The Symmedian Point and Concurrent Antiparallel Images

Shao-Cheng Liu

Abstract

In this note, we study the condition for concurrency of the $G P$ lines of the three triangles determined by three vertices of a reference triangle and six vertices of the second Lemoine circle. Here G is the centroid and P is arbitrary triangle center different from G. We also study the condition for the images of a line in the three triangles bounded by the antiparallels through a given point to be concurrent.

1. Antiparallels through the symmedian point

Given a triangle $A B C$ with symmedian point K, we consider the three triangles $A B_{a} C_{a}, A_{b} B C_{b}$, and $A_{c} B_{c} C$ bounded by the three lines $\ell_{a}, \ell_{b}, \ell_{c}$ antiparallel through K to the sides $B C, C A, A B$ respectively (see Figure 1). It is well known [4] that the 6 intercepts of these antiparallels with the sidelines are on a circle with center K. In other words, K is the common midpoint of the segments $B_{a} C_{a}, C_{b} A_{b}$ and $A_{c} B_{c}$. The circle is called the second Lemoine circle.

Figure 1.
Triangle $A B_{a} C_{a}$ is similar to $A B C$, because it is the reflection in the bisector of angle A of a triangle which is a homothetic image of $A B C$. For an arbitrary triangle center P of $A B C$, denote by P_{a} the corresponding center in triangle $A B_{a} C_{a}$; similarly, P_{b} and P_{c} in triangles $A_{b} B C_{b}$ and $A_{c} B_{c} C$.

Now let P be distinct from the centroid G. Consider the line through A parallel to $G P$. Its reflection in the bisector of angle A intersects the circumcircle at a point Q^{\prime}, which is the isogonal conjugate of the infinite point of $G P$. So, the line $G_{a} P_{a}$ is the image of $A Q^{\prime}$ under the homothety $\mathrm{h}\left(K, \frac{1}{3}\right)$, and it passes through a trisection point of the segment $K Q^{\prime}$ (see Figure 2).

Figure 2.
In a similar manner, the reflections of the parallels to $G P$ through B and C in the respective angle bisectors intersect the circumcircle at the same point Q^{\prime}. Hence, the lines $G_{b} P_{b}$ and $G_{c} P_{c}$ also pass through the point Q, which is the image of Q^{\prime} under the homothety $\mathrm{h}\left(K, \frac{1}{3}\right)$. It is clear that the point Q lies on the circumcircle of triangle $G_{a} G_{b} G_{c}$ (see Figure 3). We summarize this in the following theorem.

Theorem 1. Let P be a triangle center of $A B C$, and P_{a}, P_{b}, P_{c} the corresponding centers in triangles $A B_{a} C_{a}, B C_{b} A_{b}, C A_{c} B_{c}$, which have centroids G_{a}, G_{b}, G_{c} respectively. The lines $G_{a} P_{a}, G_{b} P_{b}, G_{c} P_{c}$ intersect at a point Q on the circumcircle of triangle $G_{a} G_{b} G_{c}$.

Here we use homogeneous barycentric coordinates. Suppose $P=(u: v: w)$ with reference to triangle $A B C$.
(i) The isogonal conjugate of the infinite point of the line $G P$ is the point

$$
Q^{\prime}=\left(\frac{a^{2}}{-2 u+v+w}: \frac{b^{2}}{u-2 v+w}: \frac{c^{2}}{u+v-2 w}\right)
$$

on the circumcircle.

Figure 3.
(ii) The lines $G_{a} P_{a}, G_{b} P_{b}, G_{c} P_{c}$ intersect at the point

$$
Q=\left(\frac{a^{2}}{v+w-2 u}\left(a^{2}+\frac{b^{2}(w-u)}{w+u-2 v}+\frac{c^{2}(v-u)}{u+v-2 w}\right): \cdots: \cdots\right)
$$

which divides $K Q^{\prime}$ in the ratio $K Q: Q Q^{\prime}=1: 2$.

2. A generalization

More generally, given a point $T=(x: y: z)$, we consider the triangles intercepted by the antiparallels through T. These are the triangles $A B_{a} C_{a}, A_{b} B C_{b}$ and $A_{c} B_{c} C$ with coordinates (see $[1, \S 3]$):

$$
\begin{aligned}
& B_{a}=\left(b^{2} x+\left(b^{2}-c^{2}\right) y: 0: c^{2} y+b^{2} z\right) \\
& C_{a}=\left(c^{2} x-\left(b^{2}-c^{2}\right) z: c^{2} y+b^{2} z: 0\right) \\
& C_{b}=\left(a^{2} z+c^{2} x: c^{2} y+\left(c^{2}-a^{2}\right) z: 0\right) \\
& A_{b}=\left(0: a^{2} y-\left(c^{2}-a^{2}\right) x: a^{2} z+c^{2} x\right) \\
& A_{c}=\left(0: b^{2} x+a^{2} y: a^{2} z+\left(a^{2}-b^{2}\right) x\right), \\
& B_{c}=\left(b^{2} x+a^{2} y: 0: b^{2} z-\left(a^{2}-b^{2}\right) y\right)
\end{aligned}
$$

Now, for a point P with coordinates $(u: v: w)$ with reference to triangle $A B C$, the one with the same coordinates with reference to triangle $A B_{a} C_{a}$ is

$$
\begin{aligned}
P_{a}= & \left(b^{2} c^{2}(x+y+z) u+c^{2}\left(b^{2} x+\left(b^{2}-c^{2}\right) y\right) v+b^{2}\left(c^{2} x-\left(b^{2}-c^{2}\right) z\right) w:\right. \\
& \left.b^{2}\left(c^{2} y+b^{2} z\right) w: c^{2}\left(c^{2} y+b^{2} z\right) v\right)
\end{aligned}
$$

By putting $u=v=w=1$, we obtain the coordinates of the centroid

$$
\left.G_{a}=\left(3 b^{2} c^{2} x+c^{2}\left(2 b^{2}-c^{2}\right) y-b^{2}\left(b^{2}-2 c^{2}\right) z\right): b^{2}\left(c^{2} y+b^{2} z\right): c^{2}\left(c^{2} y+b^{2} z\right)\right)
$$

of $A B_{a} C_{a}$. The equation of the line $G_{a} P_{a}$ is

$$
\begin{aligned}
& \left(c^{2} y+b^{2} z\right)(v-w) \mathbb{X} \\
+ & \left(c^{2}(x+y+z) u+\left(-2 c^{2} x-c^{2} y+\left(b^{2}-2 c^{2}\right) z\right) v+\left(c^{2} x-\left(b^{2}-c^{2}\right) z\right) w\right) \mathbb{Y} \\
- & \left(b^{2}(x+y+z) u+\left(b^{2} x+\left(b^{2}-c^{2}\right) y\right) v-\left(2 b^{2} x+\left(2 b^{2}-c^{2}\right) y+b^{2} z\right) w\right) \mathbb{Z} \\
= & 0
\end{aligned}
$$

By cyclically replacing $(a, b, c),(u, v, w),(x, y, z)$, and $(\mathbb{X}, \mathbb{Y}, \mathbb{Z})$ respectively by $(b, c, a),(v, w, u),(y, z, x)$, and $(\mathbb{Y}, \mathbb{Z}, \mathbb{X})$, we obtain the equation of the line $G_{b} P_{b}$. One more applications gives the equation of $G_{c} P_{c}$.

Proposition 2. The three lines $G_{a} P_{a}, G_{b} P_{b}, G_{c} P_{c}$ are concurrent if and only if

$$
f(u, v, w)(x+y+z)^{2}\left(b^{2} c^{2}(v-w) x+c^{2} a^{2}(w-u) y+a^{2} b^{2}(u-v) z\right)=0
$$

where

$$
f(u, v, w)=\sum_{\text {cyclic }}\left(\left(2 b^{2}+2 c^{2}-a^{2}\right) u^{2}+\left(b^{2}+c^{2}-5 a^{2}\right) v w\right) .
$$

Computing the distance between G and P, we obtain

$$
f(u, v, w)=9(u+v+w)^{2} \cdot G P^{2}
$$

This is nonzero for $P \neq G$. From this we obtain the following theorem.
Theorem 3. For a fixed point $P=(u: v: w)$, the locus of a point T for which the GP-lines of triangles $A B_{a} C_{a}, A_{b} B C_{b}$, and $A_{c} B_{c} C$ are concurrent is the line

$$
b^{2} c^{2}(v-w) \mathbb{X}+c^{2} a^{2}(w-u) \mathbb{Y}+a^{2} b^{2}(u-v) \mathbb{Z}=0
$$

Remarks. (1) The line clearly contains the symmedian point K and the point ($a^{2} u$: $b^{2} v: c^{2} w$), which is the isogonal conjugate of the isotomic conjugate of P.
(2) The locus of the point of concurrency is the line

$$
\sum_{\text {cyclic }} b^{2} c^{2}(v-w)\left(\left(c^{2}+a^{2}-b^{2}\right)(u-v)^{2}+\left(a^{2}+b^{2}-c^{2}\right)(u-w)^{2}\right) \mathbb{X}=0
$$

This line contains the points

$$
\left(\frac{a^{2}}{\left(c^{2}+a^{2}-b^{2}\right)(u-v)^{2}+\left(a^{2}+b^{2}-c^{2}\right)(u-w)^{2}}: \cdots: \cdots\right)
$$

and

$$
\left(\frac{a^{2} u}{\left(c^{2}+a^{2}-b^{2}\right)(u-v)^{2}+\left(a^{2}+b^{2}-c^{2}\right)(u-w)^{2}}: \cdots: \cdots\right)
$$

Theorem 4. For a fixed point $T=(x: y: z)$, the locus of a point P for which the $G P$-lines of triangles $A B_{a} C_{a}, A_{b} B C_{b}$, and $A_{c} B_{c} C$ are concurrent is the line

$$
\left(\frac{y}{b^{2}}-\frac{z}{c^{2}}\right) \mathbb{X}+\left(\frac{z}{c^{2}}-\frac{x}{a^{2}}\right) \mathbb{Y}+\left(\frac{x}{a^{2}}-\frac{y}{b^{2}}\right) \mathbb{Z}=0
$$

Remark. This is the line containing the centroid G and the point $\left(\frac{x}{a^{2}}: \frac{y}{b^{2}}: \frac{z}{c^{2}}\right)$.
More generally, given a point $T=(x: y: z)$, we study the condition for which the images of the line

$$
\mathcal{L}: \quad u \mathbb{X}+v \mathbb{Y}+w \mathbb{Z}=0
$$

in the three triangles $A B_{a} C_{a}, A_{b} B C_{b}$ and $A_{c} B_{c} C$ are concurrent. Now, the image of the line \mathcal{L} in $A B_{a} C_{a}$ is the line

$$
\begin{aligned}
& -u\left(c^{2} y+b^{2} z\right) \mathbb{X}+\left(\left(c^{2} x-\left(b^{2}-c^{2}\right) z\right) u-c^{2}(x+y+z) w\right) \mathbb{Y} \\
& +\left(\left(b^{2} x+\left(b^{2}-c^{2}\right) y\right) u-b^{2}(x+y+z) v\right) \mathbb{Z}=0
\end{aligned}
$$

Similarly, we write down the equations of the images in $A_{b} B C_{b}$ and $A_{c} B_{c} C$. The three lines are concurrent if and only if

$$
\begin{aligned}
& \left(\left(b^{2}+c^{2}-a^{2}\right)(v-w)^{2}+\left(c^{2}+a^{2}-b^{2}\right)(w-u)^{2}+\left(a^{2}+b^{2}-c^{2}\right)(u-v)^{2}\right) \\
& \cdot(x+y+z)^{2}\left(\sum_{\text {cyclic }} u \cdot a^{2}\left(c^{2} y+b^{2} z\right)\right)=0 .
\end{aligned}
$$

Since the first two factors are nonzero for nonzero (u, v, w) and (x, y, z), we obtain the following result.

Theorem 5. Given $T=(x: y: z)$, the antiparallel images of a line are concurrent if and only if the line contains the point

$$
T^{\prime}=\left(\frac{y}{b^{2}}+\frac{z}{c^{2}}: \frac{z}{c^{2}}+\frac{x}{a^{2}}: \frac{x}{a^{2}}+\frac{y}{b^{2}}\right) .
$$

Here are some examples of correspondence:

T	T^{\prime}	T	T^{\prime}	T	T^{\prime}
X_{1}	X_{37}	X_{19}	X_{1214}	X_{69}	X_{1196}
X_{2}	X_{39}	X_{20}	X_{800}	X_{99}	X_{1084}
X_{3}	X_{6}	X_{40}	X_{1108}	X_{100}	X_{1015}
X_{4}	X_{216}	X_{55}	X_{1}	X_{110}	X_{115}
X_{5}	X_{570}	X_{56}	X_{9}	X_{111}	X_{2482}
X_{6}	X_{2}	X_{57}	X_{1212}	X_{887}	X_{888}

References

[1] N. Dergiades and P. Yiu, Antiparallels and Concurrent Euler Lines, Forum Geom., 4(2004) 1-20.
[2] C. Kimberling, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[3] P. Yiu, Introduction to the Geometry of the Triangles, Florida Atlantic University Lecture Notes, 2001, available at http://math.fau.edu/Yiu/Geometry.html.
[4] P. Yiu, A Tour of Triangle Geometry (2004), available at http://math.fau.edu/Yiu/Geometry.html.

Shao-Cheng Liu: 2F., No.8, Alley 9, Lane 22, Wende Rd., 11475 Taipei, Taiwan
E-mail address: liu471119@yahoo.com.tw

