
1

Practical Resource Monitoring
for Robust High Throughput Computing

Gideon Juve⇤, Benjamin Tovar†, Rafael Ferreira da Silva⇤, Dariusz Król⇤k, Douglas Thain†, Ewa Deelman⇤,
William Allcock‡, Miron Livny§

⇤ University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA
† University of Notre Dame, Notre Dame, IN, USA

k AGH University of Science and Technology, Department of Computer Science, Krakow, Poland
‡ Argonne National Laboratory

§ University of Wisconsin Madison, Madison, WI, USA

Abstract—Robust high throughput computing requires ef-
fective monitoring and enforcement of a variety of resources
including CPU cores, memory, disk, and network traffic. Without
effective monitoring and enforcement, it is easy to overload ma-
chines, causing failures and slowdowns, or underutilize machines,
which results in wasted opportunities. This paper explores how
to describe, measure, and enforce resources used by computa-
tional tasks. We focus on tasks running in distributed execution
systems, in which a task requests the resources it needs, and
the execution system ensures the availability of such resources.
This presents two non-trivial problems: how to measure the
resources consumed by a task, and how to monitor and report
resource exhaustion in a robust and timely manner. For both
of these tasks, operating systems have a variety of mechanisms
with different degrees of availability, accuracy, overhead, and
intrusiveness. We describe various forms of monitoring and the
available mechanisms in contemporary operating systems. We
then present two specific monitoring tools that choose different
tradeoffs in overhead and accuracy, and evaluate them on a
selection of benchmarks.

Index Terms—High-Throughput Computing, Profiling, Moni-
toring.

I. INTRODUCTION

High-throughput computing (HTC) applications seek to
maximize the quantity of results produced over long time
periods, such as months or years. Hosted computing infras-
tructures such as grids, and more recently clouds, have been
widely used by the research community to address the needs
of such applications [1]–[3]. These systems are becoming
increasingly complex: where clusters were once typically
single-core machines that ran single-process applications, they
have become constellations of many-core machines that run
many applications simultaneously. HTC applications are also
becoming more complex. Individual tasks are often grouped
into larger structures such as workflows [4], or MapReduce
applications, which allow users to express multi-step compu-
tational tasks such as retrieving data from an instrument or
database, running an analysis, and extracting statistics.

Efficient and robust resource provisioning and scheduling
strategies are required to handle this category of applications.
Scheduling and provisioning algorithms typically assume that
resource usage information such as wall time, file size, and

memory requirements, are all available in advance or can
be reliably estimated [5]–[8], but in practice this information
is rarely available. Without detailed and accurate resource
information, it is virtually impossible to make even a simple
decision such as how many tasks to run simultaneously on a
single machine.

In this work, we aim to gather information about the
resource usage of high-throughput scientific applications so
that systems can make better scheduling and provisioning
decisions, and thereby improve overall throughput. Our ap-
proach focuses on monitoring from the user perspective, which
implies different mechanisms, resolution, and privileges than
those available to a system administrator. We first collect
resource usage data as applications are executed, and then
use this historical data to develop models that can be used
to estimate the resource usage of future executions of the
application [9], [10]. These estimates can be used during
provisioning to select appropriate resources for the application,
in scheduling to ensure that sufficient resources are available
and that resources are used efficiently, and at runtime to
enforce limits on resource usage and to detect failures that
are caused by overconsumption. Note that the monitoring is
done at a task, and not at a system level, as a task may be
misbehaving even if it does not have a noticeable impact on
the host system.

Although there are many operating system monitoring and
profiling mechanisms that can be used to collect resource
usage information, there is no single mechanism that meets
our needs. This is partially due to the diversity of available
architectures and operating systems, but also due to the fact
that many monitoring mechanisms were designed for entirely
different purposes. For example, many operating systems
provide whole-system summaries (such as the global load
average) and per-device statistics (such as free blocks on a
file system), but neither of these is appropriate for measuring
the independent resources consumed by each job currently
running on the machine. Collecting the desired information
requires a combination of techniques and involves trade-offs
between accuracy, overhead, and complexity. If resources are
exhausted, it is important to know which process misbehaved.
Therefore it is critical that the chosen mechanism can be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357615422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

deployed for continuous use during production operation to
make suitable resource allocation decisions.

In this paper, we survey the large number of mechanisms
available in current operating systems for gathering resource
information, and discuss the advantages and drawbacks of
each approach for monitoring the resource usage of HTC
workloads. We then select several mechanisms appropriate for
continuous monitoring of production jobs, and evaluate trade-
offs in overhead and accuracy on a selection of benchmarks.

II. MONITORING MECHANISMS

We define an HTC workload as a set of semi-independent
tasks (or batch jobs), each of which involves the invocation
of one or more operating system processes. In this paper,
we focus entirely upon the design and implementation of a
resource monitor which runs alongside each task in an HTC
workload. Future work will address the other components
of resource management, such as estimation, scheduling, and
enforcement.

There are three general methods by which the monitor may
attempt to learn about the resource usage of a process. It may
be interposed between the process and the resource in order
to learn precisely what the process is doing by intercepting
its actions. It may query the properties of the resource that
are tracked by the OS. Or it may request that the OS send
notifications when the state of the resource changes.

There are inherent tradeoffs between each monitoring tech-
nique. Generally, interposition offers the greatest accuracy
in determining the intent of a process, because it sees each
operation before the OS has an opportunity to act upon it.
This also permits the interposer to prevent an action before a
resource is overconsumed. But, interposition often has signif-
icant overhead and complexity, and must be used carefully to
avoid changing the behavior of the monitored process. Queries
are usually the easiest mechanism to implement, but the infor-
mation returned is immediately out of date. Repeated queries
at a rapid rate will result in more timely information at the cost
of increased overhead. However, reliance on queries can result
in inaccurate monitoring: a temporary resource spike between
measurements might be missed. Even if a query indicates
overconsumption of a resource, the monitor can act to stop the
process, but other processes on the machine may have failed
as a result. Notifications from the operating system, when
available, are more accurate than repeated queries because
they rely upon the OS to detect key events and report them
reliably, using much less traffic. However, like queries, they
report upon completed events and do not permit the monitor
to prevent problems before they happen.

Given these considerations, practical resource monitoring
requires the use of all three techniques. Different resource
types may call for different kinds of monitoring, and different
OS facilities and operating conditions may call for different
approaches. A task may also involve multiple processes ar-
ranged in a process tree. In such cases it is necessary for the
resource monitor to track and measure the resource usage of
all the processes and sum the results appropriately. In order
to do this, the monitor needs to use mechanisms that enable

it to observe the creation and termination of processes, and
determine the relationships between them.

We wish to monitor resources in three general categories:
computation, memory, and I/O. For each of these resources,
it is important to capture the behavior of the process and the
resources provided by the OS. Broadly, interposition meth-
ods capture behavior, while notifications and queries observe
resources provided by the OS.

A. Query Mechanisms

There are many system calls and library functions that can
be used to query resource usage. getrusage() is a standard
UNIX system call that can be used to get information about
the computation, memory and I/O of a task. Unfortunately,
information available from getrusage() varies between
implementations, as the POSIX standard only requires the
report of CPU times (for example, Linux and Darwin populate
the I/O fields differently). The stat() family of functions
can be used to get information about file sizes. statfs()
provides information about mounted file systems, such as the
number of used and free inodes and blocks. This information
could be used to estimate the amount of disk space used by a
task, or to ensure that there is enough disk space available to
run a task.

A common source of resource usage information is
procfs. procfs is a virtual file system (typically mounted
at /proc) that exports data about the state of the operating
system, including system- and process-level information about
memory, CPUs, disks, and file systems. The information
available in procfs varies widely among UNIX systems, but
on many systems there is a directory for each process with files
for different types of information about the process. For exam-
ple, Linux provides /proc/[pid]/stat, which contains
CPU usage information (utime, stime) and current memory
usage, /proc/[pid]/status, which contains information
about peak memory usage, and /proc/[pid]/io, which
contains information about the number of bytes read and
written.

Hardware performance counters can provide information
about the computation resources used by a process. These
counters track the number of hardware operations performed
by a CPU core in special-purpose registers. The types of
counters available on different systems varies widely, but
typically there are counters for cycles, instructions, floating-
point operations, cache hits, cache misses, branches, loads,
stores, and many other CPU operations. PAPI [11] is a popular
library for querying performance counters, and the Linux
perf tool [12] records performance counters at the process
level.

For GPUs, while the interface may vary amongst ven-
dors, most drivers provide a mechanism for inquiring about
the utilization of GPU resources by a given process. For
example, nvmlDeviceGetAccountingStats, included
in NVIDIA’s Management Library [13], provides utilization
statistics, such as the number of threads, processor time, and
memory consumed.



3

B. Notification Mechanisms
With notification mechanisms, the operating system delivers

messages to the resource monitor when the state of a resource
changes. A simple example is the wait4() system call found
on most UNIX systems, which blocks the caller until one of its
children exits and returns information about the resource usage
of the exiting child (the same information as getrusage()).

Linux provides inotify() for monitoring file system
events. The monitor registers to receive notification when
files and directories are opened, closed, modified, deleted, or
moved. Unfortunately, the events reported are not associated
with a process ID, so it is difficult to use for monitoring the
files accessed by a specific task, unless each task has a unique
working directory or only one task is allowed to run at a time.
ptrace() is a UNIX system call that is used to implement

debuggers. Linux provides an extension to ptrace() for
observing process creation and exit events. This extension is
useful for tracking the genealogy of a task’s process tree, and,
because ptrace() stops the traced process on exit(), for
observing the final state of a process before it is cleaned up
(e.g. peak memory usage from procfs).
taskstats [14] is a query/notification interface for col-

lecting information about processes on Linux. It uses a netlink
socket to deliver resource usage data for processes and threads
from the kernel to the monitor. This data includes values
returned by getrusage(), such as utime and stime, as
well as information available in procfs, such as bytes read
and written and peak memory usage. The monitor can use
taskstats to query for data about all processes/threads, about a
specific process/thread, or register to receive events whenever
a process/thread exits.

Kernel probes are another category of notification mecha-
nisms. Probes are implemented as tracing points in the kernel
that can be turned on and off by the monitor [15], [16]. Probes
are placed at key locations in the kernel where they can report
useful information about the system. Events are reported to
the monitor every time a kernel thread encounters a probe that
the monitor is interested in. For example, probes in the kernel
VFS layer can report information about operations on files
and directories. DTrace [17] on Solaris and SystemTap [18]
on Linux are similar approaches for using kernel probes.
Both systems provide a scripting language that enables users
to define actions to associate with different probes, such as
incrementing a counter or printing information. Because they
have access to sensitive information about the entire system,
most kernel probe implementations require the monitor to have
superuser privileges.

C. Interposition Mechanisms
These are mechanisms in which the monitor intercepts

actions performed by the process. System call interposition is a
commonly used technique where every system call made by a
process is intercepted by the monitor. This enables the monitor
to observe I/O and file access information by intercepting the
system calls associated with those functions, such as open,
close, read and write. System call interposition can be
implemented using ptrace() with the PTRACE SYSCALL

flag. On other systems, system calls can be replaced with
software breakpoints using ptrace() to achieve the same
result. System call interposition usually has a very high
overhead because ptrace() generates a signal to stop the
traced process and extra context switches every time a system
call enters or returns from the kernel.

In function interposition the monitor provides wrappers that
replace and call original functions. These wrappers record
information about the parameters and the results of wrapped
functions. This can be achieved in a number of different
ways. Compile-time techniques require the application code
to be modified by either importing a header that redefines the
wrapped functions, or by replacing all the function references
in the program to be traced with the equivalent wrapped
versions. Function interposition can also be performed at link
time by telling the linker to consider the wrapper functions
before the wrapped functions when resolving symbols. Care
needs to be taken when defining the wrappers so that name
collisions can be resolved, and the wrapper functions can
still call the wrapped functions. This is usually accomplished
by providing alternate names for the wrapped functions. For
example, the MPI standard specifies an interposition mecha-
nism for profiling MPI applications called PMPI that enables
users to specify a profiling library at linking time to intercept
MPI function calls (see Chapter 8 of [19]). The specification
requires that all MPI implementations provide alternative
names for MPI functions by prepending the letter “P” so that
profiling libraries can provide their own implementation of the
MPI interface, and call the implementation-specific functions,
without causing a naming conflict. Alternatively, the GNU
linker provides a --wrap option that allows arbitrary symbols
to be wrapped.

Function interposition can also be implemented for shared
libraries with help from the dynamic linker. In this approach,
the LD PRELOAD environment variable is used to tell the
dynamic linker to use the symbols from the library with the
wrapper functions in place of the symbols from the library
with the wrapped functions. The wrapper library then uses
dlsym() to locate and call the wrapped functions. This
approach only works if the wrapped functions are in a shared
library and if the program is not statically linked. Despite
these limitations, function interposition is a powerful method
to monitor vendor-specific devices. For example, it can be used
to determine which GPUs are being accessed by the monitored
process by preloading a wrapper for the cuCtxCreate()
function from the NVIDIA’s CUDA library.

Interposition can also be achieved at the file system level
using a virtual file system that records information about I/O
operations before passing them on to another file system that
stores the actual data. This approach is used by ParaTrac [20],
for example. chroot can be used to ensure that all I/O
performed by the task passes through the virtual file system
transparently. This approach is effective at capturing I/O
and file accesses with low overhead, but requires superuser
privileges to mount the file system and chroot the task.

Finally, dynamic binary instrumentation (DBI) is a tech-
nique for profiling applications that could be used for resource
monitoring. In this approach, the monitor modifies the appli-



4

cation binary at runtime to insert profiling instructions and
software breakpoints. Projects such as DynInst [21] and Intel
PIN [22] provide libraries for writing monitors that use DBI.

D. Comparison of Mechanisms
Table I compares the various resource monitoring mecha-

nisms described above based on several key characteristics.
These characteristics include:

• Mode refers to the mode of operation, which is either
query, notification, or interposition.

• Resources refers to the set of resources that can be mon-
itored with a given mechanism. For example, procfs
can provide information about the processes (P), threads
(T), computation (C), memory (M), I/O (I) and files (F)
associated with a task.

• Effort refers to the relative amount of work required to
use the resource monitoring mechanism. This ranges from
simply calling a system call or opening a file, to writing
hundreds of lines of intricate code.

• Overhead refers to the level of performance degradation
imposed on the task when using a given resource moni-
toring mechanism. This varies from none in the case of
wait4(), to high in the case of system call interposition.

• Portability refers to the availability of the resource mon-
itoring mechanism across different operating systems.
Some mechanisms are standard features on all POSIX
systems, like wait4(), others are available in only one
operating system, like taskstats on Linux.

• Privileges refers to the level of security permissions
required to use the mechanism. Some mechanisms can
only be used by superusers, some mechanisms can be
used by superusers or the owners of a process, and others
can be used by any user on the system.

• Intrusiveness refers to the degree to which the mech-
anism interferes with the normal behavior of the task.
Some mechanisms, such as interposition, are highly in-
trusive, while others, such as stat() have little or no
impact on the task.

• Scope refers to the set of objects targeted by a monitoring
mechanism. This can range from the whole operating
system in the case of kernel probes, to individual files
and directories for inotify().

• Notes refers to the significant limitations of a mechanism.
For example, systems differ in how they populate the
fields returned by getrusage().

III. MONITORING TOOLS

In this section, we describe the implementation of two
tools we have developed for monitoring the resource usage of
HTC tasks: resource monitor, which is part of CCTools [23],
and Kickstart [24], which is part of the Pegasus Workflow
Management System [25].

A. Levels of Measurement
When implementing monitoring mechanisms, we found it

helpful to establish levels of monitoring. These levels describe

how intrusive a tool is when monitoring a task. The levels we
defined are:
Level 1: Only query mechanisms and low overhead, non-

intrusive notifications such as wait4() are used. Since
there is no general method for obtaining the full process
tree in level 1 (in Linux, one could periodically inspect the
contents of procfs, but this is error prone as it would
miss short running processes), this level is mostly useful
for processes that do not fork.

Level 2: Interpositions and events are used for detecting when
processes start and stop. By interposing, for example,
fork and exit calls, the process tree can be easily
observed. Once the process tree is known it is possible
to record CPU times, virtual, resident, and swap memory,
and bytes written and read by inspecting sources such as
procfs for each process.

Level 3: Full system call or function interposition is used.
By capturing open, read and write calls, this level
provides the most precise measurements for files accessed
and I/O.

B. Kickstart

Kickstart [24] is used to launch computing tasks, monitor
the behavior of tasks, and report information about tasks
and the hosts on which they were executed. Kickstart was
originally designed to be used with Pegasus, but it can also
be used separately. Kickstart implements all three monitoring
levels, with level 1 being the default, and levels 2 and 3
enabled via command-line flags.

For all levels Kickstart uses procfs and other query
mechanisms to gather basic information about the host, such as
the number of CPUs and CPU cores, the amount of used and
free system memory, the number of running tasks, the system
uptime, and the hostname. It uses wait4() to obtain CPU
usage (utime and stime), and gettimeofday() to compute
the wall time of the task. In addition, Kickstart can optionally
use stat() and a list of the task’s input and output files to
infer the amount of I/O performed by the task.

Kickstart implements monitoring levels 2 and 3 using
ptrace(). ptrace() is particularly useful for level 3
because, unlike other interposition mechanisms, it does not
require the application code to be recompiled, and it works
on all binaries regardless of whether they are statically or
dynamically linked.

For level 2, Kickstart uses ptrace() to intercept only
process creation (fork(), vfork(), clone(), exec())
and exit() events. When a process exit event occurs, it
inspects /proc/[pid]/status to determine peak memory
usage (VM and RSS high water marks) and total I/O (bytes
read and written). The process creation events are used to track
new processes created by the task, and the exit events are used
to observe the state of the processes when they have finished
executing their computations, but before they have fully exited.
This latter capability is critical for capturing accurate final
statistics for the process in procfs. If Kickstart attempts to
check procfs after wait4() returns, then the process will no
longer exist under /proc/[pid]. If Kickstart checks before



5

TABLE I: Comparison of Resource Monitoring Mechanisms
Mechanism Resourcesa Effort Portability Overhead Privileges Intrusiveness Scope Notes

Query mechanisms
perf. counters C Low All Low Owner Low Process
procfs C,F,M,I,T,P Low UNIX Low Varies Low System, Process b

stat() F Low POSIX Low Any Low File
statfs() F,I Low UNIX Low Any Low File System
getrusage() C,M,I Low POSIX Low Owner Low Process Some systems do not populate memory and/or I/O
GPU Libraries C Medium Linux Low Any Low Process c

Notification mechanisms
taskstats C,M,I,T,P Low Linux Low Owner Low Process
ptrace() events T,P Medium Linux Low Owner Medium Process
inotify() F Low Linux Low Any Low File, Directory Does not associate events with processes
wait4() C,M,I Low UNIX Low Owner Low Process Some systems do not populate memory and/or I/O

Interposition mechanisms
sys call interp. F,I,T,P High Linux High Owner High Process
function interp. F,I,M,T,P Medium All Low Developer High Process Requires re-compiling or re-linking
LD PRELOAD F,I,M,T,P High UNIX Medium Owner High Process Only works for dynamic libraries
virtual filesystem F,I High All Medium Superuser Low File System
kernel probes C,F,M,I,T,P Medium UNIX Low Superuser Low System
DBI C,F,M,I,T,P High All Medium Owner High Process

aP: processes, T: threads, C: computation, M: memory, I: I/O, F: files
bSome information is only accessible by owner and superuser. Availability of data varies among UNIX systems.
cWith supervisor privilege scope is expanded to System, Process

the process calls exit(), then procfs may not reflect the
final peak memory and total I/O of the process. By capturing
the exit event with ptrace(), Kickstart can ensure that
the process is finished, but that it still exists in procfs. This
approach provides accurate memory and I/O measurements
without adding a significant amount of overhead.

For level 3, Kickstart uses ptrace() to gather detailed
information about the files accessed by a process and the I/O
performed on those files. In this mode, Kickstart interposes
system calls, and inspects the arguments and return values
for I/O system calls such as open(), close(), read(),
write() and others. In this way it can keep track of exactly
which files are opened by the task, and exactly how much
I/O is performed on each one. In addition, it can observe I/O
performed on terminals, sockets, FIFOs, and pipes. This mode
provides more accurate and detailed file and I/O information
than the previous list-of-files approach, but adds some over-
head in the form of extra context switches on each system call
performed by the task.

Kickstart also implements level 3 using the LD_PRELOAD
mechanism. In this mode, LD PRELOAD is used to tell the
dynamic linker to load a custom library into the application
that wraps key function calls such as open(), close(),
read() and write(). The library writes monitoring data
to a log file, which is read and analyzed by the monitoring
process. The LD PRELOAD approach has much less overhead
than ptrace() for interposing function calls, but does not
work on static binaries. In the case of static binaries, however,
the library used for LD PRELOAD can also be statically
linked into the application at compile time.

C. resource monitor

resource monitor implements monitoring levels 1 and 2.
For level 1 it continuously polls different query mechanisms,
such as procfs on Linux, and the kernel kvm interface
on FreeBSD. The getrusage() system call is used to get
CPU usage information such as user and system time, and the
peak resident memory size. Additionally, it uses calls from

fts.h to periodically record the total size and file count
of the working directory. This can be made more precise
by providing the monitor with a list of directories and files
to watch. Level 1 is less intrusive and has lower overhead
than Level 2, but results in reduced accuracy as as shown in
Section IV. This is because polling causes the monitor to miss
peak usage values. In general, the longer the polling interval
the less accurate the monitor will be in level 1.

For level 2 resource monitor uses the LD PRELOAD
mechanism to interpose process management functions such
as fork, exit and wait. LD PRELOAD was chosen because it
has less overhead than ptrace(), and requires less effort
to implement. However, LD PRELOAD does not work for
binaries that have been statically linked. Special care is re-
quired using LD PRELOAD to synchronize the monitor with
fork/exit events from the process tree. Ideally, the monitor
should measure peak resource usage values just before the
task exits; otherwise, when the monitor finally detects that
a task has terminated, its information is not available in the
kernel anymore. To enable this, if the task was compiled with
gcc, then the monitor also interposes the destructor attribute,
which allows to detect when a process’s main() completes
or exit() is called. In addition, in level 2 resource monitor
uses inotify() to record which files are accessed by the
task, when it is available.

By default, resource monitor generates up to three report
files: a summary file with the maximum values of resource
used, a time-series that shows the resources used at periodic
time intervals, and a list of files that were opened during
execution. resource monitor can be used as a watchdog by
specifying maximum resource limits; when one of the re-
sources goes over the limits specified, the task is terminated,
and a report in the summary is made to indicate that the
resource was exhausted.

IV. EVALUATION

In this section we evaluate our implementation of the
different monitoring levels described in Section III-A. For
level 1, we use resource monitor using only queries with a



6

sample polling period of 1 second. For level 2, we capture
fork/exit events using LD PRELOAD with resource monitor
and using ptrace events with Kickstart. Finally, for level 3, we
use Kickstart to interpose system calls using ptrace and library
calls using LD PRELOAD. We first evaluate the accuracy of
the tools for measuring CPU, memory, and I/O consumption
on mock processes, and then we evaluate their performance
impact (overhead). The experiments were conducted on a 12-
core Intel Xeon 2.67GHz with 40GB of RAM. For each con-
figuration, 5 repetitions were performed, which were sufficient
to obtain average values with less than 2% error.

A. Accuracy
Table II shows accuracy results for CPU, memory, and

I/O. To evaluate CPU accuracy, we developed a program to
repeatedly compute the sine and cosine of random numbers.
We varied the computation size from a million (106) up to
a billion (109) instructions. Table II(a) shows the average
CPU time (utime+stime) for each configuration when executed
without monitoring (Baseline), and the error ratios of the
times reported by the monitoring tools when compared to the
baseline values. Positive error ratios (resp. negative) indicate
that the monitoring tool overestimates (resp. underestimates)
the CPU time. In all cases, the error ratios are positive,
which suggests that the monitors are causing the monitored
process to use more CPU time to do its job, possibly due
to cache interference or context switches. In general, the
resource monitor seems to have more of an impact than
Kickstart, probably because polling introduces more overhead
than the mechanisms used by Kickstart when there are few
function calls.

To measure the accuracy of memory monitoring, we de-
veloped a program that allocates 16GB of memory and fills
between 1GB and 16GB of it with data. We expect the
measurement reported by each tool to be equal to the amount
of memory filled with data. Table II(b) shows the average
error ratios of memory consumption value reported by the
monitoring tools. The values measured by both Kickstart and
resource monitor are reasonably accurate in all cases except
for the polling case. The relatively large errors for the polling
case are all underestimates, and reflect the fact that the polling
approach is not able to detect memory usage peaks because
the process exits before the final value can be measured. This
is a fundamental limitation of the polling approach.

Finally, I/O accuracy was determined using two different
experiments: 1) fixing the buffer size and varying the amount
of data read and written, and 2) fixing the file size and varying
the buffer size.

For the first I/O experiment, we developed a program to
read and write 1MB, 100MB, 1GB, and 10GB of data using a
4KB buffer size. Table II(c) shows the average error ratios for
bytes read reported by the monitoring tools. Note that the error
values for bytes written were similar to the values for bytes
read, so they have been omitted. Again, the values reported
by both tools are accurate with the exception of the polling
case, which systematically underestimates the amount of data
read and written because it is unable to record a measurement
right before the process exits.

For the second I/O experiment, we developed a program to
read and write 10GB of data using buffer sizes ranging from
4KB to 32KB. Average error ratios for bytes read are shown
in Table II(d). Again, the results for writes were similar to the
results for reads, so they have been omitted. Like the previous
experiment, the values measured by using the monitoring tools
are precise with the exception of the polling case.

B. Overhead
The overhead of the monitoring tools was measured for

the same experiments described in the previous section.
Table III(a) shows the CPU overhead in seconds, and the
percentage overhead in brackets. A relatively large overhead is
observed for very short executions, but as the execution time
increases, the overhead becomes less than 1%. This suggests
a small, approximately constant overhead for all the tools.

The performance impact of memory monitoring is shown
in Table III(b). Similar to the CPU experiments, there is a
relatively large overhead for short-running experiments, but
in most cases the overhead is less than 5%. There does not
seem to be any correlation between memory size and overhead,
which is what we would expect. There also does not seem to
be much difference in the overhead between different tools.

The I/O overhead experiments were the same as the previous
section, except the read experiments used /dev/zero as the
input file, and the write experiments used /dev/null as the
output file. This was done in order to isolate the monitoring
overhead and minimize the effects of file system caching and
disk performance variation.

The different approaches have a more significant impact on
performance in the case of I/O monitoring. For the first I/O
experiment (variation of the data size) shown in Table III(c),
the average overhead is high for small amounts of data,
but this is just a result of the very short runtime of the
program. As the amount of read/written data increases, the
overhead ratio progressively decreases. In 4 out of 5 of the
configurations tested, the overhead is only a few hundredths
of a second for all the data sizes considered. In the case
where Kickstart interposes system calls with ptrace() the
overhead increases as the data size increases. This is a result of
the increasing number of read() calls that are interposed as
the data size increases (with constant 4KB buffer size), which
each impose additional overhead on the process. However, the
Kickstart results for LD PRELOAD interposition show that
it has a negligible overhead, even though it is interposing as
many function calls as ptrace.

For the second I/O experiment, shown in Table III(d), when
the size of the buffer is varied from 4KB to 32KB the number
of function calls is significantly reduced and, consequently, the
overhead of the ptrace() interposition case is also reduced.
In the other cases, the overhead remains relatively low.

V. RELATED WORK

There is a large number of system monitoring tools that use
query and event-based mechanisms. Included among these are
common system monitoring tools such as top, ps, free and
the Sysstat suite [26], which includes sar and other tools.



7

TABLE II: Monitoring Accuracy
Baseline Polling fork/exit library call fork/exit system call

LD PRELOAD LD PRELOAD ptrace ptrace
(resource monitor) (resource monitor) (Kickstart) (Kickstart) (Kickstart)

Instr. (a) CPU time
106 0.32 s +0.04 (12.50%) +0.02 (4.91%) +0.01 (2.17%) 0.00 (0.00%) 0.00 (0.00%)
107 2.93 s +0.06 (2.12%) +0.04 (1.20%) +0.01 (0.63%) 0.00 (0.00%) +0.01 (0.14%)
108 28.20 s +0.17 (0.60%) +0.09 (0.31%) +0.07 (0.24%) +0.03 (0.10%) +0.04 (0.14%)
109 279.53 s +1.29 (0.46%) +1.32 (0.47%) +0.57 (0.19%) +0.20 (0.07%) +0.41 (0.15%)
Memory (b) Memory: resident size
1GB 1GB �13.96% +0.08% +0.06% +0.03% +0.03%
2GB 2GB �17.63% +0.03% +0.03% +0.02% +0.02%
4GB 4GB �2.25% +0.02% +0.01% 0.00% 0.00%
8GB 8GB �1.89% +0.01% 0.00% 0.00% 0.00%
16GB 16GB �1.99% +0.01% 0.00% 0.00% 0.00%
File size (c) I/O: bytes read, 4KB buffer
1MB 1MB �13.64% 0.00% 0.00% 0.00% 0.00%
100MB 100MB �9.07% 0.00% 0.00% 0.00% 0.00%
1GB 1GB �5.84% 0.00% 0.00% 0.00% 0.00%
10GB 10GB �2.13% 0.00% 0.00% 0.00% 0.00%
Buffer size (d) I/O: bytes read, 10GB file
4KB 10GB �5.42% 0.00% 0.00% 0.00% 0.00%
8KB 10GB �0.91% 0.00% 0.00% 0.00% 0.00%
16KB 10GB �13.12% 0.00% 0.00% 0.00% 0.00%
32KB 10GB �16.87% 0.00% 0.00% 0.00% 0.00%

TABLE III: Monitoring Overhead
Baseline Polling fork/exit library call fork/exit system call

LD PRELOAD LD PRELOAD ptrace ptrace
(resource monitor) (resource monitor) (Kickstart) (Kickstart) (Kickstart)

Instr. (a) CPU overhead
106 0.32 s +0.22 (68.75%) +0.25 (78.13%) +0.04 (12.96%) +0.18 (56.25%) +0.13 (40.63%)
107 2.93 s +0.28 (9.56%) +2.42 (82.59%) +0.03 (1.09%) +0.14 (4.78%) +0.14 (4.78%)
108 28.20 s +0.17 (0.60%) +0.22 (0.78%) +0.04 (0.16%) +0.10 (0.35%) +0.12 (0.43%)
109 279.53 s +0.28 (0.10%) +0.78 (0.28%) +0.02 (0.01%) +0.07 (0.03%) +0.61 (0.22%)
Resident size (b) Memory overhead
1GB 3.05 s +0.31 (10.16%) +0.34 (11.15%) +0.22 (7.28%) +0.11 (3.48%) +0.43 (13.97%)
2GB 6.11 s +0.11 (1.77%) +0.17 (2.85%) +0.04 (0.69%) +0.03 (0.46%) +0.06 (1.05%)
4GB 12.76 s +0.81 (6.36%) +0.67 (5.28%) +0.51 (4.03%) +0.80 (6.25%) +1.04 (8.18%)
8GB 26.18 s +0.70 (2.66%) +1.09 (4.16%) +1.35 (5.16%) +0.31 (1.18%) +1.34 (5.10%)
16GB 54.43 s +0.07 (0.13%) +1.63 (2.99%) +0.25 (0.46%) +0.26 (0.47%) +1.75 (3.22%)
File size (c) I/O overhead, 4KB buffer
1MB 0.01 s +0.01 (42.86%) +0.01 (42.88%) +0.02 (185.71%) +0.01 (71.43%) +0.02 (197.14%)
100MB 0.02 s +0.01 (50.00%) +0.01 (83.75%) +0.02 (105.00%) +0.02 (130.00%) +0.45 (2812.50%)
1GB 0.13 s +0.01 (1.22%) +0.02 (11.89%) +0.02 (17.07%) +0.02 (17.07%) +4.51 (3437.80%)
10GB 1.26 s +0.01 (0.32%) +0.02 (1.78%) +0.03 (2.35%) +0.03 (2.10%) +44.67 (3545.24%)
Buffer size (d) I/O overhead, 10GB file
4KB 1.29 s +0.01 (0.69%) +0.01 (0.56%) +0.02 (1.63%) +0.01 (0.75%) +45.59 (3570.33%)
8KB 1.19 s +0.01 (0.51%) +0.01 (0.54%) +0.01 (0.88%) +0.01 (0.74%) +22.94 (1935.17%)
16KB 1.12 s +0.01 (0.81%) +0.01 (1.15%) +0.03 (2.51%) +0.02 (1.50%) +12.08 (1081.81%)
32KB 1.10 s +0.02 (1.46%) +0.02 (1.35%) +0.02 (2.26%) +0.02 (1.83%) +6.42 (585.98%)

Many distributed monitoring systems, including Gan-
glia [27], Nagios [28], and Munin [29], have been developed
to provide system-level monitoring information. These systems
are typically used by system administrators for problem de-
tection and troubleshooting. They do not record the detailed,
job- or process-level resource usage data that is required to
model the resource usage of batch workloads.

Some monitoring tools have been developed for profiling the
resource usage of HPC workloads. TACC Stats [30] collects
resource usage information including CPU usage, memory
usage, filesystem and network I/O, and hardware performance
counters. These values are recorded as a time series from
procfs, sysfs and other sources. The data is correlated
with individual jobs for later analysis based on job ID. NCAR
has used a similar approach for monitoring CPU usage and
floating point operations for HPC jobs [31].

There are several tools that use interposition to collect
information about program behavior. The strace [32] and
ltrace [33] tools use interposition to report system calls

and library calls, respectively. LANL-Trace [34] uses these
tools to profile the I/O behavior of parallel applications.
ParaTrac [20] interposes I/O operations using a FUSE [35]
filesystem that records information about I/O operations before
passing them on to an underlying filesystem that stores the
actual data. The system uses chroot to ensure that all
application I/O passes through the profiling filesystem trans-
parently. ParaTrac also collects information from procfs,
taskstats [14] and the workflow management system to
provide complete application profiles.

Many MPI profiling libraries that use PMPI for function in-
terposition, including Jumpshot [36], mpiP [37], FPMPI [38],
Scalasca [39] and others. Function interposition is used by
several tools to implement I/O profiling. Darshan [40] uses
PMPI and other function call interposition techniques to
observe the I/O behavior of MPI applications. IOT [41] uses
both PMPI and a GNU linker extension that enables functions
to be wrapped at link time to enable I/O tracing. HPCT-IO [42]
interposes UNIX I/O calls by either requiring applications



8

to include a header file that redefines the I/O functions and
redirects them to a tracing library, or by using dynamic
binary instrumentation to replace the I/O function calls in
the application binary. Condor uses link-time interposition for
implementing checkpointing and remote I/O for HTC jobs [43]

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a study of resource usage
monitoring techniques for HTC workloads. We defined several
categories of resource usage that are of interest for workload
management and planning, including CPU usage, memory
usage, storage, and I/O.

Many different mechanisms are available for measuring
these resources, but there is a large number of challenges
and tradeoffs that need to be considered when using these
mechanisms for monitoring. In order to better understand these
issues, we grouped the mechanisms into three general cate-
gories based on their method of operation (queries, notifica-
tions, interpositions), and compared the available mechanisms
across a wide range of different characteristics, including
portability, intrusiveness, performance impact, level of effort,
accuracy, and others. Finally, we described the implementation
of two monitoring tools that use several different monitoring
mechanisms, and presented an evaluation of the accuracy and
overhead of these tools using benchmark applications.

In the future we plan to deploy our monitoring tools on
production infrastructure to collect resource usage data for
real science applications. This data will help us extend our
previous work [9], [10] on using historical resource usage data
to automatically construct resource usage models for applica-
tions. These models can be used to derive estimates of future
resource usage, which we plan to use to guide scheduling and
provisioning algorithms, and to detect unexpected behavior
and set limits for resource usage at runtime.

ACKNOWLEDGMENTS
This work was funded by DOE under the contract number ER26110,

“dV/dt - Accelerating the Rate of Progress Towards Extreme Scale Col-
laborative Science”, and contract #DE-SC0012636, “Panorama - Predictive
Modeling and Diagnostic Monitoring of Extreme Science Workflows”.

REFERENCES

[1] R. Sobie et al., “Htc scientific computing in a distributed cloud envi-
ronment,” in 4th ACM Workshop on Scientific Cloud Computing, 2013.

[2] C. Hoffa et al., “On the use of cloud computing for scientific workflows,”
in 3rd International Workshop on Scientific Workflows and Business
Workflow Standards in e-Science (SWBES ’08), 2008.

[3] “Open science grid,” http://opensciencegrid.org.
[4] I. Taylor et al., Workflows for e-Science: Scientific Workflows for Grids,

2007.
[5] T. D. Braun et al., “A comparison of eleven static heuristics for mapping

a class of independent tasks onto heterogeneous distributed computing
systems,” Journal of Parallel and Distributed Computing, vol. 61, no. 6,
pp. 810–837, jun 2001.

[6] H. Casanova et al., “Heuristics for scheduling parameter sweep applica-
tions in grid environments,” in 9th Heterogeneous Computing Workshop,
2000.

[7] J. Blythe et al., “Task scheduling strategies for workflow-based ap-
plications in grids,” in 5th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’05), may 2005.

[8] A. Mandal et al., “Scheduling strategies for mapping application work-
flows onto the grid,” in 14th IEEE International Symposium on High
Performance Distributed Computing, 2005.

[9] R. Ferreira da Silva et al., “Toward fine-grained online task characteris-
tics estimation in scientific workflows,” in 8th Workshop on Workflows
in Support of Large-Scale Science, 2013.

[10] ——, “Online task resource consumption prediction for scientific work-
flows,” Parallel Processing Letters, vol. accepted, 2015.

[11] “Performance application programming interface (papi),”
http://icl.cs.utk.edu/papi.

[12] “perf,” http://perf.wiki.kernel.org.
[13] “Nvml,” https://developer.nvidia.com/nvidia-management-library-

NVML.
[14] “taskstats,” http://www.kernel.org/doc/Documentation/accounting/taskstats.txt.
[15] A. Mavinakayanahalli et al., “Probing the guts of kprobes,” in Proceed-

ings of the Ottawa Linux Symposium, 2006.
[16] J. Keniston et al., “Ptrace, utrace, uprobes: Lightweight, dynamic tracing

of user apps,” in Ottowa Linux Symposium, 2007.
[17] “Dtrace,” http://dtrace.org.
[18] “Systemtap,” https://sourceware.org/systemtap.
[19] M. P. I. Forum, “Mpi: A message-passing interface standard,” 2003.
[20] N. Dun et al., “Paratrac: A fine-grained profiler for data-intensive

workflows,” in Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, 2010.

[21] “Dyninst,” http://www.dyninst.org.
[22] “Intel pin,” http://software.intel.com/en-us/articles/pintool.
[23] “Cctools,” http://www3.nd.edu/ ccl/software/download.
[24] E. Deelman et al., “Kickstarting remote applications,” in International

Workshop on Grid Computing Environments, 2006.
[25] ——, “Pegasus, a workflow management system for science automa-

tion,” Future Generation Computer Systems, vol. 46, no. 0, pp. 17–35,
2015.

[26] S. Godard, “Sysstat,” http://sebastien.godard.pagesperso-orange.fr.
[27] M. L. Massie et al., “The ganglia distributed monitoring system: design,

implementation, and experience,” Parallel Computing, vol. 30, no. 7, pp.
817–840, jul 2004.

[28] “Nagios,” http://nagios.org.
[29] “Munin,” http://munin-monitoring.org.
[30] C.-D. Lu et al., “Comprehensive job level resource usage measurement

and analysis for xsede hpc systems,” in Proceedings of the Conference
on Extreme Science and Engineering Discovery Environment: Gateway
to Discovery (XSEDE), 2013.

[31] D. D. Vento et al., “System-level monitoring of floating-point per-
formance to improve effective system utilization,” in Supercomputing,
2011.

[32] “strace,” http://sourceforge.net/projects/strace.
[33] “ltrace,” http://ltrace.org.
[34] “Lanl-trace,” http://institute.lanl.gov/data/software/#lanl-trace.
[35] “Fuse: Filesystem in userspace,” http://fuse.sourceforge.net/.
[36] O. Zaki et al., “Toward scalable performance visualization with jump-

shot,” High Performance Computing Applications, vol. 13, pp. 277–288,
1999.

[37] “mpip: Lightweight, scalable mpi profiling,” http://mpip.sourceforge.net.
[38] “Fpmpi-2 fast profiling library for mpi,”

http://www.mcs.anl.gov/research/projects/fpmpi/WWW.
[39] M. Geimer et al., “The scalasca performance toolset architecture,”

Concurrency and Computation: Practice and Experience, vol. 22, no. 6,
pp. 702–719, apr 2010.

[40] P. Carns et al., “24/7 characterization of petascale i/o workloads,” in
Workshop on Interfaces and Architectures for Scientific Data Storage,
2009.

[41] P. C. Roth, “Characterizing the i/o behavior of scientific applications
on the cray xt,” in Proceedings of the 2nd International Workshop on
Petascale Data Storage, 2007.

[42] S. Seelam et al., “Early experiences in application level i/o tracing on
blue gene systems,” in IEEE International Symposium on Parallel and
Distributed Processing IPDPS, 2008.

[43] M. Litzkow et al., “Checkpoint and migration of unix processes in the
condor distributed processing system,” University of Wisconsin-Madison
Computer Sciences Technical Report #1346, Tech. Rep., 1997.


	Introduction
	Monitoring Mechanisms
	Query Mechanisms
	Notification Mechanisms
	Interposition Mechanisms
	Comparison of Mechanisms

	Monitoring Tools
	Levels of Measurement
	Kickstart
	resource_monitor

	Evaluation
	Accuracy
	Overhead

	Related Work
	Conclusion and Future Work
	References

