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Lutein and zeaxanthin are antioxidants found in the human retina and macula. Recent clinical trials have determined that age-
and diet-related loss of lutein and zeaxanthin enhances phototoxic damage to the human eye and that supplementation of these
carotenoids has a protective effect against photoinduced damage to the lens and the retina. Two of the major mechanisms of
protection offered by lutein and zeaxanthin against age-related blue light damage are the quenching of singlet oxygen and other
reactive oxygen species and the absorption of blue light. Determining the specific reactive intermediate(s) produced by a particular
phototoxic ocular chromophore not only defines the mechanism of toxicity but can also later be used as a tool to prevent damage.

1. Introduction

Lutein and zeaxanthin are antioxidants that accumulate in
the lens and retina of the human eye [1-4]. These antioxi-
dants protect ocular tissues against singlet oxygen and lipid
peroxide damage [5]. Unfortunately, beginning with middle
age, antioxidant protection is depleted and this leads to the
formation of age-related cataracts and macular degeneration
[6].

Increasing the intake of fruits and vegetables high in
lutein and zeaxanthin [7-10] has been found to retard age-
related cataracts and macular degeneration [11]. In addition,
supplementation with lutein and zeaxanthin has been very
effective at restoring these important ocular antioxidants [12,
13]. The level and distribution of these carotenoids can be
directly and noninvasively measured in the human eye [14-
16]. Increasing these carotenoids has been found not only to
lower the risk for irreversible blindness [12, 17-20] but also to
potentially improve cognitive function in the elderly [21-23].

Determining the specific reactive intermediate(s) pro-
duced by a particular phototoxic ocular chromophore not
only defines the mechanism of toxicity but can also later be
used as a tool to prevent damage. For instance, lutein and
zeaxanthin prevent singlet oxygen damage [5], whereas N-
acetyl cysteine has been shown to be particularly effective
in quenching UV phototoxic damage and inflammation [24,
25]. In this review, we describe the underlying photobiolog-
ical mechanisms involved in the induction of light-induced

damage to the eye and the appropriate and inappropriate
antioxidants to protect against such damage.

2. Ambient Radiation Ocular Damage

The primary factors that determine whether ambient radia-
tion will injure the human eye are the wavelengths emitted
from sunlight or a specific lamp [26] and received by ocular
tissues; the intensity of the light; and the age of the recipient.

2.1. Wavelength Emitted from Source. Radiation from the
sun emits varying amounts of UV-C (220-280 nm), UV-B
(280-320 nm), UV-A (320-400 nm), and visible light (400-
700 nm) [27]. Most of the UV-C and some short wavelengths
of UV-B are filtered by the ozone layer [28]. Artificial light
sources emit differing wavelengths of light depending on
their spectral distribution [29]. UV radiation contains wave-
lengths shorter than visible light; the shorter the wavelength,
the greater the energy and the greater the potential for biolog-
ical damage. However, although the longer wavelengths are
less energetic, they penetrate the eye more deeply [30].

2.2. Wavelength Transmission of Light through the Human
Eye. In order for a photochemical reaction to occur in the
eye, the light must be absorbed in a particular ocular tissue.
The primate/human eye has unique filtering characteristics
that determine in which area of the eye each wavelength of
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FIGURE 1: Wavelength transmission of the adult human eye.

light will be absorbed [30]. All UV radiation of wavelengths
shorter than 295nm is filtered by the human cornea. This
means that the shortest, most energetic wavelengths of light
(all UV-C and some UV-B) are filtered out before they reach
the human lens. Most UV light is absorbed by the adult lens,
but the exact wavelength absorbed depends upon age [31]
as shown in Figure 1. The very young human lens transmits
UV radiation to the retina, while the elderly lens filters
out much of the short blue visible light (400-500 nm) [32]
before it reaches the retina. In adults, the lens absorbs UV-
B and all the UV-A (295-400 nm); therefore only visible
light (>400 nm) reaches the retina. Transmission also differs
with species; the lenses of mammals other than primates
transmit ultraviolet light longer than 295nm to the retina
[33]. Aphakia (removal of the lens) and implanted Intraocular
Lenses (IOLs) after cataract surgery will also change the
wavelength characteristics of light reaching the retina [34-
37].

2.3. Intensity and Mechanism. Ocular damage from light
can occur through either an inflammatory response or a
photooxidation reaction. Acute exposure to intense radiation,
for example, exposure to sunlight reflected from snow (snow
blindness), or from staring at the sun during an eclipse [37]
or directly staring at an artificial light source that emits UV-
A or UV-B [38, 39] causes a burn in the eye similar to
sunburn. This induces an inflammatory response in the eye.
The initial insult to the tissue provokes a cascade of events that
eventually results in wider damage to the cornea, lens, and/or
retina [24, 40, 41].

Chronic exposure to less intense radiation damages the
eye through a photooxidation reaction. In photooxidation
reactions, a chromophore in the eye absorbs light and
produces reactive oxygen species such as singlet oxygen
and superoxide that damage ocular tissues as shown in
Figure 2. The chromophore may be endogenous (natural) or
exogenous (drug, herbal medication, or nanoparticle that has
accumulated in the eye) [27]. If an ocular pigment is excited
by ambient radiation to the excited state (singlet) but very
quickly (in picoseconds) goes back to the ground state, it will
safely dissipate the energy received [42].
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3. Age and Endogenous Singlet
Oxygen Chromophores

As the eye ages, chromophores which were once protective of
the eye are modified and become phototoxic. The potential
to produce singlet oxygen is measured as a quantum yield.
Quantum yield measures the amount of an excited state
produced by an amount of light energy used. The higher the
number is, the more efficient the chromophore is at making a
specific reactive oxygen species. For instance, a chromophore
with a Quantum Yield for Singlet Oxygen of 0.10 is a very
strong oxidant, while a chromophore with a Quantum Yield
for Singlet Oxygen of 0.002 produces negligible amounts of
singlet oxygen.

3.1 Lens. The primary function of the human lens is to focus
light undistorted onto the retina. Although the transmission
properties of most of the components of the eye are stable, the
transmission properties of the lens change throughout life.
The lens is clear for the first 3 years of life and then gradually
develops yellow chromophores (3-hydroxy kynurenine and
its glucoside). These are endogenous protective agents which
absorb UV radiation and safely dissipate its energy [42].

As long as these chromophores are present, neither UV-
A nor UV-B radiation reaches the retina, and in this way, the
adult human retina is protected against normal levels of UV
radiation [43]. However, children are at particular risk for UV
damage to the retina because UV is directly transmitted to
their retinas [33].

After middle age the protective chromophores 3-
hydroxykynurenine and its glucoside are enzymatically
converted into the phototoxic chromophores xanthurenic
acid and xanthurenic glucoside [44, 45]. These xanthurenic
derivatives absorb UV radiation, form triplet states, and
produce singlet oxygen [46, 47] with a quantum yield of 0.170.
These endogenous singlet oxygen photosensitizers cross-link
lens protein [44] and induce apoptosis in lens epithelial
cells [45]. There is also an increase in N-formylkynurenine
[48, 49] in the lens; it is also an endogenous singlet oxygen
photosensitizer. These quantum yields are seen in Table 1.

All of these phototoxic tryptophan derivatives are respon-
sible for UV-A-induced damage to certain target genes [50].
With aging there is also a decrease in the production of
antioxidants and antioxidant enzymes in the lens, which
would normally quench these reactive oxygen species and
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TABLE 1: Quantum vyields for singlet oxygen for lenticular chro-
mophores.

TABLE 2: Quantum vyields for singlet oxygen for retinal chro-
mophores.

Xanthurenic NFK Lipofuscin trans-Retinal A2E
Singlet oxygen 0.17 0.17 Singlet oxygen 0.09 0.24 .004
3-OH Kyn Kynurenine
Singlet oxygen None 0.006

prevent damage to the lens. As a result of the increase
in phototoxic chromophores concomitant with the loss of
antioxidant protection, both the lens epithelial cells and lens
proteins are injured, which results in the eventual clouding of
the lens, commonly known as a cataract [44].

Phototoxic reactions, whether they are caused by endoge-
nous or exogenous singlet oxygen photosensitizers, can cause
a modification of certain amino acids (histidine, tryptophan,
and cysteine) [51] and/or a covalent attachment of a sensitizer
to cytosol lens proteins. In either case, the physical properties
of the protein are changed, leading to aggregation and finally
opacification (cataractogenesis). The covalently bound chro-
mophore may now act as an endogenous sensitizer of singlet
oxygen, producing prolonged sensitivity to light. Since there
is little turnover of lens proteins this damage is cumulative.
Any modification in the clarity of the lens impairs both vision
and circadian function [52] and has a dramatic effect on
retinal function.

3.2. Retina. The young retina is at particular risk for damage
from UV exposure because the young lens has not as
yet synthesized the yellow chromophores that prevent UV
transmission to the retina [42, 43]; UV damage to the eye is
cumulative and may increase the possibility of developing eye
disorders (macular degeneration) later in life [26].

In addition to UV damage, short-wavelength blue visible
light (430 nm) damages the retinas of those over 50 years of
age through a photooxidation reaction with an accumulated
chromophore, lipofuscin [30, 53-56].

Lipofuscin is a heterogeneous material composed of a
mixture of lipids, proteins, and various fluorescent com-
pounds. It is mainly derived from the chemically modi-
fied residues of incompletely digested photoreceptor outer
segments [57]. Photoreceptor cells (rods and cones) shed
their outer segments (disc shedding) daily to be finally
phagocytosed (digested) by RPE cells. This RPE phagocytosis
[58, 59] releases lipofuscin. With age, the rates of lipofuscin
formation and disposal become unbalanced [60, 61], resulting
in lipofuscin accumulation in the RPE [62, 63].

In response to short blue visible light (430 nm), lipo-
fuscin efficiently produces singlet oxygen and lipid peroxy
radicals; there is also some production of superoxide and
hydroxyl radicals [64-67]. Lipofuscin is autofluorescent, and
in previous studies [68] it was hypothesized that the main
phototoxic component of lipofuscin was A2E [N-retinylidene-
N-retinylethanolamine]. This is a pyridinium bisretinoid pro-
duced by the condensation of phosphatidylethanolamine
with two moles of all-trans-RAL [trans-retinal]. However,
current studies have proven that, rather than being a pho-
tooxidative agent, A2E forms the basis of a natural protective

mechanism that removes the strong singlet oxygen photo-
sensitizer all-trans- RAL [69] and keeps it from damaging
the RPE cells by forming the very weak singlet oxygen
inducer A2E [27, 30, 56, 70, 71]. While the quantum yield for
lipofuscin [® = 0.09] is relatively high, the quantum efficiency
for the generation of singlet oxygen by A2E is very low (®
= 0.0003) [67, 72]. Table 2 gives the quantum yields of these
retinal chromophores.

Further in vivo mouse studies [55] and human studies
using matrix-assisted laser desorption ionization imaging
mass spectrometry (MALDI IMS) and FT-ICR tandem mass
spectrometry confirm that although A2E accumulation in the
retina may be hazardous, the damage done is not through
a photooxidative mechanism [73-75]. Another mechanism
for A2E toxicity to the retina may be the inhibition of
phagolysosomal degradation of photoreceptor phospholipids
[76], which would increase the production of lipofuscin
[60, 77], a blue light singlet oxygen photosensitizer [66, 67],
leading to damage to RPE cells. Because the rods and cones
survival is dependent on healthy RPE, these primary vision
cells will eventually die, resulting in a loss of (central) vision
(macular degeneration) and other retinopathies. Another
potential toxic mechanism of A2E that does not involve light
is the activation of microglial phagocytosis of photoreceptor
cells [78, 79].

4. Prevention of Damage by
Lutein and Zeaxanthin

Lutein and zeaxanthin are ocular antioxidants of dietary
origin [80]. These carotenoids are found in the human lens,
[81], retinal pigment epithelium/choroid (RPE/choroid), the
macula, the iris, and the ciliary body [2]. Recent clinical trials
have determined that age- and diet-related loss of lutein and
zeaxanthin enhances phototoxic damage to the human eye,
while supplementation of these carotenoids has a protective
effect against photoinduced damage to the lens and the
retina. The use of improper carotenoids as an antioxidant (f3-
carotene) for quenching light damage to the eye as was used
in the AREDS 1 clinical trial is not only ineffective because it
does not pass blood ocular barriers but may be hazardous to
human health [82, 83].

4.1. Structure of Carotenoids in relation to Their Function
and Location in the Eye. Lutein and zeaxanthin have a 40-
carbon basal structure, which include a system of conjugated
double bonds (alternating double and single bonds) as shown
in Figure 3. Chemical structures with extensive conjugated
bonds absorb light in the visible range; lutein and zeaxanthin
absorb blue visible light (400-500 nm).

Carotenoids that are substituted with hydroxyl (-OH)
functional groups are known as xanthophylls. Lutein and
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FIGURE 3: Structures of lutein, zeaxanthin, B-carotene, and lycopene.

zeaxanthin are xanthophylls, and their hydroxyl functional
groups permit both lutein and zeaxanthin and their structural
isomers to cross both blood-ocular and blood-brain barriers.
Other carotenoids (f-carotene and lycopene) contain only
carbon and hydrogen atoms and do not cross the blood-brain
or ocular barriers [84].

4.2. Photochemical Mechanism of Protection. Ocular expo-
sure to sunlight, UV, and short blue light-emitting lamps
directed at the human eye can lead to the induction of
cataracts and retinal degeneration. This process is particularly
hazardous after the age of 40 because there is a decrease
in naturally protective antioxidant systems and an increase
in UV and visible light-absorbing endogenous phototoxic
chromophores that efficiently produce singlet oxygen and
other reactive oxygen species. The primary mechanism of
damage is through a photooxidation reaction. In photooxi-
dation reactions, phototoxic chromophores in the eye absorb
light, are excited to a singlet and then a triplet state, and
from the triplet produce free radicals and reactive oxygen
species which in turn damage the ocular tissues [83, 85].
The phototoxic reactions damage can be prevented by the
appropriate antioxidant quenchers as shown in Figure 4.

Lutein and zeaxanthin are naturally accumulating ocular
antioxidants that efficiently quench both singlet oxygen and
lipid peroxy radicals [86]. Zeaxanthin, with 11 conjugated
double bonds, has a higher ability to quench singlet oxygen
than lutein (10 conjugated double bonds) as shown in Figure 3
[87].

The synergistic action of several ocular antioxidants not
only mimics the natural antioxidant protection of the eye
(xanthophylls, vitamin E, vitamin C, and glutathione) but also
has been found to be most effective. The highly successful
synergistic action of zeaxanthin and vitamin E or vitamin
C indicates the importance of the antioxidant interaction
in efficient protection of cell membranes against oxidative
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damage induced by photosensitized reactions [88]. Increased
levels of both lutein and zeaxanthin were found to reduce
age-related nuclear cataracts [89, 90]. Clinical trials with
a combination of lutein, zeaxanthin, and its isomer meso-
zeaxanthin were found to be more protective of the retina
than lutein or zeaxanthin alone [12, 91]. This is not surprising
as the order of efficiency of quenching singlet oxygen is
lutein < zeaxanthin < meso-zeaxanthin < all three combined
[86, 92]. The structures of these xanthophylls are shown in
Figure 5.

4.3. Photochemical Mechanism of Prooxidation and Damage
by Antioxidants. Both lutein and zeaxanthin are very effec-
tive quenchers of singlet molecular oxygen ('0,) and lipid
peroxy radicals. However, in the process, these carotenoids
are oxidized to their corresponding radical cations. These
cations must be reduced to regenerate the original carotenoid,
allowing their reuse as an antioxidant. Vitamin E (a-
tocopherol) is an antioxidant that can reduce oxidized
carotenoids, but in turn, this leaves the tocopherol oxidized
[93]. However, the oxidized vitamin E can be reduced and
regenerated by vitamin C (ascorbic acid). Vitamin C can then
be further reduced by copper and zinc [94, 95]. Without this
appropriate combination of oxidizing and reducing agents,
antioxidants become prooxidants and can potentially damage
the retina and other organs as was found in the AREDS 1
clinical trial [82, 96].

Summary. It is essential to determine the specific reactive
intermediate(s) produced by a particular endogenous or
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exogenous photosensitizing agent in each compartment of
the eye. This information not only defines the mechanism
of toxicity but can also later be used as a tool to prevent
damage. For instance, singlet oxygen that forms with the
photooxidation of lipofuscin in the aged retina may be
quenched by dietary or supplemental lutein and zeaxanthin,
thereby preventing damage to the human retina. Using the
proper sunglasses to block wavelengths that excite endoge-
nous and exogenous ocular photosensitizers has been shown
to limit the singlet oxygen damage to the eye. In the future,
gene therapy for retinal dystrophies will be initiated. Ocular
imaging techniques using confocal imaging or with adaptive
optics are now available. These techniques will allow for
direct verification of the physical and metabolic state of
the human eye and accurate and digitalized monitoring
of any therapeutic benefit of all new treatments against
blindness including antioxidant supplements such as lutein
and zeaxanthin.
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