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Abstract: Generation scheduling and dispatch are determined by individual power producers’ bids in a
deregulated power market. The benefits obtained by a power producer will depend largely on how effectively
it can incorporate the variation of the market price in its generation scheduling. This paper addresses the self-
scheduling problem and design of optimal bidding strategy for a price-taker company. By restructuring the
electric power systems, market participants are facing an important task of bidding energy to an Independent
System Operator (ISO). This study proposes a model and a method for optimization-based bidding and self-
scheduling where a utility bids part of its energy and self-schedules the rest. The model considers ISO bid
selections and uncertain bidding information of other market participants. With appropriately simplified bidding
and ISO models, closed-form ISO solutions are first obtained. These solutions are then plugged into the utility’s
bidding and self-scheduling model which is solved by using Lagrangian relaxation. Testing results depicts that
the method has effective solutions with acceptable computation time.
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INTRODUCTION

With the deregulation of electrical power systems,
market participants bid energy to an Independent System
Operator (ISO).  In the daily market, participants submit
bids to the ISO who then decides Energy Clearing Prices
(ECP) and hourly generation levels of each participant
over a 24-hour period.  The relationship between ISO and
participants is shown in Fig. 1.  In some regions, a utility
bids part of the energy and self-schedules the rest,
whereas an Independent Power Producer (IPP) bids all its
energy. This study focuses on the daily bidding and
scheduling of a utility.

For each participant, bidding strategies ideally should
be selected to maximize its profit.  Game theory is a
natural platform to model such an environment (Owen,
1995; Krishna and Ramesh, 1997; Ferrero et al., 1997).
In the literature, matrix games have been used for its
simplicity, and bidding strategies are discredited, such as
“bidding high”,“bidding low” or “bidding medium”.
With discrete bidding strategies, payoff matrices are
constructed by enumerating all possible combinations of
strategies, and an “equilibrium” of the “bidding game”
can be obtained.  It is difficult to incorporate self-
scheduling in the method.

Modeling and solving the bid selection process by the
ISO have also been discussed. In Hao et al. (1998), bids
are selected to minimize total system cost, and the ECP is
determined as the price of the highest accepted bid. In
Alvey et al. (1998), a bid-clearing system is presented.
Detailed models are used, including network, reserve, and
ramp-rate constraints, and the problem is solved by using
linear programming.

The purpose of the study is to present a model and a
method for the bidding and self-scheduling problem from
the viewpoint of a utility, say Participant 1.  To obtain
effective solutions with acceptable computation time, bids
are represented as quadratic functions of power levels.
For Participant 1, these parameters are to be optimized.
For other participants, the parameters are assumed to be
available as discrete distributions.  Based on bids
submitted, the ISO is to minimize the total system cost.
The problem for Participant 1 is then formulated to
minimize its expected cost, including generation costs and
payment to the market.

PROBLEM FORMULATION

Representation of bids: A bid consists of price offers
and the amount of load to be satisfied by the market for
each hour. Price offers specify a stack of MW levels and
the corresponding prices as illustrated in Fig. 2.  By
integrating a staircase price offer curve, the bidding cost
function is piecewise linear.  The amount of load to be
satisfied by the market is denoted as pMl (t).

To reduce the number of parameters associated with
a bid, the piece-wise linear bidding cost function is
approximated by a quadratic Cl (pAl(t)) (often done in
scheduling problems (Guan et al., 1994)):

(1)Cl p t a t p t b t p t l LAl l Al l Al( ( )) ( ) ( ) ( ) ( ), , ,...,= + =2 1 2

where, l is the participant index, t the hour index, pAl (t)
the accepted level by ISO, al(t) and bl (t) are non-negative
bidding  parameters,  and   L  the number of participants.
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Fig. 1: The relationship between ISO and participants

Fig. 2:  An example of bids

The pAl (t) is non-negative, and is upper bounded by a
maximal value, i.e.,

(2)0 ≤ ≤p t p tAl Al( ) ( )

Participant 1 does not have exact bids of others, but
has probability distributions of {al(t), bl(t) and pMl(t)}, l
= 2, …, L, based on market information and experiences.
The distributions are represented by J discrete sets of bids:
 

Bj = {aj
l, bj

l, pj
ml  l = 2, …L}, j = 1, 2, …J (3)

The probability of Bj is pj with . Forp j

j

J

−
∑ =

1

1

Participants 1, a1(t), b1(t) and pM1(t) depend on its unit
characteristics and others’ bids, and are to be optimized.

The ISO model: The ISO decides hourly generation
levels of participants to satisfy the total submitted load at
the minimum cost over 24 h.  Bids of all participants are
available to the ISO, and the deterministic ISO problem
is:

 (4)J C p tISO
p t

l

l l

L

Al

t l

T

Al

=
==
∑∑min ( ( ))

( )

subject to:  

(5)p t p t
Al Ml

l l

L

l l

L

( ) ( )=
==
∑∑

where pMl(t) is the amount of load that will be satisfied by
the market for Participant l at hour t. Constraints (2)
should be satisfied for all participants.  For simplicity of
derivation, however, they are only required to be satisfied
for Participant 1 but are ignored for others. 

The model of participant 1: Participant 1 is to decide the
generation levels of each unit and a bidding strategy to
maximize its profit, or to minimize its costs while
satisfying various constraints. The costs include
generation costs and payment to the market, with the
payment equal to ECP multiplied by (pM1(t) - pA1(t)).
Only thermal units are considered to simplify
presentation, however, there is no difficulty in
incorporating hydro and pumped-storage units. The
problem is therefore:

(6)
{ }

p t a t b t p t

E C p t t p t p t

M ti

J With J

ti ti M M Al
i

I

t

T
1 1 1

1
11

( ), ( ), ( ), ( )

( ( )) ( )( ( ) ( ))

min ,

*

≡

==
+ −∑∑ λ

In the above, T is the number of hours, I the number
thermal units, Cti the cost function of thermal unit i, pti(t)
the generation level of unit i at hour t, and 8*M(t) the ECP
at hour t. The expectation is taken with respect to
uncertain bidding parameters reflected through 8*M(t) and
pAl(t). 
For each hour, the load balance constraint requires that: 

(7)p t E p t p t p tti Ml Al d
i l

l
( ) ( ( ) ( )) ( )+ − =

=
∑

In the following, the of ISO scheduling will be solved
first, followed by bidding and self-scheduling.

The ISO scheduling: From ISO’s point of view, its
problem is deterministic. When Participant 1 solves the
ISO problem, however, it only has distributions of
parameters, and has to solve the ISO problem for every
set of bidding parameters.  Solution of the ISO problem
for the jth set Bj is derived as follows. The index j is
omitted as appropriate for simpler presentation.

Lagrangian multipliers 8M(t) are used to relax (5), and
B1(t) and B2(t) to relax (2) The resulting Lagrangian is: 

(8)
L C p t t p t P t

t p t t p t p t

ISO l AL
l l

L

M Al
l l

L

l l

L

t l

T

Al Al Al
t l

T

t

T
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⎡

⎣
⎢

⎤

⎦
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⎧
⎨
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⎫
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( ) ( ) ( )( ( ) ( )).

λ

π π1 2
1

In (8), B1(t), B2(t), and pA1(t) satisfy:

B1(t)pA1(t) = 0, and B2(t)pA1(t) = 0

The three cases of ISO solutions are presented below:
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Case 1: Accepted level in bound (0<pAl(t)<p–
Al(t)) With

the given {8 M(t)}, (8) can be decomposed into
sub-problems.  The sub-problem for participant
l is:

(9){ }L a t p t b t p t t p tl
p Al t

l Al l Al M Al
t l

T
= + −

=
∑min ( ) ( ) ( ) ( ) ( ) ( )

( )
2 λ

The solution for (9 ) is:

(10)( )p t t b t
a tAl

M l
l

* ( ) ( )
( )

=
−λ

2

 In (10), al(t) is assumed to be non-zero. If it is zero,
a quadratic function with a small al(t) is used to
approximate the linear function following the idea of.
With an analytical solution for each sub-problem, it
is not necessary to iteratively update 8M(t) at the high
level.  Substituting (10) into (5), one obtains the:

 (11)λM t

l
l
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l l

L
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 Substituting (11) into (10), one obtains the accepted
level for Participant 1 at hour t as:

(12)p t

p t
b t b t

a t
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 The energy clearing price 8*M(t) and the accepted
level p*A1(t) for Participant 1 are functions of a1(t),
b1(t) and pM1(t).  To simplify (11) and (12), let:

(13)c t p t
b t
a tMl

l

ll

L

l

L

0
22
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( )
( )

≡ +
==
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(14)c t
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2

1
( )

( )
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 Then (11) and (12) can be rewritten as:

(15)λM
Mt

c t p t a t b t
c t a t
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+ +
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 Participant 1 may be a buyer or a seller depending on
the sign of (p*M1(t) - pA1(t)), where p*M1(t) is the
solution for pM1(t) to be derived later.

Case 2:Zero accepted level (pA1(t) = 0)
 In this case, the bidding prices of Participant 1 are

high, causing pA1(t) = 0. The derivation is similar
to Case 1 with

(17)λM
Mt p t c t

c t
* ( ) ( ) ( )

( )
=

+2 1 0
1

(18)p tA1 0* ( ) =

Case 3:Maximum accepted level:(pAl(t) = (pGA1(t))
 In this case, Participant 1’sng price is low,

resulting in (pAl(t) = (pGA1(t) and the following
energy clearing prices.
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 The derivation is similar to Case 1 with ECP
determined by other participants’ bids. 

Bidding strategy and self-scheduling: For Participant
1’s problem, using multipliers 81(t) to relax demand
constraints (7) the Lagrangian can be written as:

(20)
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The RHS of (20) is separable for a given {81(t)}, and
can be decomposed into individual thermal unit
subproblems and a bidding subproblem. A two-level
algorithm is developed, where at the low level, individual
subproblems are solved, and at the high level, {81(t)} is
updated.

Solutions of thermal subproblems: A Thermal Sub-
problem is:

{ }min , min ( ( )) ( ) ( )
( ) ( )p t ti ti p t ti ti ti

t

T

ti ti

L with L C p t t p t= −
=
∑ λ1

1
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This minimization is subject to individual unit
constraints. With {81(t)} given, the subproblem is
deterministic, and can be solved by using the method
presented in (Guan et al., 1992).
 
The solution of the bidding sub-problem: The bidding
sub-problem is:

(21)

min
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In (21), and p*A1(t) are obtained from ISOλM
*

scheduling as presented as below, and depend on bids of
participants. This bidding sub-problem is therefore
stochastic. In the following, the deterministic version of
the sub-problem will be solved first. The stochastic
version can be similarly solved except that the expectation
of LB is optimized.  Following the derivations of as
below, three cases will be considered, i.e., 

 pA1(t) = 0 and pA1(t) =  0 < <p t p tAl Al( ) ( ), p tAl ( )

Case 1: Accepted level in bound: (0<PAl(t)<PGAl(t))
 The degeneracy of the bidding subproblem (21)

will be analyzed first, and then a numerical
method  to obtain a solution is presented.

 Solution degeneracy analysis: From the ISO
load balance constraints (5), the net energy
exchange between Participant 1 and the market is:

(22)p t p t p t p tM A Al Ml
l

L

1 1
2
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∑

By substituting (22) into (21), LB can be rewritten as:

(23)L t t p t p tB M Ml
l

L

t

T

Al
= − −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪==
∑∑ [ ( ) ( )] [ ( ) ( )]*λ λ1

21

Fig. 3:  Degeneracy of the deterministic bidding subproblem

 By substituting (10), (13) and (14) into (23), LB
becomes:

(24)
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 It is separable in time.  To obtain its minimum, the
partial derivatives with respect to a1(t), b1(t) and
pM1(t) are set to zeros, i.e.,
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 It is clear that  cannot be zero, therefore, the∂λ
∂

M
t

b t

*( )

( )1

simultaneous Eq. (24), (25) and (26) degenerate to:

(27)∂
∂λ

λ λL t
t

c t t c t t c tB

M
M M

( )
( )

( ) ( ) [ ( ) ( ) ( )]*2 *= − + =1 1 0 0

 With three variables and one constraint (27) for each
t,  the  bidding  subproblem  has  an  infinite  number
of solutions. The degeneracy can be seen from Fig. 3
with the case of two participants.  Suppose that Line
2 is the bidding price curve of Participant 2, and Line
1 is an optimal bidding strategy of Participant 1 with
optimal a1, b1, pA1, pM1 and plM. Another bid of
Participant 1 is an equivalent solution if it satisfies 0
< b’1 < lM and p’M1 = pM1 - (pA1 - p’A1) because it
results in the same energy clearing price lM and the
net energy exchange (pM1 - pA1). 
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 Obtaining a solution: Having shown the degeneracy
of (21) above, it is straightforward to obtain one of its
solutions.  Substituting8*M(t)  in (15) and p*A1(t) in
(16) into (21), the subproblem cost at hour t can be:
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 To minimize LB(t), any two of its three decision
variables a1(t), b1(t), are pM1(t) are fixed first, and the
third one is optimized by a gradient method. 

Case 2: Zero Accepted Level: (pA1(t) = 0)
 In this case, the accepted level for Participant 1 is

zero, therefore the bidding sub-problem cost is
obtained by substituting (17) and (18) into (21):

(29)L t
c t

p t c t
c t

t p tB M M( )
( )

( ) ( )
( )

( ) ( )= + −
⎡

⎣
⎢

⎤

⎦
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2

1
1

2 0
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 Minimizing (29), the solution is:

(30)[ ]p t t c t c tM1 1 1 0 4* ( ) ( ) ( ) ( ) /λ −

 Participant 1 purchases p*M1(t) from the market at
the energy clearing price of the hour.

Case 3: Maximum accepted level: (pAl(t) = p-
Al)

 In this case, Participant 1’s accepted level pA1(t)
reaches the maximum, and the ECP is determined
by bids of others. A solution to this bidding
subproblem is to set a1(t) equal to 0, and b1(t)
equal to Participant 1’s marginal cost without
bidding. This leads to (pAl(t) = p-

Al) if Participant
1’s generation cost is low.

The stochastic bidding subproblem and solution: Now
consider the stochastic version.  Following (21) and (28),
the subproblem is changed to: 

(31)[ ]min ( ) ( )E L t L t pB B
j j

j

J

=
=
∑

1

In the above, Lj
B (t) is similar to LB(t) in (28), and

E[LB(t)] is a function of a1(t), b1(t) and pM1(t).  With a
derivation similar to that for the deterministic case, it can
be shown that (25) and (26) degenerate to one as can be
seen from Fig. 4. Suppose that Participant 2 has two
possible bidding prices, Line 2L (bidding at low prices)
and 2H (bidding at high prices), and Line 1 is an optimal

Fig. 4:  Degeneracy of the stochastic bidding subproblem

bidding strategy for Participant 1. Another bid of
Participant 1 is an equivalent solution if it satisfies 0 < b!1
< 8ML, a!1 = a1 and p!M1 = pM1 - (pA1L - p!A1L). The
difference between this and the deterministic case is that
a!1 is required to be equal to a1 so that Line 1! is parallel
to Line 1, and p!M1 also satisfies p!M1 = pM1 - (pA1H - p!A1H)
to result in the same expected net energy exchange. 

In solving the sub-problem, b1 is fixed, and pM1 and
a1 are optimized using the gradient method. 

Update of multipliers at the high level: Multipliers are
updated to maximize dual function f N(81):

with (32)Max
λ

φ λ
1 0

1
≥

( ) φ λ( )
( ), ( ), ( ), ( )1

1 1 1

≡ Min L
p t a t b t p tM ti

where, L is defined in (20). With a given set of
subproblem solutions obtained at the low level, this is a
deterministic problem.  The subgradient of f N(81) is a T'1
vector gl1, and the t-th element is

(33)g t P t P t p t p td ti M A
i

I
λ1 1 1

1
( ) ( ) ( ) ( ( ) * ( ))= − − −

=
∑

The dual problem is usually solved by a sub-gradient
method (Shaw, 1995), and is solved in this paper by the
bundle trust region method (BTRM) to improve the
convergence.  BTRM is a kind of bundle method that
accumulates sub-gradients obtained thus far in a bundle,
and uses a convex combination of these sub-gradients to
find a search direction. Obtaining the convex combination
coefficients involves quadratic programming that is
recursively solved in BTRM to reduce time requirements.

NUMERICAL RESULTS

The method has been implemented in C++ based on
our hydrothermal scheduling code (Guan et al., 1994;
Guan et al., 1995; Guan et al., 1992).  A data set provided
by Northeast Utilities (NU) is used to demonstrate the
capabilities of the method in handling various market
situations. To simplify testing, all other market
participants are aggregated as Participant 2 with three
possible  bidding  strategies,  bidding  low  (L),  bidding
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Table 1: Bidding parameters of participant 2
b2(t) (%) pM2 (t) (%)
-------------------------------- ------------------------------

Case L M H L M H
1 80 100 120 20 30 40
2 80 100 120 10 30 50
3 60 100 140 20 30 40
4 100 120 140 20 30 40
5 20 40 60 20 30 40

Table 2: Cost comparison of mean method and stoch method
Case Mean Meth ($) Stoc. Meth ($) Savings (%)
1 106.169 105.759 0.39
2 100.930 100.365 0.56
3 102.420 101.431 0.97
4 103.076 102.682 0.38
5 105.334 104.800 0.51

medium (M), and bidding high (H) each with the same
probability 1/3. The High value for a2(t) is 0.09, Medium
0.05, and Low 0.01. Participant 2’s b2(t) and pM2(t) are
varied to represent different market situations.  With Case
1 as the base, four additional cases are created where b2(t)
as a percentage of Participant 1’s original marginal cost
(without bidding) and pM2(t) as a percentage of Participant
1’s original load are listed in Table 1.  

The method is compared with the “mean method”
which considers Participant 2’s bidding model as
deterministic with each parameter set to its mean value.
Comparison of testing results for Participant 1 based on
100 simulation runs is presented in Table 2. Case 2
represents a volatile market with a large variance on
pM2(t), and the saving of the stochastic method over the
mean method is increased as compared with the base case.
Case 3 also represents a volatile market with large
variance on b2(t), and the saving is increased as compared
with the base case. Cases 2 and 3 therefore show that the
method works better than the mean method in volatile
markets. Case 4 represents a more expensive market with
the mean value of b2(t) increased by 20%, and the saving
over the mean method is 0.38%. Case 5 represents a the
cheap market with the mean value decreased by 40%, and
saving is 0.51%. Cases 4 and 5 therefore show that the
method works well in both expensive and cheap market
situations.

The average CPU time for the mean method is 70
sec, and that of the stochastic method is about 95 sec.
The CPU time requirements are close because both
methods solve the bidding subproblem using a gradient
method,  and  there  is   only   one  stochastic  bidding
sub-problem.

b2(t) (%): b2(t) as a percentage of Participant 1’s
marginal cost without bidding.

 pM2(t) (%): pM2(t) as a Percentage of Participant 1’s
Load.

CONCLUSION

In this research study a method is proposed for
optimized bidding and self-scheduling where a utility bids
part of its energy and self-schedules the rest. An
innovative model and an efficient Lagrangian relaxation-
based method are presented to solve the bidding and self-
scheduling problem. Numerical testing depicts that the
model properly handles various market situations. 
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