovery request, the exchange will be aborted
by the TTP, and no party can gain advantage.

(3) Local system failures. After Alice recovers from local
system failure, she can instantly invoke inquiry sub-
protocol to check the current status; if she has sub-
mitted abort or recover request before her system
fails, she will get proper messages (abort confirmation
or recovered messages) from TTP; if Bob has submit-
ted recover request before or during the failure, she
will get recovered messages from TTP; if no TTP’s
involvement before or during the failure, she can sim-
ply contact Bob to continue the transaction. So her
fairness is assured.

H. Wang et al. | Computer Communications 29 (2005) 2770-2780 2777

Fairness for Bob. Assuming Bob is honest, then risks he
may faces include:

(1) He did not receive any message or the message is inval-
id in Step 2. He can simply stop without any risk. And
at this time, Alice cannot call recovery.

(2) He did not receive any message or the message is
invalid in Step 4. He can request recovery and the
exchange will be forced to complete. If Alice
request recovery at the same time, the result will
be the same.

(3) Local system failures. After Bob recovers from local
system failure, he can instantly invoke inquiry sub-
protocol to check the current status; if he has submit-
ted recover request before the failure, he will get
recovered messages from TTP; if Alice has submitted
abort or recover request before or during the failure,
he will get proper messages (abort confirmation or
recovered messages) from TTP; if no involvement
before or during the failure, he can simply contact
Alice to continue the transaction. So his fairness is
assured.

Recovered fairness after TTP system failures. Cases of TTP
system failures include:

(1) Alice has submitted abort request before TTP system
failure, and TTP has sent both parties the abort con-
firmation. Because TTP has logged request message
and the variable aborted, so after TTP recovers the
information about this protocol run, the TTP will
deny any later recovery request by either Alice or
Bob.

(2) Alice/Bob has submitted recover request before TTP
system failure, and TTP has sent both parties the
recovered messages. Because TTP has logged the
request message and the variable recovered, after
TTP recovers the information about this protocol
run, the TTP can re-run the recovery operations
(if necessary) and will ignore Alice’s later abort
request.

(3) Alice/Bob has submitted abort/recover request dur-
ing system failure at TTP. Alice/Bob can re-submit
request after TTP’s recovery or TTP can actively
broadcast the failure information so that all request-
ing parties can re-submit their requests. [

Claim 3. Assuming the channels between the TTP and
Alicel Bob are resilient, adopted cryptographic tools are
secure and the TTP is honest, the protocol satisfies timeliness
requirement.

Proof. Alice can conclude the protocol in one of the two
ways:

(1) Requesting abort before sending the message of Step 3.
(2) Requesting recovery in any other time.

Bob can conclude the protocol in one of the two ways:

(1) Stopping at any time before sending the message of
Step 2.
(2) Requesting recovery in any other time.

With the channel assumption, the abort confirma-
tion or the recovered information will arrive to both
parties in a finite amount of time. And all these
conclusions, as discussed in the proof of Claim 2, will
not hurt either party’s interests. So the timeliness is
guaranteed. [J

Claim 4. Assuming the channels between the TTP and Alice/
Bob are resilient, adopted cryptographic tools (including
the adopted zero-knowledge proof method) are secure, the
TTP is honest, the protocol satisfies non-repudiation
requirement.

Proof. When the exchange succeeds, either by following
the main protocol or recovered by the TTP (including
recovered message after inquiry), Alice will get
FSg(b) = op, and Bob will get FS4(a) =0, & k. If a pay-
ment protocol succeeds, by showing FSz(b), Alice can con-
vince outside parties that Bob has received goods and claim
her money from Bob’s bank. Similarly, Bob can prove that
Alice has sent goods. In this way, the non-repudiation
requirement is satisfied. [

With all these claims, we can easily see that the protocol
is dependable:

Theorem 1. Assuming the channels between the TTP and
Alicel Bob are resilient, adopted cryptographic tools (includ-
ing the adopted zero-knowledge proof method) are secure and
the TTP is honest, the protocol is dependable.

Now the protocol is effective, fair, timely, non-repudia-
ble, and transparently recoverable, as defined in Section 2,
the protocol is dependable.

5. Conclusions

In this paper, we produce a dependable transaction pro-
tocol with transparent TTP. We have shown that the pro-
tocol are practical as it has high recoverability and can
survive relatively unreliable (asynchronous) network. Sev-
eral discussions are as following:

5.1. Discussions

5.1.1. Observability with transparent TTP

As we can see now, the TTP can recover the partial
messages in the first round exchange and make the out-
come messages indistinguishable from the ones of suc-
cessful exchange. One may argue that this kind of
properties may not be desirable in some circumstances
as it definitely decreases the observability of the exchang-
ing process.

2778 H. Wang et al. | Computer Communications 29 (2005) 2770-2780

Now we show how this protocol can be slightly altered
and made fully observable. In the recover sub-protocol,
the TTP can include a tag signed with its signature, like
Strp(l, A, B) along with the recovered messages to both
parties. If either Alice or Bob claims falsely that TTP
has not been involved, the other party can show this
TTP-signed tag to prove that it is not true. If both
parties jointly claim that TTP has not been involved,
the TTP can show the FS,(a) and FSp(h) to prove its
involvement.

5.1.2. Encrypted item validation

In the first round, Alice sends the encrypted goods as
commitment, but Bob has no way of checking whether it
is actually the goods he wants and the problem of encrypt-
ed item validation arises. We have proposed a solution
using item registry in [17]. The basic idea is that the goods
(called item) owner must register the item with an item cer-
tifying authority (ICA) and get a certificate for the encrypt-
ed item. But this solution is only sensible in the case that
the owner has a large number of this kind of item and need
to exchange many times. Because the cost of getting a cer-
tificate will be rather high if the exchange will be performed
only a few times.

When the item will be exchanged only a few times, we
argue that the self-generated certificate of the encrypted
item should be enough. The sclf-generated certificate is
constructed by signing the encrypted item with the owner
signature, i.e., S4(cipher) in our scenario. If Alice cheats
by sending the wrong encrypted item to Bob, when the
exchange ends and Bob finds out the goods is the wrong
one, he can show the S, (cipher) to the TTP and prove that
Alice has cheated.

5.1.3. Protocol information storing in TTP

As the inquiry sub-protocol is introduced, TTP needs
to store the protocol information long enough so that
TTP can answer inquiries from either parties. But prob-
lem arises in this case as the TTP does not know when
the information can be deleted, and consequently the
TTP’s storage will be occupied by much already-succeed-
ed transaction information. One solution is to add vari-
ables indicating that both parties have received the
aborted/recovered messages: receiptA and receiptB. When
these two variables both turn to be true, meaning that
both parties have claimed they get the aborted/recovered
messages, TTP can safely delete all information about
this protocol run.

5.1.4. Unreliable channels between Alicel Bob and the TTP

In Section 3, we have assumed resilient channels
between Alice/Bob and the TTP. So what if those channels
are unreliable? Cases of failures are as following:

Case 5.1. One of the two channels (say the channel
between Alice and TTP) is broken and message in it is
lost when the TTP is sending abort confirmation or

recovered messages. Alice can still get the proper messages
by invoking the inquiry sub-protocol.

Case 5.2. The channel is broken and message in it is lost
when either party (say Alice) is submitting a request. Then,
the requesting party is kept waiting while TTP does not
know anything about it. In this case, the 2-phase commu-
nication with message acknowledgement needs to be used
when either party is submitting request to overcome the
network unreliability.

One may ask why not use the ftp-get operation as in
Zhou and Gollmann [9]. Problem will arise as discussed
in Section 5.1.3 that TTP need to forever store information
of every protocol run.

5.2. Related work

As we mentioned in Section 1, there are only few efforts
invested into dependable exchange protocol. The SbML
logging method by Liu et al. [2] works in protocols with
online TTP, e.g., the protocol by Zhou and Gollmann
[9]. But when it comes to offline TTP, fairness after failures
can be potentially broken. Cases of broken fairness are as
following:

Case 5.3. After Alice sends out the first message, her
system fails; when Bob gets the message, he can invoke the
recover sub-protocol to get the final expected messages; if
Alice fails to recover her system before TTP’s recovered
messages arrive, her fairness will be broken. So simply
using their logging method is not enough to guarantee
fairness.

Case 5.4. The offline TTP has not logged the variables:
recovered and aborted, if system fails at TTP after a suc-
cessful abort operation requested by Alice; at this time,
Alice has quitted the transaction since her request has
been confirmed; but if Bob submits a recover request after
TTP recovers, TTP will recover the transaction and send
proper recovered messages to Alice and Bob; in this case,
the message cannot arrive at Alice, so fairness for Alice is
broken.

The work by Ezhilchelvan and Shrivastava [10] has not
proposed fault-tolerant protocol with offline TTP for asyn-
chronous channels.

5.3. Future work

To be more precisely about effect of every factor in
the protocol like network/system reliability, honesty of
both parties, etc., we are modeling the exchange proto-
col in rewriting logic based on the work by Chadha
et al. [18] and trying to propose a new fair mechanism
design (recently proposed problem by Sandholm and
Wang [19]) method. Then, we can study how we can
build automatic exchange agents for real-world
applications.

H. Wang et al. | Computer Communications 29 (2005) 2770-2780 2779

Acknowledgements

The authors thank Tao Wang, Botong Xu for instruc-
tive discussions. Furthermore, we thank the anonymous
reviewers of WICS’05 and Computer Communications
for valuable comments.

References

[1] H. Wang, H. Guo, M. Lin, J. Yin, Q. He, J. Zhang, Dependable
transaction for electronic commerce, in: Proceedings of 3rd Interna-
tional Workshop on Internet Communications Security (WICS’05),
Singapore, Lecture Notes in Computer Science, vol. 3482, Springer-
Verlag, Berlin, 2005, pp. 691-700.

[2] P. Liu, P. Ning, S. Jajodia, Avoiding loss of fairness owing to
process crashes in fair data exchange protocols, in: Proceedings
of the IEEE International Conference on Dependable Systems
and Networks, Workshop on Dependability despite Malicious
Faults, IEEE Computer Society Press, New York, 2000, pp.
631-640.

[3] C.H. Wang, Untraceable fair network payment protocols with off-line
TTP, in: Advances in Cryptology — ASIACRYPT 2003, Taipei,
Lecture Notes in Computer Science, vol. 2894, Springer-Verlag,
Berlin, 2003, pp. 173-187.

[4] H. Pagnia, F.C. Gartner, On the impossibility of fair exchange
without a trusted third party, Tech. Rep. TUD-BS-1999-02 (March),
Darmstadt University of Technology, 1999.

[5] N. Asokan, M. Schunter, M. Waidner, Optimistic protocols for fair
exchange, in: Proceedings of the Fourth ACM Conference on
Computer and Communications Security, ACM Press, New York,
1997, pp. 6, 8-17.

[6] S. Micali, Certified e-mail with invisible post offices (Available from
author), an invited presentation at the RSA’97 conference, 1997.

[7] J.M. Park, E.K.P. Chong, H.J. Siegel, Constructing fair-exchange
protocols for E-commerce via distributed computation of RSA
signatures, in: Proceedings of the 22nd Annual Symposium on
Principles of Distributed Computing, ACM Press, New York, 2003,
pp. 172-181.

[8] Y. Dodis, L. Reyzin, Breaking and repairing optimistic fair
exchange from PODC 2003, in: Proceedings of the 2003 ACM
Workshop on Digital Rights Management, ACM Press, New York,
2003.

[9]J. Zhou, D. Gollmann, A fair non-repudiation protocol, in:
Proceedings of 1996 IEEE Symposium on Research in Security and
Privacy, IEEE Computer Society Press, Silver Spring, MD, 1996, pp.
55-61.

[10] P. Ezhilchelvan, S. Shrivastava, Systematic development of a family
of fair exchange protocols, in: Proceedings of 17th IFIP WG 11.3
Working Conference on Database and Applications Security, Colo-
rado, USA, 2003.

[11] H. Wang, H. Guo, Achieving fairness in wireless environment,
Proceedings of IEEE 6th CAS Symposium on Emerging Technolo-
gies: Frontiers of Mobile and Wireless Communication, vol. 1, IEEE
Press, Shanghai, China, 2004, pp. 117-120.

[12] S. Gurgens, C. Rudolph, H. Vogt, On the security of fair non-
repudiation protocols, in: Proceedings of 2003 Information Security
Conference, Lecture Notes in Computer Science, vol. 2851, Springer-
Verlag, Berlin, 2003, pp. 193-207.

[13] N. Asokan, V. Shoup, M. Waidner, Asynchronous protocols for
optimistic fair exchange, in: Proceedings of 1998 IEEE Symposium on
Research in Security and Privacy, IEEE Computer Society Press,
Silver Spring, MD, 1998, pp. 86-99.

[14] H. Vogt, H. Pagnia, F.C. Gartner, Modular fair exchange protocols
for electronic commerce, in: Proceedings of the 15th Annual
Computer Security Applications Conference, IEEE Computer Society
Press, Silver Spring, MD, 1999.

[15] S. Kremer, O. Markowitch, J. Zhou, An intensive survey of fair
non-repudiation protocols, Comput. Commun. 25 (17) (2002)
1606-1621.

[16] H. Wang, H. Guo, Fair payment protocols for e-commerce, in:
Proceedings of Fourth IFIP Conference on e-Commerce, e-Business,
and e-Government (I3E’04), Building the E-Society: E-Commerce, E-
Business and E-Government, Kluwer Academic Publishers, Dordr-
echt, 2004, pp. 227-245.

[17] H. Wang, H. Guo, M. Lin, J. Yin, A fair item-item exchange protocol
satisfying newly introduced requirements, in: Proceedings of Inter-
national Conference on Information Technology and Applications
(ICITAO05), vol. 2, Australia, IEEE Computer Society Press, Silver-
spring, MD, 2005, pp. 502-507.

[18] R. Chadha, J. Mitchell, A. Scedrov, V. Shmatikov, Contract
signing, optimism and advantage, in: CONCUR 2003 - Concur-
rency Theory, 14th International Conference, Lecture Notes in
Computer Science, vol. 2761, Springer-Verlag, Berlin, 2003, pp.
366-382.

[19] T. Sandholm, X. Wang, (Im)possibility of safe exchange mechanism
design, in: R. Ram (Ed.), Proceedings of Eighteenth National Confer-
ence on Artificial Intelligence (AAAI XVIII), AAAI Press, Menlo Park,
CA, 2002.

Hao Wang, Ph.D. candidate, School of Com-
puter Science and Engineering, South China
University of Technology. Main research inter-
ests include fair exchange in electronic transac-
tion, game-based mechanism design in multi-
agent systems (http://member.acm.org/~iswan-
ghao for more details).

Heqing Guo, Professor, School of Computer
Science and Engineering, South China University
of Technology. Main research interests include
network-based systems, electronic commerce.

Manshan Lin, Ph.D. candidate, Professor, School
of Computer Science and Engineering, South Chi-
na University of Technology. Main research
interestsinclude web services and communications.

Jianfei Yin, Ph.D. candidate, Professor, College of
Information Engineering, Shenzhen University,
Shenzhen 518060, China. Main research interests
include model-driven system development.

http://www.ntu.edu.sg/home/jzhang/
http://www.ntu.edu.sg/home/jzhang/

2780

H. Wang et al. | Computer Communications 29 (2005) 2770-2780

Qi He, Ph.D. student, School of Computer
Engineering, Nanyang Technological University.

Main research
systems.

interests

include

web-based

Jun Zhang, Assistant professor, School of Com-
puter Engineering, Nanyang Technological Uni-
versity. Main research interests include indexing
techniques and query optimization in spatial and
spatio-temporal databases and warehouses
(http://www.ntu.edu.sg/home/jzhang/ for more
details).

http://www.ntu.edu.sg/home/jzhang/

	A new dependable exchange protocol
	Introduction
	Preliminaries
	Dependability of electronic exchange
	Cryptographic tools
	Dodis-Reyzin convertible signature scheme
	A secure zero-knowledge proof

	Basic protocol model

	The dependable payment protocol
	Main protocol
	Recover sub-protocol
	Inquiry sub-protocol
	Abort sub-protocol

	Analysis of the protocol
	Conclusions
	Discussions
	Observability with transparent TTP
	Encrypted item validation
	Protocol information storing in TTP
	Unreliable channels between Alice/Bob and the TTP

	Related work
	Future work

	Acknowledgements
	References

