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Abstract--We formalize clustering as a partitioning problem with a user-defined internal clustering 
criterion and present SINICC, an unbiased, empirical method for comparing internal clustering criteria. 
An application to multi-sensor fusion is described, where the data set is composed of inexact sensor 
"reports" pertaining to "objects" in an environment. Given these reports, the objective is to produce a 
representation of the environment, where each entity in the representation is the result of "fusing" 
sensor reports. Before one can perform fusion, however, the reports must be "associated" into homo- 
geneous clusters. Simulated annealing is used to find a near-optimal partitioning with respect to each of 
several clustering criteria for a variety of simulated data sets. This method can then be used to determine 
the "best" clustering criterion for the multi-sensor fusion problem with a given fusion operator. 

Partitional clustering Simulated annealing Sensor fusion Clustering criteria evaluation 

I. INTRODUCTION 

Clustering is a process basic to human understanding. 
The grouping of related objects can be found in 
such diverse fields as statistics, economics, physics, 
psychology, biology, pattern recognition, engineer- 
ing, and marketing. Since its range of application is 
so large, there is no "fundamental" clustering prob- 
lem formulation because the relationships between 
the objects can vary. We use simulated annealing to 
"solve" a very general formulation of the problem. 
Since simulated annealing works well on a wide 
range of combinatorial problems, it would seem that 
clustering is a natural application. However, in a 
previous study, 0) simulated annealing provided good 
clusterings, but proved impractical for repeated use 
on large clustering problems because of the com- 
putational effort involved. We present a practical 
application of simulated annealing to clustering. 

Two domain-specific details are common to most 
clustering problem formulations: (1) a data structure 
used to define clusters and (2) an internal clustering 
criterion based on a model of the clusters expected in 
the domain. Whereas previous studies have applied 
simulated annealing to a single problem formulation, 
we use simulated annealing as a problem formulation 
tool. In particular, we apply simulated annealing in 
the comparison of internal clustering criteria. 

Careful selection of the clustering criterion is nec- 
essary because the "optimal" clustering for a par- 
ticular criterion is not necessarily the "true" 
clustering; i.e. it might not represent the true under- 
lying structure of the data. We use simulated 
annealing to find near-optimal clusterings for each 
of a set of criteria. By comparing these optimal 

clusterings with the true clusterings using an external 
clustering criterion (a criterion that uses information 
unavailable to the clustering algorithms' internal 
clustering criteria), we determine which internal cri- 
terion best approximates the true structure. Once an 
appropriate internal clustering criterion has been 
selected, one can construct a tailored clustering 
algorithm to solve the problem more efficiently. For 
example, if the "best" internal criterion in a clus- 
tering domain is "squared error", then the algorithm 
should be based on the location of cluster means; 
one might use one of the K-means algorithms in 
Hartigan. (2) Using simulated annealing for criterion 
comparison provides some reassurance that the tail- 
ored algorithm is solving the "right" problem. 

The method, called Simulation of Near-optima for 
Internal Clustering Criteria (SINICC, pronounced 
"cynic"), takes into account the effects of the par- 
ameters often used in internal criteria by allowing 
the user to specify and test a range of parameter 
values. SINICC works as follows: 

1. Select a set S of M data sets representative of 
the problem domain. 

2. Select a set Hj of parameter  values for each 
internal clustering criterion J. 

3. Use simulated annealing to find near-optimal 
clusterings for each clustering criterion J with each 
parameter value in FI s. Repeat  for each data set in 
S. 

4. Compare the near-optimal clusterings using an 
external clustering criterion. 

Evaluating the criteria over a range of parameter  
values highlights any sensitivities of the criteria. It 
also allows the user to select the best parameter 
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setting for future clustering applications in the prob- 
lem domain. 

The remainder of this paper roughly corresponds 
to the steps in the SINICC procedure. Section 2 
describes partitional clustering as a combinatorial 
optimization problem. Section 3 focuses on simu- 
lated annealing as a method for finding near-optimal 
solutions to clustering problems. Section 4 builds 
on the previous sections to show how simulated 
annealing can be used in criterion comparison. 
Throughout the paper we use examples from a real 
clustering application in Spillane et al.,(3) including a 
comparison of two internal clustering criteria. 

2. THE CLUSTERING PROBLEM 

Although there is no fundamental clustering prob- 
lem, some formulations are more general than 
others. This section first describes a very general 
formulation; then it details a special case that cor- 
responds to a popular class of clustering algorithms. 
At a basic level, clustering is a combinatorial opti- 
mization problem: 

Let 
Q be the set containing all objects to be clus- 
tered, 
C be the set of all feasible clusterings of Q, 
J:C--+ ~ be the internal clustering criterion; 

Then 
Minimize J(c) (1) 
Subject to 

c E C. (2) 

These two equations represent the most general form 
of the optimal clustering problem. The objective is 
to find the clustering c that minimizes an internal 
clustering criterion J. The set C defines c's data 
structure, including all the feasible clusterings of the 
set Q of all objects to be clustered. 

A clustering algorithm maps Q into C. There are 
two basic types of clustering algorithms. The first 
type is partitional algorithms, which construct a 
simple partitioning of Q into a set of non-overlapping 
clusters. The second type is hierarchical algorithms, 
which decompose Q into several levels of partition- 
ings. Hierarchical decomposition is structured as a 
dendrogram, a tree that iteratively splits Q into 
smaller subsets until each object is in its own subset. 
The dendrogram can be created from the leaves up 
to the root (the "agglomerative" approach) or from 
the root down to the leaves (the "divisive" 
approach). The most common agglomerative clus- 
tering schemes are described in J o h n s o n .  (4) 

Partitioning is most appropriate when one is only 
interested in the subsets, while hierarchical 
decomposition is most applicable when one seeks 
to show similarity relationships between clusters. 
Section 2.1 formalizes the combinatorics of the par- 
titional strategy. Although the simulated annealing 
algorithm described in Section 3 is configurable for 

either partitional or the hierarchical clustering, the 
emphasis in this paper is on partitional formulations. 

2.1. Partitional clustering 

Building on the basic combinatorial problem in (1) 
and (2), we define optimal partitioning, where the 
vector p represents the assignment of objects to 
clusters: 

Let 
Q be the set of all objects to be clustered, 
n = IQI be the number of objects in Q, 
k/> n be the maximum number of clusters, 
P = {p: Vi E {1 . . . . .  n}, Pi @ {1 . . . . .  k}} be the 
set of all partitionings, 
J:P--+ gt be the internal clustering criterion; 

Then 
Minimize J(p) (3) 
Subject to 

p E P. (4) 

Each cluster has a unique, integer cluster "label" in 
{1 . . . . .  k}, and the vector p assigns a cluster label Pi 
to the ith object in Q. The function J maps elements 
of P into a real-valued cost. We formulate clustering 
as an assignment problem here to facilitate direct 
implementation of combinatorial optimization tech- 
niques (e.g. simulated annealing). 

There are a variety of algorithms to solve such a 
problem. A thorough survey of partitional clustering 
algorithms is given in Jain and Dubes. (5) Few par- 
titional algorithms guarantee a global-optimum solu- 
tion to their associated problem formulation. K- 
means, for example, uses a greedy improvement 
heuristic to approximate the best "squared error" 
clustering. Thus, the algorithm is based on mini- 
mizing the total squared distance of the objects to 
their associated cluster means. There are many vari- 
ants on K-means, and many of them converge rapidly 
on a locally optimal clustering, but none converge 
on the global optimum. As shown by Klein and 
Dubes, (1) simulated annealing tends to find sig- 
nificantly better clusterings, but often requires much 
greater computational effort. 

Unlike K-means or simulated annealing, some 
algorithms, do not have any clear objective. Often, 
they solve a constraint-satisfaction problem. 
Consider, for example, ISODATA,(6) a popular par- 
titioning algorithm based on a squared error criterion 
with k = n. Since minimizing squared error with k = 
n is solved by placing each object in its own cluster, 
ISODATA translates this underlying objective into 
a set of "splitting" and "lumping" constraints on 
the clusters. The algorithm starts with an arbitrary 
clustering and splits or joins clusters until all clusters 
satisfy the splitting and lumping constraints, settling 
on some number k' ~< n of clusters. Although simu- 
lated annealing cannot be applied directly to con- 
straint satisfaction problems, one can often define a 
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J that approximates the meaning of one or more 
constraints. An example is shown in the next section. 

2.2. An example problem domain 

Surveillance problems represent a relatively recent 
and important application domain for clustering 
algorithms. As a specific example of this class of 
problems, consider the monitoring of ground-based 
"entities" by airborne and ground-based sensors. 
The exact number and location of entities at any 
time are unknown. Each sensor generates reports 
about the entities within its range. A sensor report  
provides an estimated location for an entity and an 
elliptical error probable (a 95% Gaussian confidence 
region for the entity's location). 

The sensors transmit their reports to a central 
processing center, which maintains a database 
describing the likely locations of sensed entities. 
Whenever reports are received from the sensors, 
the system compares them to previous reports. If it 
appears that an incoming report  represents a new 
entity, then the system adds a record of this new 
entity to the database. On the other hand, if the 
sensor report appears to correspond to a previously 
observed entity, then the system updates the data- 
base record of this entity using information from the 
new sensor. The decision to make a new record or 
update an old record is known variously as data 
correlation (the name we use here) or data associ- 
ation (cf. Spillane et al.131). A separate problem not 
considered here, but also involved in this correlation 
processing, is the classification of the entity. For the 
purposes of this paper,  we treat all entities as if they 
were from the same class. 

The ability to manually correlate reports decreases 
as the number of reports arriving at the processing 
center increases. In fact, the number and variety of 
sensors has outstripped the capabilities of current 
manual processing stations to effectively monitor 
entity activity. Hence, there is widespread interest 
in automated techniques for correlation decision 
making. 

If the reports are collected in batches and the 
correlation decision is made optimally with respect 
to some clustering criterion, then the data correlation 
problem reduces to partitioning clustering without a 
predetermined number of clusters. This problem was 
simulated in reference (7) in order to evaluate vari- 
ous approaches to correlation. The simulation 
models the activity of a set of N entities distributed 
with uniform probability over a 120 by 80 km grid. A 
set of airborne sensors report the entities at irregular 
intervals. Each report  consists of a pair (X, 5"), where 
X is a two-dimensional location estimate and ~ is a 
95% confidence ellipse about X. Hence, the objec- 
tive is to cluster (or correlate) reports that pertain 
to the same entity. 

Figure 1 shows a representative data set from 
Brown et al.'s simulation. Each point on the grid 
represents the X component from a sensor report. 
There are 194 such points in Fig. 1. The circles--  
each with a 5 km (Euclidean) radius--show at their 
centers the means of the "true" clusters. In other 
words, if one actually knew which reports pertain to 
the same entity, then the circles circumscribe the 
best estimate for each entity's location. There are 20 
such circles in the figure, corresponding to 20 actual 
entities present in the environment. Obviously, the 
true cluster means are unknown to the clustering 
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Fig. l. A sample data set from the simulation in Brown et al. ~ 
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algorithm, and are shown here to improve problem 
understanding and for comparison with Figs 2 and 
3 in the next section. 

The choice of the criterion for use in this partitional 
clustering problem is critical to the correlation 
decision making process. For computational reasons, 
it is desired that the criterion be simple. One of the 
simplest of the internal clustering criteria is total 
within-cluster distance 

W(p) = ~ di/. (5) 
Pi =Pj 

This criterion is simpler than squared error (and 
other, similar criteria) because all distance cal- 
culations can be preprocessed and stored in a static 
matrix. However,  since minimizing W(p) with k = n 
places each report  in its own cluster, the user must 
estimate the true number of clusters, which is non- 
trivial for many real surveillance situations because 
the number of entities sensed often varies over time. 
So, although W(p) is simple enough for the straight- 
forward application of most combinatorial opti- 
mization algorithms (e.g. integer programming 
techniques) to small problem instances, applicability 
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Fig. 2. Convergence of simulated annealing for total within-cluster distance. 
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Fig. 3. Convergence of simulated annealing for Barker's criterion, t8) 

is limited to cases in which one can accurately esti- 
mate the true number of clusters. 

Barker (8) eliminated the need to accur~itely esti- 
mate the number of clusters by incorporating a dis- 
tance threshold ~, into W(p) 

B(p) = ~ (d , j -  v). (6) 
Pi=Pj 

Barker's new formulation, which is computationally 
identical to W(p) once all of the (dij - v) terms have 

PR 2 5 : 4 - E  

been preprocessed, is analogous to the constraint 
satisfaction problem solved by ISODATA.  The cri- 
terion penalizes large clusters by adding in more dij 
values. It penalizes small clusters by subtracting 
fewer v values. Hence, Barker's formulation cap- 
tures the spirit of the two ISODATA constraints 
with penalties for large and small clusters. There 
is a practical advantage to Barker's formulation, 
however, because it makes the tradeoff between 
large and small clusters explicit. 
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Barker's criterion and total within-cluster distance 
are competing criteria for use in the data correlation 
problem and similar clustering problems. Obviously 
a system designer would like information on the 
performance of criteria such as these before they are 
implemented in a report processing center. The next 
section describes simulating annealing for clustering 
and shows how it can be used as the basis for eval- 
uating criteria over a specified problem domain. 

3. SIMULATED ANNEALING FOR CLUSTERING 

3.1. The general algorithm 

Simulated annealing (SA) is a powerful opti- 
mization technique that attempts to find a global 
minimum of a function using concepts borrowed 
from statistical mechanics. Although it was first 
described in its entirety by Kirkpatrick et al. ,  (9) 
significant portions of the method were described as 
early as 1953 by Metropolis et al. II°) 

The algorithm described by Metropolis et al. 0°) is 
the heart of any classical implementation of SA. The 
algorithm was originally intended for simulating the 
evolution of a solid in a heat bath to thermal equi- 
librium. As it was first described, the algorithm starts 
with a "substance" composed of many interacting 
individual molecules arranged in a random fashion. 
Then, small random perturbations to the structure 
of the molecules are attempted, and each per- 
turbation is accepted with a probability based on the 
associated "energy" increase, AE. If AE is at least 
0, then the perturbation is accepted with probability 
exp (AE/T), where T is the "temperature" of the 
substance. If AE is less than 0, then the perturbation 
is accepted with probability 1. Eventually, after a 
large number of trial perturbations, the energy settles 
to an equilibrium appropriate for the temperature. 
At high temperatures, the value of exp (AE/T) is 
close to 1, regardless of the increase in energy, 
meaning that almost all perturbations are accepted 
and the resulting structures are very random. Thus, 
the algorithm at high temperature does not settle 
on any particular structure, regardless of the initial 
arrangement. At low temperatures, however, the 
process exhibits a significant bias towards per- 
turbations that cause energy decreases. Eventually, 
the Metropolis algorithm at low temperature settles 
on a structure that has low energy, but the structure 
depends highly on the initial arrangement. Simulated 
annealing uses both the high- and the low-tem- 
perature properties of the Metropolis algorithm to 
find low energy, regardless of the initial structure. 

In metallurgy, the minimum energy state is often 
sought using "process annealing", in which the sub- 
stance is initially heated to a very high temperature 
and then slowly cooled to room temperature. The 
heating process allows a very stable, sub-optimal 
structure to be relaxed to a more pliable, less-stressed 

(i.e. low-energy) structure before cooling. The cool- 
ing is made slow to overcome the high dependence of 
low-temperature equilibrium energies on the initial 
state. If the cooling is too fast (a process called 
"quenching") then the resulting structure is likely to 
be sub-optimal. 

Simulated annealing exploits the obvious analogy 
between process annealing and combinatorial opti- 
mization problems, where the "molecules" are the 
variables in the data structure and the "energy" 
function is the objective function. Algorithm 1 shows 
simulated annealing in the context of the general 
combinatorial optimization problem in equations (1) 
and (2). In the combinatorial optimization frame- 
work, the "temperature" is a real-valued scalar that 
controls the degree of randomness of the search. 
At high temperatures, the algorithm behaves like 
random search. At low temperatures, it behaves 
like greedy local search. Simulated annealing slowly 
decreases the temperature (by a factor of o: each 
iteration) from the initial temperature To to the final 
temperature Tf, by which time the values of the 
decision variables have "frozen" into a very stable 
state. As shown in Aarts and Korst, 1~ the limiting 
state as the temperature approaches zero is the global 
minimum. 

3.2. Simulated annealing for partitional clustering 

The application of SA to the partitional clustering 
formulation in equations (3) and (4) is straight- 
forward. This section describes two remaining prob- 
lem-dependent details: the perturbation operator 
and the annealing schedule (Maxlt,T0,o:,Tf) for par- 
titional clustering. In addition, we briefly suggest 
how one might apply simulated annealing to hier- 
archical clustering. 

The perturbation operator for partitional clus- 
tering switches a randomly-chosen object i in Q 
from one cluster to another randomly chosen cluster. 
Algorithm 2 shows the basic procedure. The set L 
contains the cluster labels used in p. Similarly, L c 
contains the labels not used in p. The switching 
procedure first selects an integer m in the range [0, 
ILl]. I fm = 0 and there exists an unused cluster label 
(i.e. ILl < k), then object i is placed in its own 
singleton cluster. Otherwise, i switches to another, 
existing cluster. 

Since SA is used here for comparison purposes, 
we have designed the annealing schedule to stan- 
dardize the computational effort without com- 
promising the quality of the resulting clustering 
solutions. The computational effort is made fair by 
allowing each run a fixed number of trial pertur- 
bations. The total number of perturbations tried in 
any run is Maxlt • NumTemp. where Maxlt is a fixed 
multiple of the number of objects to be clustered and 
NumTemp is a user-defined constant. The solution is 
made accurate using a very conservative annealing 
schedule. We calculate the initial temperature with 
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Procedure SA(6, Maxlt ,  To, or, Tf) 
Let C be the set of all feasible clusterings, 

c, c' E C be the current and perturbed clusterings, respectively, 
6: C---~ C be a randomized perturbation operator,  
J:C---~ ~t + be the internal clustering criterion, 
T ~ ~+  be a "temperature" parameter  that controls the "greediness", 
U:~2---~ [0,1) be a function that returns a random number between 0 and 1, 
MaxIt E 3+ be the number of iterations of the Metropolis algorithm, 
tr E ~t +, o: < 1 be an "attenuation" constant for reducing the temperature, 
To and Tf be the initial and final temperatures. 

T * - T o  
REPEAT 

FOR i ~ 1 TO MaxIt DO 
c' ~ -  6(c)  
A , - - J ( e ' )  - ] ( c )  

IF A < 0 OR (e-6/T ~ > U[0,1]) THEN 
C~-.--C p 

ENDFOR 
T~-- olT 

UNTIL T ~< Tf 
Algorithm 1. Simulated annealing for clustering. 

the formula from Aarts  and Korst,Oz) which uses 
statistics compiled from Maxlt  random permutations 

m + 

T0 = / ~ + / l ° g  ( x m + _  (1 - z)(Maxlt  - m+) )  

(7) 
where m + is the number of cost increases in MaxIt 
random perturbations, #+ the average cost increase 
over the perturbations, and X the acceptance ratio, a 
real-valued scalar in (0,1). For the final temperature,  
we require that 

e -t3u+/rf = e, where 0 < e < 1 and 0 < fl < 1 (8) 

meaning that at the final temperature SA accepts a 
cost increase of tip+ with probability e. This simplifies 

to the following: 

Tf = -fl/~ +/log (e). (9) 

This formula is analogous to the estimate in 
White, (~3) with fl/~+ representing the smallest cost 
increase caused by a perturbation from a local mini- 
mum and e -1 representing the number of per- 
turbations possible at each step. With this 
interpretation, equation (9) implies that e approxi- 
mates the probability of escaping a local minimum 
at the final temperature. Given NumTemp,T0, and 
Tf, the calculation of ~ is straightforward 

( T f ~  1/NumTemp 

ol= \ T o /  " (10) 

FUNCTION 6(0) 
Let n = [Q] be the number of objects to be clustered, 

L = {i E {1 . . . . .  k}: ::lm E {1 . . . . .  n} ~ Pm= i} he the set cluster labels in p, 
L c = {i E {1 . . . . .  k}: i ~ L} be the set of cluster labels unused in p, 
S E L E C T ( r a n g e )  be a function that returns a random element from the set range, 
p,p'  E P be the original and perturbed partitionings, respectively. 

p' ~--p 
i ~-- SELECT(1 . . . . .  n) 
REPEAT 

m ~- SELECT(0 . . . . .  ILl) 
IF ILl = k OR m > 0 THEN 

p[ .-- SELECT(L) 
ELSE 

p; *-- SELECT(L c) 
ENDELSE 

UNTIL p~ ~ Pi 
RETURN p' 

Algorithm 2. A perturbation operator for partitional clustering. 
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With sufficiently large NumTemp and Maxlt and 
sufficiently small ( 1 -  X), fl, and e, the annealing 
schedule ensures slow, steady convergence to a near- 
global optimum clustering. For the runs reported 
in this paper, the settings were NumTemp = 200, 
Max l t=4n ,  ( 1 - Z ) = 0 . 2 5 ,  f l=0.125,  and e =  
0.00000000001. 

Simulated annealing is not restricted to partitional 
clustering, but the implementation is not so straight- 
forward for hierarchical clustering, where the com- 
plexity of the data structure complicates the 
definition of an appropriate perturbation operator. 
One possible perturbation operator is described by 
Wallace and Kanade;~14) the operator is too complex 
for description here. 

3.3. Application to the example data 

This section informally compares the near-optimal 
clusterings for the W(p) and B(p) criteria in 
equations (5) and (6). Figures 2 and 3 show simu- 
lated annealing converging on a near-optimal clus- 
tering for each formulation when applied to the data 
in Fig. 1. (The parameter values, k = 20 for W(p) 
and z,= 3.5 for B(p), are the best found in the 
testing described in Section 4.2.) Each figure shows a 
chronological sequence of four graphic screens from 
our Apple Macintosh IIx implementation, written in 
C. (We also implemented a text-based version on an 
Intel i860 hypercube.) The graphical version displays 
each report as a point on a 640 x 200 grid, where 
each point's color represents its cluster; one can 
watch the clusterings converge by noting the color 
changes on the screen. (Although the computer 
implementation is in color, the figures are in black 
and white to facilitate display in print. As in Fig. 1, 
the circles denote the current cluster means.) The 
first screen shows the clustering a few seconds into 
the run. The second screen shows it exactly one- 
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Fig. 4. Detail of the lower right-hand side of Fig. 2(d). 

a.  

(3 Q 
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Fig. 5. Detail from a data set with overlapping clusters for: 
(a) the true clustering; (b) the B(p) clustering; (c) the W(p) 

clustering. 

quarter of the way through the run. The third is 
exactly half-way through the run. The last screen 
shows the final clustering. 

Closer examination of Figs 2 and 3 highlight 
characteristics of the criteria that might go unnoticed 
in a purely statistical comparison. For example, in 
Fig. 2 we see that large variances in point density 
can fool W(p). Consider the three clumps of points 
at the lower right-hand corner of the sample, shown 
in detail in Fig. 4. The rightmost of the three clumps 
contains 19 points while the other two have a total 
of ten points. There are 171 interpoint distances in 
the rightmost clump that can contribute to W(p), 
while the other two clumps combined can only con- 
tribute up to 45 distances. This means that although 
the distances within the rightmost clump are rela- 
tively small, their contribution to W(p) can dominate 
that of the points in the other two clumps. Hence, 
SA with W(p) split the rightmost clump into two 
dense clusters and combined the other two clumps 
into one sparse cluster. So, point density must be 
considered when using W(p). 

Although B(p) did not split the dense clusters as 
often, it occasionally had some problems of its own. 
Figure 5 demonstrates such a case, extracted from a 
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data set that presented problems for both W(p) and 
B(p), even when using their "best" parameter values. 
Figure 5(a) shows the true clustering of two over- 
lapping groups of points. In Fig. 5(b), which shows 
the B(p) clustering, the densest parts of the two 
groups merge to form a large, dense cluster flanked 
by two singleton clusters. Since B(p) was designed 
to seek out areas with high point density, it tends to 
cluster points in the high density regions, even if it 
means creating an extra cluster or two. In the 
example, there were just enough points within v 
kilometers of each other to force clustering on the 
overlap between the two true clusters. As shown by 
Fig. 5(c), although W(p) was not perfect, it was 
better than B(p) in this special case. 

4. APPLICATION OF SINICC TO THE PROBLEM DOMAIN 

This section reports the results from using W(p) 
and B(p) in the sample problem domain. Following 
the SINICC procedure described in the introduction, 
we first describe the external clustering criteria used: 
the Rand (~5) and the Jaccard 06) statistics. Then we 
present a statistical analysis based on these criteria 
for 32 data sets generated by the simulation in ref- 
erence (7), By comparing the results from SA with 
each criterion over a range of parameter values, 
we formalize the tendencies observed in the visual 
analysis. 

4.1. External clustering criteria 

Both the Rand and the Jaccard criteria require 
that one know which objects truly cluster together 
(i.e. one needs to know the true partitioning). Using 
the notation in Section 2.1, the criteria measure the 
similarity between the true partitioning g and the 
partitioning p returned by a clustering method. Both 
measures use the following statistics: 

s~. = the number of times that gi = gj whenp~ = pj 
(11) 

s -  = the number of times that gi -¢ g j  whenp, v~ pj 
(12) 

s + _ = the number of times that gi = gj whenpi ~ p j  
(13) 

s + = the number of times that gi ~ gi when Pi = Pj. 
(14) 

The first two statistics count the number of times 
that p agrees with g, while the last two count the 
number of disagreements. The Rand criterion cal- 
culates the ratio of agreements to the total number 
of comparisons 

s$ + s= s+ + + s= 
Rand(g ,p)  = s+ + s :  + s +_ + s+ n ( n -  1)/2" 

(15) 

The Jaccard criterion is calculated similarly, except 
for the omission of the (negative-negative) agree- 
ment statistic 

s; 
Jaccard (g, p) s+ + + s _  + + s =  (16) 

Because Jaccard's measure is monotonic with 
Rand's, improvement in one of the measures implies 
improvement in the other. Therefore, since the Jac- 
card criterion is more sensitive than the Rand 
criterion, we only report the Jaccard score in the 
next section. 

4.2. Test results 

In testing on Oak Ridge National Laboratory's 
Intel i860 hypercube, we compared the best test 
results for W(p) and B(p) over 32 data sets, where 
each data set has between 150 and 600 objects, split 
into 20 true clusters on the average. Table 1 shows 
for each data set the best Jaccard score for each of 
the criteria. In addition, for W(p) it shows the best 
"number of clusters" parameter k in {18, 19, 20, 21, 
22}. Similarly, for B(p) the table shows the best 
"median distance" parameter v in the set {2.0, 2.5, 
3.0, 3.5, 4.0} and the associated number of clusters 
in the final partitioning. At the bottom of the table is 
the minimum, maximum, and mean of each column. 

Tables 2 and 3 may be of use for practitioners, 
who do not have the benefit of knowing the best 
parameter values for a given data set. For each of 
the parameter values tested, the tables show the 
average performance of the criteria over the 32 data 
sets. This allows the user to select the "best" default 
parameter value in a given range. 

From Table 2, it appears that a good initial esti- 
mate for the number of clusters k in a future data 
set is 18, for which W(p)'s average Jaccard score is 
approximately 72%. Since the best Jaccard scores 
were achieved with k = 18 (whereas the mean num- 
ber of true clusters is 20), it is likely that Jaccard- 
optimal W(p) clusterings underestimate k by at least 
two clusters. 

From Table 3, good estimates for v are in the 
range [3.0, 3.5], for which B(p)'s average Jaccard 
score is approximately 95%. Note also that the B(p)'s 
worst performance over the range [2.0, 5.0] is 86%. 
Hence, even if the best v for a particular data set 
is not in the range, [3.0, 3.5], B(p) still seems to 
outperform W(p). 

5. CONCLUSION 

Previous studies found simulated annealing to 
be impractical for clustering. The results in this paper 
show that simulated annealing is an effective search 
procedure for use in evaluating clustering criteria. 
The evaluation of clustering criteria is problematic. 
If two criteria are compared using a stepwise (greedy) 
procedure, then the comparison is as much a function 
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Table 1. The best results for each of 32 data sets 

W(p) B(p) 

Data Best Parameter Best Parameter Resulting 
set Jaccard k Jaccard v k 

1 0.712 18 0.932 2.0 28 
2 0.778 18 1.000 4.0 20 
3 0.624 21 0.985 2.5 23 
4 0.705 20 0.989 3.5 21 
5 0.748 21 0.959 3.0 22 
6 0.698 19 0.894 2.5 27 
7 0.622 19 0.952 3.0 20 
8 0.725 18 1.000 3.5 20 
9 0.641 19 0.807 3.0 21 

10 0.812 18 0.992 3.5 21 
11 0.611 19 1.000 3.0 21 
12 0.682 20 0.928 3.5 18 
13 0.749 20 0.988 3.0 21 
14 0.859 18 1.000 3.5 20 
15 0.589 20 1.000 3.5 21 
16 0.978 19 0.936 2.5 24 
17 0.807 19 0.981 3.0 22 
18 0.797 19 1.000 3.0 21 
19 0.773 18 1.000 3.5 20 
20 0.903 19 0.949 3.5 19 
21 0.831 18 0.992 3.0 22 
22 0.733 18 0.953 3.0 20 
23 0.792 20 0.957 3.0 23 
24 0.683 18 0.935 3.0 21 
25 0.652 18 0.851 4.0 18 
26 0.719 19 1.000 3.0 21 
27 0.916 18 1.000 3.5 20 
28 0.674 18 0.935 2.5 24 
29 0.726 19 0.990 3.5 19 
30 0.815 18 1.000 3.5 20 
31 0.774 19 0.992 3.5 21 
32 0.793 19 0.939 3.0 23 

Min 0.589 18.0 0.807 2.0 18.0 
Avg 0.747 18.9 0.963 3.2 21.3 
Max 0.978 21.0 1.000 4.0 28.0 

Table 2. Average Jaccard score by parameter k forW(p) 

Parameter k 
18 19 20 21 22 

Avg score 0.726 0.705 0.684 0.655 0.620 

of the  local op t ima  found  by the  greedy p rocedure  
as it is of the  cr i ter ia  themselves .  S imula ted  annea l ing  
can find nea r  op t imal  cluster ings for  each  of  the  
eva lua ted  cr i ter ia;  thus ,  s imula ted  annea l ing  pro- 
vides a fa i rer  basis for  compar ing  cri teria.  

Our  m e t h o d  of  cr i ter ia  eva lua t ion ,  S INICC,  uses 
s imulated annea l ing  to find nea r  op t imal  clusterings 
over  a range  of user  specified p a r a m e t e r  values.  
Test ing over  a range  of p a r a m e t e r s  shows the  sen- 
sitivity of  the  cr i ter ia  to p a r a m e t e r  settings. S INICC 
also allows for  tes t ing over  a var ie ty  of  data  sets,  
and scores p e r f o r m a n c e  with an  externa l  c luster ing 
cri terion.  Ex tens ive  tes t ing is possible  because  of 
SINICC's  i m p l e m e n t a t i o n  on  a mul t i -processor  
(Intel  i860 hypercube) .  

W e  appl ied S I N I C C  to eva lua te  two cri teria,  
wi thin-cluster  d is tance  and  B a r k e r ' s  cr i ter ion,  for  a 
surveil lance p rob lem.  The  survei l lance s imula t ion  

Table 3. Average Jaccard score by parameter v for B(p) 

Parameter v 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Avg score 0.636 0.771 0.879 0.937 0.948 0.944 0.916 0.893 0.867 
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modeled the activities of airborne sensors operating 
against ground targets that move within a 120 by 
80 km area. The problem is to cluster sensor reports 
so that each cluster represents a single entity. 

Results from our testing showed that Barker 's  
criterion outperformed within-cluster distance. In 
fact, the worst Jaccard score for Barker 's  criterion 
was better than the average Jaccard score for within- 
cluster distance. In addition to obtaining raw scores 
for the criteria, SINICC allowed us to view the 
clusterings with each criterion. As a result we were 
able to detect problems the within-cluster distance 
criterion has with dense clusters (Fig. 4). SINICC 
also allowed us to view the tendency of Barker 's  
criterion to add clusters when two entities were very 
close. 

This work provides clear evidence that simulated 
annealing is useful for criteria evaluation with par- 
titional clustering methods. Additional work can 
extend the use of simulated annealing to comparisons 
of hierarchical approaches. New perturbation oper- 
ators will be needed to implement this extension. 
Simulated annealing also represents a promising 
approach to mixture model methods for clustering. 
Hence, while simulated annealing might not be 
appropriate for direct applications of clustering 
methods, it does represent a practical tool for the 
evaluation and refinement of clustering techniques. 

6. SUMMARY 

Clustering is concerned with grouping or organiz- 
ing data. Within pattern recognition, clustering 
serves as the basis for finding patterns in data without 
supervision. In this paper we formalize clustering as 
an optimization problem with a user-defined objec- 
tive function called the internal clustering criterion. 
The choice of an internal clustering criterion deter- 
mines the performance of a clustering procedure in 
finding underlying structures or patterns in the data. 
We describe a new method for comparing the per- 
formance of internal clustering criteria. Our new 
method, SINICC, uses simulated annealing to find 
and compare near-optimal solutions to the par- 
titional clustering problem. Simulated annealing is a 
general purpose optimization technique that can be 
easily applied to our formulation of the partitional 
clustering problem. However,  previous work has 
suggested that simulated annealing was impractical 
for clustering problems, although it did produce good 
clusterings for a given internal clustering criterion. 
Our results here show that simulated annealing is 
both practical and useful in evaluating internal clus- 

tering criteria. We present an application of SINICC 
to a multi-sensor fusion problem, where the data set 
is composed of inexact sensor reports pertaining to 
unknown objects in an environment. The per- 
formance of SINICC on this application suggests 
broader applicability of the technique to other prob- 
lems in pattern recognition. 
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