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Diagonal updating scheme is among the cheapest Newton-like methods for solving system of nonlinear equations. Nevertheless,
the method has some shortcomings. In this paper, we proposed an improved matrix-free secant updating scheme via line search
strategies, by using the steps of backtracking in the Armijo-type line search as a step length predictor and Wolfe-Like condition as
corrector. Our approach aims at improving the overall performance of diagonal secant updating scheme. Under mild assumptions,
the global convergence results have been presented. Numerical experiments verify that the proposed approach is very promising.

1. Introduction

Consider the problem

𝐹 (𝑥) = 0, (1)

with 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛.

The mapping 𝐹 is assumed to satisfy the following stand-
ard assumptions:

(1) 𝐹 is continuously differentiable in an open convex set
Φ;

(2) there exists a solution 𝑥
∗ of (1) inΦ such that 𝐹(𝑥∗) =

0 and 𝐹
󸀠

(𝑥
∗

) ̸= 0;
(3) the Jacobian 𝐹

󸀠

(𝑥) is local Lipschitz continuous at 𝑥∗.

The famous scheme for finding the solution to (1) is the
Newton method. The method is simple to implement, and
it produces an iterative sequence {𝑥

𝑘
} from any given initial

guess 𝑥
0
in the neighborhood of 𝑥∗ via

𝑥
𝑘+1

= 𝑥
𝑘
− (𝐹
󸀠

(𝑥
𝑘
))
−1

𝐹 (𝑥
𝑘
) , (2)

where 𝑘 = 0, 1, 2 . . . 𝑛.

The attractive features of this method are that it is
easy to implement and converges rapidly [1]. However, the
major difficulty of Newton-type method is matrix storage
requirements especially when handling large systems of non-
linear equations [1]. To overcome such difficulty, the simple
modification on the Newton method is the fixed Newton
method. Fixed Newton method for the determination of
solution 𝑥

∗ is given by

𝑥
𝑘+1

= 𝑥
𝑘
− (𝐹
󸀠

(𝑥
0
))
−1

𝐹 (𝑥
𝑘
) , 𝑘 = 0, 1, 2, . . . . (3)

This method avoids computation and storing the Jacobian in
each iterations (except at 𝑘 = 0). However, it still requires to
solve systems of 𝑛 linear equations and consumes more CPU
time as the system’s dimension increases [2, 3].

Quasi-Newton method is another variant of Newton-
type methods. It replaces the Jacobian or its inverse with an
approximation which can be updated at each iteration and is
given as

𝑥
𝑘+1

= 𝑥
𝑘
− 𝐵
−1

𝑘
𝐹 (𝑥
𝑘
) , (4)

where the matrix 𝐵
𝑘
is the approximation of the Jacobian

at 𝑥
𝑘
. The main idea behind quasi-Newton’s method is to
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eliminate the evaluation cost of the Jacobian matrix [4, 5].
However, themost critical part of such quasi-Newtonmethod
is storing the full matrix of the approximate Jacobian, which
can be a very expensive task as the dimension of systems
increases [6]. In contrast, this paper presents an improved
variant of quasi-Newton update via the steps of backtracking
in the Armijo-type line search and Wolfe–like condition
and incorporating restarting strategy whenever the updating
matrix is singular or nearly singular. The anticipation has
been to improve the overall performance of the diagonal
quasi-Newton method.

We organized the rest of this paper as follows. In the next
section, we present the proposed method. Section 3 presents
convergence results. Numerical experiments are reported in
Section 4, and finally, conclusion is given in Section 5.

2. The Improved Secant Diagonal Updating

It is well known that it is not always feasible to compute the
full elements of the Jacobian matrix of the given nonlinear
function or it may be very expensive. We often have to
approximate the Jacobian matrix by some other approach,
and the famousmethod of doing so is quasi-Newton’smethod
[4]. The basic idea underlining this approach has been to
reduce the evaluation cost of the Jacobian matrix. This new
approach generates a sequence of points {𝑥

𝑘
} via

𝑥
𝑘+1

= 𝑥
𝑘
− 𝛼
𝑘
𝐵
𝑘
𝐹 (𝑥
𝑘
) , (5)

where 𝛼
𝑘
is a step length, and 𝐵

𝑘
is a diagonal approximation

of the inverse Jacobian matrix which can be updated in
each iterations. To achieve this, we incorporate some new
line search strategies, via the steps of backtracking in the
Armijo-type line search as predictor and then improved
via Wolfe-like condition as a corrector. The Armijo rule is
among the inexact line search methods which guarantees
a sufficient degree of accuracy to ensure the algorithm
convergence. Nevertheless, the scheme needs high floating
points operations and function call. In this paper, we present
a simple line search strategy, which is less computational
cost, floating points operations and CPU time consumptions
respectively compared to classical Armijor line search. The
approach is as follows.

Given 𝜖 ∈ (0, 1) and 𝜎 < 1, the proposed approach finds
the appropriate 𝛼, such that

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩 ≤ 𝜎

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 . (6)

In addition, the new strategy is implemented in an iterative
way using a fixed initial value of 𝛼 as follows.

Algorithm 1 (Armijo-Like).

Step 0. Set 𝐾 = 0, 𝛼
0
> 0, and 𝜎 < 1.

Step 1. ‖𝐹(𝑥
𝑘+1

)‖ ≤ 𝜎‖𝐹(𝑥
𝑘
)‖. Choose𝛼

𝑘
as the step size; stop.

Otherwise 𝛼
𝑘+1

= 𝛼
𝑘
/2, 𝑘 = 𝑘 + 1.

Waziri et al. [7] have set the step length (𝛼
𝑘
= 1, for all 𝑘);

this approach is mostly used in many Newton-like methods.

Here, we continue in the spirit of diagonal updating, using
a new line search strategy to obtain a good step length (𝛼

𝑘
)

in every iteration, anticipating to produce a more accurate
approximation of the Jacobian inverse matrix and then
employing restating strategy whenever the updatingmatrix is
undefined. To this end,𝐵

𝑘+1
would be obtained almost similar

to the diagonal updating scheme presented in [7] in which
𝑠
𝑘

= −𝛼
𝑘
𝐵
𝑘
𝐹(𝑥
𝑘
) instead of 𝑠

𝑘
= −𝐵

𝑘
𝐹(𝑥
𝑘
). Now, let the

deviation between 𝐵
𝑘+1

and 𝐵
𝑘
denoted asΦ

𝑘
= 𝐵
𝑘+1

− 𝐵
𝑘
be

minimized under some norms; the optimal solution is given
as

Φ
𝑘
=

(𝑦
𝑇

𝑘
𝑠
𝑘
− 𝑦
𝑇

𝑘
𝐵
𝑘
𝑦
𝑘
)

tr (Ψ2
𝑘
)

Ψ
𝑘
, (7)

where Ψ
𝑘

= diag((𝑦(1)
𝑘

)
2

, (𝑦
(2)

𝑘
)
2

, . . . , (𝑦
(𝑛)

𝑘
)
2

), ∑𝑛
𝑖=1

(𝑦
(𝑖)

𝑘
)
4

=

tr(Ψ2
𝑘
), 𝑦
𝑘

= 𝐹(𝑥
𝑘+1

) − 𝐹(𝑥
𝑘
), 𝑠
𝑘

= 𝑥
𝑘+1

− 𝑥
𝑘
, and tr is

the trace operation, respectively.The updated formula for the
proposed matrix 𝐵

𝑘
is given as [7]

𝐵
𝑘+1

= 𝐵
𝑘
+

(𝑦
𝑇

𝑘
𝑠
𝑘
− 𝑦
𝑇

𝑘
𝐵
𝑘
𝑦
𝑘
)

tr (Ψ2
𝑘
)

Ψ
𝑘
. (8)

To safeguard on the possibilities of generating undefined
𝐵
𝑘+1

, we let 𝐵
𝑘+1

= 𝐵
0
, whenever this situation happens

𝐵
𝑘+1

=

{{

{{

{

𝐵
𝑘
+

(𝑦
𝑇

𝑘
𝑠
𝑘
− 𝑦
𝑇

𝑘
𝐵
𝑘
𝑦
𝑘
)

tr (Ψ2
𝑘
)

Ψ
𝑘
, tr (Ψ2

𝑘
) ̸= 0,

𝐵
0
, otherwise.

(9)

Now, we can describe the algorithm for our proposed
approach as follows.

Algorithm 2 (EMFM).

Step 1. Choose an initial guess 𝑥
0
, 𝜎 ∈ (0, 1), 𝐵

0
= 𝐼
𝑛
, 𝛼
0
> 0

and let 𝑘 := 0.

Step 2. Compute 𝐹(𝑥
𝑘
), and if ‖𝐹(𝑥

𝑘
)‖ ≤ 10

−4, stop.

Step 3. Compute 𝑑 = −𝐹(𝑥
𝑘
)𝐵
𝑘
.

Step 4. If ‖𝐹(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)‖ ≤ 𝜎‖𝐹(𝑥

𝑘
)‖, retain 𝛼

𝑘
and go to 5.

Otherwise, set 𝛼
𝑘+1

= 𝛼
𝑘
/2 and repeat 4.

Step 5. If ‖𝐹(𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
) −𝐹(𝑥

𝑘
)‖ ≥ ‖𝐹(𝑥

𝑘
+𝛼
𝑘
𝑑
𝑘
)‖ − ‖𝐹(𝑥

𝑘
)‖,

retain𝛼
𝑘
and go to 6. Otherwise, set𝛼

𝑘+1
= 𝛼
𝑘
×1.1 and repeat

5.

Step 6. Let 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 7. If ‖𝑥
𝑘+1

− 𝑥
𝑘
‖
2
+ ‖𝐹(𝑥

𝑘
)‖
2
≤ 10
−4, stop. Otherwise go

to Step 8.

Step 8. If ‖Δ𝐹
𝑘
‖
2
≥ 𝜖
1
, where 𝜖

1
= 10
−4, compute 𝐵

𝑘+1
, and if

not, 𝐵
𝑘+1

= 𝐵
0
.

Step 9. Set 𝑘 := 𝑘 + 1 and go to 2.
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3. Convergence Analysis

We present the convergence result of EMFM method by
proving the existence of the step length 𝛼

𝑘
> 0. We will make

the following assumptions on nonlinear system 𝐹.

Assumption 3. (i) 𝐹 is differentiable in an open convex set 𝐸
inR𝑛.

(ii) There exists 𝑥∗ ∈ 𝐸 such that (𝑥∗) = 0, and 𝐹
󸀠

(𝑥) is
continuous for all 𝑥.

(iii) 𝐹(𝑥) satisfies Lipschitz condition of order one; that is,
there exists a positive constant 𝜇 such that

󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜇

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (10)

for all 𝑥, 𝑦 ∈ R𝑛.
(iv) There exist constants 𝑐

1
≤ 𝑐
2
such that 𝑐

1
‖𝜔‖
2

≤

𝜔
𝑇

𝐹
󸀠

(𝑥)𝜔 ≤ 𝑐
2
‖𝜔‖
2 for all 𝑥 ∈ 𝐸 and 𝜔 ∈ R𝑛.

To this end, we proceed by given the following result for
the step length generated by the proposed strategies.

Theorem 4. Assume that 𝐹 is a strictly convex function.
Suppose that the new strategies are employed with 𝑑

𝑘
̸= 0 and

positive 𝛼
𝑘
exist, for all sufficiently large 𝑘. Then, the iterates

{𝑥
𝑘
} generated by the line search algorithm have the property

that

lim 󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩 = 0, 𝑎𝑠 𝑘 󳨀→ ∞. (11)

Proof. From condition (iii) of Assumption 3 and the fact that
𝑠
𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘
, we have

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
) − 𝐹 (𝑥

𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩𝐹

≤ 𝜇
󵄩󵄩󵄩󵄩𝑠𝑘

󵄩󵄩󵄩󵄩𝐹

= 𝜇
󵄩󵄩󵄩󵄩𝛼𝑑𝑘

󵄩󵄩󵄩󵄩𝐹

≤ 𝜇 |𝛼|
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩𝐹
.

(12)

Recall that
󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹 (𝑥

𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩𝐹

≤ ‖𝐹 (𝑥)‖
𝐹
−
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩𝐹

.

(13)

Equation (13) gives
󵄩󵄩󵄩󵄩𝐹(𝑥𝑘)

󵄩󵄩󵄩󵄩𝐹
−
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩𝐹

≤ 𝛼𝜇
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩𝐹

= 𝜇
󵄩󵄩󵄩󵄩𝛼𝑑𝑘

󵄩󵄩󵄩󵄩𝐹

≤ 𝜇 |𝛼|
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩𝐹
.

(14)

Since ‖𝑑
𝑘
‖ ̸= 0 and ‖𝐹(𝑥

𝑘
+ 𝛼
𝑘
𝑑
𝑘
)‖ ≤ 𝜎‖𝐹(𝑥

𝑘
)‖, hence, it

follows that
󵄩󵄩󵄩󵄩𝐹(𝑥𝑘)

󵄩󵄩󵄩󵄩𝐹
− 𝜎

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩𝐹

≤ 𝛼𝜇
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩𝐹
,

(1 − 𝜎)
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩𝐹

≤ 𝛼𝜇
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩𝐹
.

(15)

After little simplifications, we obtain

𝛼 ≥
(1 − 𝜎)

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩𝐹

𝜇
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩𝐹

> 0. (16)

Hence, 𝛼
𝑘
exist and are positive.

We continue to show the convergence of the iterates {𝑥
𝑘
}

by recalling that
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩 ≤ 𝜎

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 . (17)

Then, we have
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩 ≤ 𝜎
2 󵄩󵄩󵄩󵄩𝐹 (𝑥

𝑘
)
󵄩󵄩󵄩󵄩

≤ 𝜎
3 󵄩󵄩󵄩󵄩𝐹 (𝑥

𝑘
)
󵄩󵄩󵄩󵄩

(18)

for a finite 𝑘, and (18) yields

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩 ≤ 𝜎
𝑘 󵄩󵄩󵄩󵄩𝐹 (𝑥

𝑘
)
󵄩󵄩󵄩󵄩 .

(19)

Since the algorithm terminates at ‖𝐹(𝑥
𝑘
)‖ = 0, it follows from

(19) that
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩

≤ 𝜎
𝑘

. (20)

We have

lim
󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩

≤ lim𝜎
𝑘

, as 𝑘 󳨀→ ∞. (21)

Therefore, due to 𝜎 < 1, it implies that

lim𝜎
𝑘

󳨀→ 0, as 𝑘 󳨀→ ∞. (22)

hence

lim 󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
󵄩󵄩󵄩󵄩 = 0, as 𝑘 󳨀→ ∞. (23)

To show the convergence results of EMFM method, we
require to show that the updatingmatrix𝐵

𝑘
is bounded above

and below by some positive constants. Hence, we can state the
following result on the boundedness of {‖Φ

𝑘
‖
𝐹
} by assuming

that, without loss of generality, the updating matrix (8) is
always used; then, we have the following.

Theorem 5. Let 𝐹 satisfy Assumption 3, and let ‖𝑦
𝑘
‖ ̸= 0 for all

finite 𝑘. Let {𝐵
𝑘
} be the sequence generated by (8). If the given

nonsingular 𝐵
0
satisfies

𝜃 ≤ 𝐵
𝑖

0
≤ 𝜔, 𝑖 = 1, 2, ..., 𝑛, (24)

for some constants 𝜃 and 𝜔, then the sequence {‖𝐵
𝑘
‖
𝐹
} is

bounded for all finite 𝑘.

Proof. Since 𝐵
𝑘+1

= 𝐵
𝑘
+ Φ
𝑘
, it follows that

󵄩󵄩󵄩󵄩𝐵𝑘+1
󵄩󵄩󵄩󵄩𝐹

≤
󵄩󵄩󵄩󵄩𝐵𝑘

󵄩󵄩󵄩󵄩𝐹
+
󵄩󵄩󵄩󵄩Φ𝑘

󵄩󵄩󵄩󵄩𝐹
. (25)

For 𝑘 = 0 and assuming 𝐵
0
= 𝐼, we have

󵄨󵄨󵄨󵄨󵄨
Φ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
𝑇

0
𝑠
0
− 𝑦
𝑇

0
𝐵
0
𝑦
0

tr (Ψ2
0
)

(𝑦
(𝑖)

0
)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑇

0
𝑠
0
− 𝑦
𝑇

0
𝐵
0
𝑦
0

󵄨󵄨󵄨󵄨󵄨

tr (Ψ2
0
)

(𝑦
(max)
0

)
2

,

(26)
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where (𝑦
(max)
0

)
2 is the largest element among (𝑦

(𝑖)

0
)
2

, 𝑖 =

1, 2, . . . , 𝑛.
After multiplying (26) by (𝑦

(max)
0

)
2

/(𝑦
(max)
0

)
2 and substi-

tuting tr(Ψ2
0
) = ∑
𝑛

𝑖=1
(𝑦
(𝑖)

0
)
4, we have

󵄨󵄨󵄨󵄨󵄨
Φ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑇

0
𝑠
0
− 𝑦
𝑇

0
𝐵
0
𝑦
0

󵄨󵄨󵄨󵄨󵄨

(𝑦
(max)
0

)
2

∑
𝑛

𝑖=1
(𝑦
(𝑖)

0
)
4
(𝑦
(max)
0

)
4

. (27)

Since (𝑦(max)
0

)
4

/∑
𝑛

𝑖=1
(𝑦
(𝑖)

0
)
4

≤ 1, then (27) turns into

󵄨󵄨󵄨󵄨󵄨
Φ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑇

0
𝐹
󸀠

(𝑥) 𝑦
0
− 𝑦
𝑇

0
𝐵
0
𝑦
0

󵄨󵄨󵄨󵄨󵄨

(𝑦
(max)
0

)
2

. (28)

From Assumption 3 and 𝐵
0
= 𝐼, (28) becomes

󵄨󵄨󵄨󵄨󵄨
Φ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
≤

|𝑐 − 1| (𝑦
𝑇

0
𝑦
0
)

(𝑦
(max)
0

)
2

, (29)

where 𝑐 = max{|𝑐
1
|, |𝑐
2
|}.

Since (𝑦(𝑖)
0
)
2

≤ (𝑦
(max)
0

)
2 for 𝑖 = 1, . . . , 𝑛, it follows that

󵄨󵄨󵄨󵄨󵄨
Φ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
≤

𝑛 |𝑐 − 1| (𝑦
(max)
0

)
2

(𝑦
(max)
0

)
2

. (30)

Hence, we obtain
󵄩󵄩󵄩󵄩Φ0

󵄩󵄩󵄩󵄩𝐹
≤ 𝑛
3/2

|𝑐 − 1| . (31)

Suppose that 𝜂 = 𝑛
3/2

|𝑐 − 1|; then,
󵄩󵄩󵄩󵄩Φ0

󵄩󵄩󵄩󵄩𝐹
≤ 𝜂. (32)

From the fact that ‖𝐵
0
‖
𝐹
= √𝑛, it follows that
󵄩󵄩󵄩󵄩𝐵1

󵄩󵄩󵄩󵄩𝐹
≤ 𝛽, (33)

where 𝛽 = √𝑛 + 𝜂 > 0.

4. Numerical Results

In this section, we consider some benchmark problems to
illustrate the performance of the method proposed in this
paper for solving large-scale systems of nonlinear equations
when compared to some Newton-like methods. The compu-
tations are performed inMATLAB 7.0 using double precision
computer, and the stopping rule used is

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 ≤ 10

−4

. (34)

The identity matrix has been chosen as an initial approximate
Jacobian inverse. We further design the codes to terminate
whenever one of the following happens:

(i) the number of iteration is at least 250, but no point of
𝑥
𝑘
that satisfies (34) is obtained;

(ii) CPU time in seconds reaches 250;
(iii) There is insufficient memory to initiate the run.

The performances of these methods are be compared in
terms of number of iterations and CPU time in seconds. In
the following, some details on the benchmarks test problems
are presented.

Problem 1. System of 𝑛 nonlinear equations is as follows:

𝑓
𝑖
(𝑥) = 𝑥

𝑖
− 3𝑥
𝑖
(
sin𝑥
𝑖

3
− 0.66) + 2,

𝑖 = 1, 2, . . . , 𝑛, 𝑥
0
= (3, 3, . . . , 3) .

(35)

Problem 2. Extended Trigonometric function of Spedicator
[8] is as follows:

𝑓
𝑖
(𝑥) = 𝑛 −

𝑛

∑

𝑗=1

cos𝑥
𝑗
+ 𝑖 (1 − cos𝑥

𝑖
)

− sin𝑥
𝑖
+ exp(1−cos𝑥𝑖) −

𝑛

∑

𝑗=1

(𝑥
𝑗
+ 1) ,

𝑖 = 1, . . . , 𝑛, 𝑥
0
= (

1

𝑛
,
1

𝑛
, . . . ,

1

𝑛
) .

(36)

Problem 3. System of 𝑛 nonlinear equations is as follows:

𝑓
𝑖
(𝑥) = 𝑥

𝑖
− 0.1𝑥

2

𝑖+1
, 𝑓

𝑛
(𝑥) = 𝑥

𝑛
− 0.1𝑥

2

1
,

𝑖 = 1, . . . , 𝑛 − 1, 𝑥
0
= (7, 7, . . . , 7) .

(37)

(A1) Nonadiabatic Stirred Tank Reactors. The first application
is the model of [9]. The model deals with two continuous
nonadiabatic stirred tank reactors.The reactors are in a series,
at steady state having a recycle component, and with an
exothermic first-order irreversible reaction. By eliminating
certain variables, the model results into two nonlinear sys-
tems of equations as follows:

𝑓
1
= (1 − 𝜆) [

𝐷

10 (1 + 𝛽
1
)
− 𝑥
1
] exp(

10𝑥
1

1 + (10𝑥
1
/𝛾)

) − 𝑥
1
,

𝑓
2
= 𝑥
1
− (1 + 𝛽

2
) 𝑥
2
+ (1 − 𝜆)

× [
𝐷

10
− 𝛽
1
𝑥
1
− (1 + 𝛽

2
𝑥
2
)] exp(

10𝑥
2

1 + (10𝑥
2
/𝛾)

) .

(38)

The dimensionless temperatures of the two reactors are
represented by 𝑥

1
and 𝑥

2
. The parameters 𝜆, 𝛾, 𝛽

1
, 𝛽
2
, and

𝐷 are given as 1, 1000, 2, 2, and 22, respectively.

(A2) Navigation by Range Measurements. Consider two bea-
cons determining position bymeasuring the distances 𝑟1 and
𝑟2, where (𝑝1, 𝑝2) is the position of beacon 1, (𝑞1, 𝑞2) is the
position of beacon 2, and (𝑢, 𝑣) is an unknown point (see
Figure 1). This can be modeled into a two nonlinear systems
of equations as follows:

𝑓
1
= √(𝑝

1
− 𝑢)
2

+ (𝑞
1
− 𝑣)
2

− 𝑟
1
= 0,

𝑓
1
= √(𝑝

2
− 𝑢)
2

+ (𝑞
2
− 𝑣)
2

− 𝑟
2
= 0.

(39)
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Table 1: Numerical comparison of NM, FN, BM, I-VDN, and EMFMmethods.

Prob Dim NM FN BM I-VDN EMFM
NI CPU NI CPU NI CPU NI CPU NI CPU

1 25 4 0.031 11 0.016 8 0.015 8 0.006 6 0.001
2 25 4 0.062 11 0.031 8 0.016 8 0.002 7 0.001
3 25 6 0.031 — — 10 0.031 10 0.001 7 0.001
1 50 4 0.046 11 0.031 8 0.046 8 0.011 6 0.008
2 50 4 0.109 11 0.062 8 0.034 8 0.010 7 0.005
3 50 6 0.156 — — 10 0.124 10 0.008 7 0.004
1 100 4 0.064 11 0.032 8 0.048 8 0.014 6 0.010
2 100 4 0.125 11 0.046 8 0.032 8 0.015 7 0.011
3 100 6 0.508 — — 10 0.187 10 0.031 7 0.015
1 1000 4 1.919 12 0.7332 9 2.122 9 0.033 6 0.018
2 1000 4 2.277 12 0.998 8 1.778 8 0.049 5 0.031
3 1000 6 88.031 — — 10 13.057 10 0.041 7 0.024

(𝑢, 𝑣)

(𝑝
2
, 𝑞

2
)

(𝑝
1
, 𝑞

1
)

𝑟
1

𝑟
2

Figure 1

The parameters (𝑝
1
, 𝑞
1
), (𝑝
2
, 𝑞
2
), 𝑟
1
, and 𝑟

2
are given as

(10, 10), (10, −10), 14, and 16, respectively.

Table 1 shows the number of iterations and CPU time
for these five methods, respectively. In Table 1, the value
“Dim” denotes the dimension of the systems, “NI” denotes
number of iterations, while “CPU” is theCPU time in seconds
respectively. We analyze the performance of each method
via execution time, floating points operations, and storage
locations. One can observe that EMFM has the smallest
number of iterations compared to the classical diagonal
updating (I-VDN) proposed by Waziri et al. [7]. This shows
that the line search strategies presented in this paper have
increased the convergence speed of the classical diagonal
updating method.

If we compare the performance of allmethods, in terms of
CPU time, it is clear that EMFMmethod consumes less CPU
time than the others and still keeping memory requirement
and CPU time in seconds to only 𝑂(𝑛). All five methods are
able to obtain the solution (𝑥

∗

= −1.1243, 1.5001) of A2, but
EMFM method consumes less CPU time in second (0.001)
compared to the other 4 methods. Moreover, for A1, still
proposed method has shown a promising performance with

less storage locations (2 locations) whereas NM, FN, and BM,
respectively, required 4 locations for each.

5. Conclusion

From the fact that there is a rapid development in research
on solving nonlinear systems, nevertheless, the dimension
of the nonlinear system is most of the times so large that
it requires a very costly arithmetic operations when using
some other Newton-like methods; so we usually employ
cheap iterative approach, and the good candidate is classical
diagonal updating. Notwithstanding, the classical updating
scheme has some lapses. One is that it usually needs high
number of iterations. The other is that the method generally
has slow convergence behavior. This paper proposes an
enhanced diagonal secant updating scheme based on the
steps of backtracking in the Armijo-type line search and
then improved via Wolfe-like condition. Our approach aims
at improving the overall performance of diagonal secant
updating scheme. The algorithm only requires to store a
row vector while ignoring all the off and low diagonal
elements and therefore largely reduces memory locations.
In addition, as it uses two line search strategies (predictor
and corrector) to obtain a new iterates point, the spectral
properties of the diagonal updating scheme is improved, and
rapid convergence property is gained.

Computational experiment suggests that it is very vital
for diagonal updating scheme to use line search strategy.
EMFM method has very good solving speed and the best
performance among the Newton-like methods. Finally, it can
be concluded that this approach would certainly be quite
useful for solving large-scale systems of nonlinear equations.
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