
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

273

AN EFFICIENT METHOD-LEVEL CODE CLONE DETECTION SCHEME

THROUGH TEXTUAL ANALYSIS USING METRICS

G. Anil kumar
1
 Dr. C.R.K.Reddy

2
 Dr. A. Govardhan

3

1
MGIT, Dept. of Computer science Hyderabad, India

Email: anilgkumar@mgit.ac.in
2
CBIT, Dept. of Computer science,Hyderabad, India

Email: crkreddy@cbit.ac.in
3
JNTUH Dept. of Computer science, Hyderabad, India

Email: govardhan_cse@jntuh.ac.in

ABSTRACT

Code cloning or the act of copying code fragments and making minor, non–functional

alterations, is a well known problem for evolving software systems which leads to

duplicated code fragments known as code clones. A Clone Detection approach is to find

out the reused fragment of code in any application to maintain different types of clones

that are being identified by the clone detection techniques. Ever since clone detection

evolved, it has been providing better results by reducing the complexity. A different

clone detection tool makes the detection process easier and produces efficient results. In

many existing systems, main focus is on line by line detection or token based detection to

find out the clones in the system. So, it makes the system to take long time to process the

entire source code. If the fragment of code is not an exact copy but the functionalities

make it similar to each other, then existing system doesn’t figure out that type of clones

in it. This paper proposes combination of textual and metric analysis of a source code for

the detection of all types of clones in a given set of fragment of java source code. Various

semantics have been formulated and their values are used during the detection process.

This metrics with textual analysis provides less complexity in finding the clones and

giving accurate results.

Keywords: Clone detection, Textual Analysis, Metrics computation, Abstract syntax

Trees, Precision and Recall.

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING &

TECHNOLOGY (IJCET)

ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)

Volume 3, Issue 1, January- June (2012), pp. 273-288

© IAEME: www.iaeme.com/ijcet.html

Journal Impact Factor (2011): 1.0425 (Calculated by GISI)

www.jifactor.com

IJCET

© I A E M E

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

274

1. INTRODUCTION

Software systems provide vital support for the smooth running of an organization’s

business. It is the responsibility of maintainers to keep the system up-to date and

functioning correctly [6]. The success of free software is evident from the large and

growing number of hardware devices that include free software components. Devices

such as routers, televisions, set-top boxes and media players are commonly based on

software such as the Linux kernel, the Samba file/print server and the BusyBox toolset

[13]. Reusing code fragments by copying and pasting with or without minor adaptation is

a common activity in software development. As a result software systems often contain

sections of code that are very similar, called code clones [8]. A code clone is a code

portion in source files that is identical or similar to another. Clones are introduced

because of various reasons such as reusing code by ‘copy-and-paste’, mental macro

(definitional computations frequently coded by a programmer in a regular style, such as

payroll tax, queue insertion, data structure access, etc), or intentionally repeating a code

portion for performance enhancement, etc [2]. Identifying software clones and

understanding how software changes between releases are two important issues for

maintainers where a text-based approach is likely to be useful. Maintenance of large

software systems under pressure often leads to a phenomenon referred to as software

cloning [4].

A clone is a copy of a code fragment. Usually, clones consisting out of more than 5

statements are considered interesting. Since the clone relation is symmetric we better say

that the origin and the copy form a clone pair [10]. Clones are frequently introduced by

code scavenging, that is, by copying existing code and modifying it. Finding clones in

software systems is important in many maintenance, reengineering, and program

understanding contexts [9]. Detection and removal of such clones promises decreased

software maintenance costs of possibly the same magnitude [1]. One major problem in

detecting a clone is that it is impossible to be absolutely certain that one section of code

has been copied and pasted from another [6]. Unfortunately, a precise definition of what

differentiates a clone from a non-clone is lacking. This can present problems for

evaluating clone detectors [9]. A clone detector must try to find pieces of code of high

similarity in a system’s source text. The main problem is that it is not known beforehand

which code fragments may be repeated. Thus the detector really should compare every

possible fragment with every other possible fragment. Such a comparison is prohibitively

expensive from a computational point of view and thus, several measures are used to

reduce the domain of comparison before performing the actual comparisons [8].

A clone detection system should have ability to select clones or to report only helpful

information for user to examine clones, since large number of clones is expected to be

found in large software systems [2]. Although some researchers argue not to remove

clones because of the associated risks, there is a consensus that clones need to be detected

at least. Detection is necessary to find the place where a change must be replicated and

also useful to monitor development in order to stop the increase of redundancy before it

is too late [15]. An important application of clone detection is the improvement of source

code quality by refactoring duplicated code fragments [7]. From the analysis of software

application it appears that the inclusion of these clones results from the addition of some

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

275

extra functionality which is similar but not identical to some existing logic within a

system. It seems that when presented with the challenge of adding new functionality the

natural instinct of a programmer is to copy, paste and modify the existing code to meet

the new requirements and thus creating a software clone [6]. Clone detection techniques

attempt at finding duplicated code, which may have undergone minor changes afterward.

The typical motivation for clone detection is to factor out copy-paste-adapt code, and

replace it by a single procedure [5]. At the beginning of any clone detection approach, the

source code is partitioned and the domain of the comparison is determined. There are

three main objectives in this phase: remove uninteresting parts, determine source units

and determine comparison units / granularity [8]. Code clones can be discovered

manually by scavenging through the program source and identifying duplicates one by

one. Depending on the size of the program, this manual process can become tedious and

labor intensive. An automatic clone detection tool can be beneficial by reducing the time

and effort needed to find clones [11]. A good clone detector should scale to large

programs, while considering sufficient semantic-level information to detect all three

types of clone. This requires that the management of necessary semantic information

should be inexpensive in terms of time and memory [14].

Various approaches have been applied in practice with good results. The main technical

difficulty is that duplication is often masked by slight differences: eformatting, code

modifications, changed variable names and inserted or deleted lines of code all make it

harder to recognize software clones [16]. Five established detection tools will be used in

the evaluation process; JPlag, MOSS, Covet, CCFinder and CloneDr. JPlag and MOSS

are web-based academic tools for detecting plagiarism in student's source code. CloneDr

and CCFinder are stand alone tools looking at code duplication in general [6]. Problem

Mining is a process change that aims at coping with the existing base of software clones

in a system already in service, for which new development and maintenance is still being

done [3]. The handling of duplicated code can be very problematic in many respects. An

error in one component is reproduced in every copy. Since it is not documented in which

places duplicates can be found, it is extremely hard to hand and remove such errors [10].

Duplicated fragments can also significantly increase the work to be done when enhancing

or adapting code [12].

SHINOBI is a tool for automatic code clone detection. The main features of SHINOBI

are, first, it is highly integrated with Microsoft Visual Studio. For instance, it is

implemented as an add-on of Visual Studio. A programmer can easily check and edit

detected code clones. Second, SHINOBI automatically detects code clones with source

code being edited. The detection process is automatic, implicit, and quick. A programmer

can get a list of code clones without noticeable time penalty whenever he develops with

the IDE and finally It also highlights code clones to help recognize clones during

software maintenance tasks. In the clone detection tool comparison experiment at the

First International Workshop on Detection of Software Clones, clones were separated

into three categories: Exact copies, with no differences between them, Parameterized

copies, where variable and function calls can have different names and/or types have

changed and Modified copies, where some modification is done, such as adding or

deleting lines of code [11]. Efficient token-based clone detection is based on suffix trees,

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

276

originally used for efficient string search [15]. Various approaches have been applied in

practice with good results. The main technical difficulty is that duplication is often

masked by slight differences: eformatting, code modifications, changed variable names

and inserted or deleted lines of code all make it harder to recognize software clones [16].

Hence, we propose an efficient clone detection scheme to detect all types of clones

available in the source files. Here we use a hybrid technique based on textual and metric

analysis to detect the duplicate codes. The rest of the paper is described as follows.

Section 2 briefs about the literature survey. The concept of textual and metric analysis is

described in Section 3 and the proposed methodology is explained with necessary

equations and diagrams in Section 4. The Results obtained in the proposed method is

discussed in Section 5 and Section 6 concludes the work.

2. RELATED WORK

A handful of researches have been presented in the literature for the detection of Clones.

Recently, utilizing artificial intelligence techniques like Abstract Syntax Trees, KClone,

Substring Matching, Frequent Itemset Techniques have received a great deal of attention

among researchers. A brief review of some recent researches is presented here.

Chanchal K. Roy et al. [8] proposed that, over the last decade many techniques and tools

for software clone detection have been proposed. In that paper, they provide a qualitative

comparison and evaluation of the current state-of-the-art in clone detection techniques

and tools, and organize the large amount of information into a coherent conceptual

framework. We begin with background concepts, a generic clone detection process and

an overall taxonomy of current techniques and tools. Then classify, compare and evaluate

the techniques and tools in two different dimensions. First, we classify and compare

approaches based on a number of facets, each of which has a set of (possibly

overlapping) attributes. Second, we qualitatively evaluate the classified techniques and

tools with respect to taxonomy of editing scenarios designed to model the creation of

Type-1, Type-2, Type-3 and Type-4 clones. Finally, they have provided examples of how

one might use the results of this study to choose the most appropriate clone detection tool

or technique in the context of a particular set of goals and constraints. The primary

contributions of this paper are: a schema for classifying clone detection techniques and

tools and a classification of current clone detectors based on this schema, and taxonomy

of editing scenarios that produced different clone types and a qualitative evaluation of

current clone detectors based on this taxonomy.

Armijn Hemel et al. [13] proposed that, Software released in binary form frequently used

third-party packages without respecting their licensing terms. For instance, many

consumer devices have firmware containing the Linux kernel, without the suppliers

following the requirements of the GNU General Public License. Such license violations

are often accidental, e.g., when vendors receive binary code from their suppliers with no

indication of its provenance. To help find such violations, they have developed the

Binary Analysis Tool (BAT), a system for code clone detection in binaries. Given a

binary, such as a firm ware image, it attempts to detect cloning of code from repositories

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

277

of packages in source and binary form. They have evaluated and compared the

effectiveness of three of BAT’s clone detection techniques: scanning for string literals,

detecting similarity through data compression, and detecting similarity by computing

binary deltas.

Yue Jia et al. [14] proposed that, in all applications of clone detection it is important to

have precise and efficient clone identification algorithms. That work outlines a new

algorithm, KClone for clone detection that incorporates a novel combination of lexical

and local dependence analysis to achieve precision, while retaining speed. It also reports

on the initial results of a case study using an implementation of KClone with which we

have been experimenting. The results indicate the ability of KClone to find types-1, 2,

and 3 clones compared to token-based and PDG-based techniques, and also reports

results of an initial empirical study of the performance of KClone compared to

CCFinderX.

Rainer Koschke et al. [15] proposed that, reusing software through copying and pasting

was a continuous plague in software development despite the fact that it creates serious

maintenance problems. Various techniques have been proposed to find duplicated

redundant code (also known as software clones). This study has compared those

techniques and shown that token-based clone detection based on suffix trees is extremely

fast but yields clone candidates that are often no syntactic units. Current techniques based

on abstract syntax trees on the other hand find syntactic clones but are considerably less

efficient. It describes how they can made use of suffix trees to find clones in abstract

syntax trees. That new approach was able to find syntactic clones in linear time and

space. It reports the results of several large case studies in which we empirically compare

the new technique to other techniques using the Bellon benchmark for clone detectors.

Stephane Ducasse et al. [16] proposed that, duplicated code is known to pose severe

problems for software maintenance, it is difficult to identify in large systems. Many

different techniques have been developed to detect software clones, some of which are

very sophisticated, but are also expensive to implement and adapt. Lightweight

techniques based on simple string matching are easy to implement, but how effective are

they? They presented a simple string-based approach which they have successfully

applied to a number of different languages such COBOL, JAVA, C++, PASCAL,

PYTHON, SMALLTALK, C and PDP-11 ASSEMBLER. In each case the maximum

time to adapt the approach to a new language was less than 45 minutes. In that paper,

they investigate a number of simple variants of string-based clone detection that

normalize differences due to common editing operations, and assess the quality of clone

detection for very different case studies. Their results confirm that that inexpensive clone

detection technique generally achieves high recall and acceptable precision. Overzealous

normalization of the code before comparison, however, can result in an unacceptable

numbers of false positives.

R. R. Brooks et al. [17] proposed that, in cloning attacks, an adversary captures a sensor

node, reprograms it, makes multiple copies, and inserts these copies, into the network.

Cloned nodes subvert sensor network processing from within. In a companion paper, they

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

278

shown how to detect and remove clones from sensor networks using random key pre

distribution security measures. Keys that are present on the cloned nodes are detected by

using authentication statistics based on key usage frequency. For consistency with

existing random key pre distribution literature, and ease of explanation, the network in

that paper used an Erdos-Renyi topology. In the Erdos-Renyi topology, the probability of

connection between any two nodes in the network is uniform. Since the communications

ranges of sensor nodes were limited, this topology is flawed. This article applies the clone

detection approach from to more realistic network topologies. Grid and ad hoc topologies

reflect the node connectivity patterns of networks of nodes with range limits. They

provided analytical methods for choosing detection thresholds that accurately detect

clones. They used simulations to verify our method. In particular they found the

limitations of that approach, such as the number of nodes that can be inserted without

being detected.

Shinji Kawaguchi et al. [18] proposed that, code clones decrease the maintainability and

reliability of software programs, thus it is being regarded as one of the major factors to

increase development/maintenance cost. They have introduced SHINOBI, a novel code

clone detection/modification tool that was designed to aid in recognizing and highlighting

code clones during software maintenance tasks. SHINOBI was implemented as an add-in

of Microsoft Visual Studio that automatically reports clones of modified snippets in real

time.

Kodhai. E et al. [19] proposed that, clone detection has considerably evolved over the last

decade, leading to approaches with better results but with increasing complexity. Most of

the existing approaches were limited to finding program fragments similar in their syntax

or semantics, while the fraction of candidates that were actually clones and fraction of

actual clones identified as candidates on the average remain similar. In that paper, a

metric-based approach combined with the textual comparison of the source code for the

detection of functional Clones in C source code has been proposed. Various metrics had

been formulated and their values were utilized during the detection process. Compared to

the other approaches, this method was considered to be the least complex and to provide

a more accurate and efficient way of Clone Detection. The results obtained had been

compared with the two other existing tools for the open source project Weltab.

Nam H. Pham et al. [20] proposed that, Model-Driven Engineering (MDE) has become

an important development framework for much large-scale software. Previous research

has reported that as in traditional code-based development, cloning also occurs in MDE.

However, there has been little work on clone detection in models with the limitations on

detection precision and completeness. That paper presented the ModelCD, a novel clone

detection tool for Matlab/Simulink models that is able to efficiently and accurately detect

both exactly matched and approximate model clones. The core of ModelCD is two novel

graph-based clone detection algorithms that are able to systematically and incrementally

discover clones with a high degree of completeness, accuracy, and scalability.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

279

3. TEXTUAL & METRIC ANALYSIS
In textual comparison line by line comparison is done. That is whole lines are compared

to each other textually using hashing for strings. This comparison is done by string

matching algorithm. The result can be plotted in a dot plot and each dot indicates a pair of

cloned lines. Uninterrupted diagonals or displaced diagonals which occur in the dot plot

indicate the consecutive duplicated lines.

Metric based technique gathers different metrics from a particular code fragments, such

as, a function or a class, then groups these metric together into a metrics vector. After that

it compares these metric vector instead of actual code directly [LPM+97, KDM+96],

because this method is focused on a specific type of code fragments, it can only detect an

type of high level clone, e.g. duplicated function.

Here in metric computation each code fragments are given different metric values.

During comparison these metric vectors are compared instead of comparing code

directly. As a hint for similar code an allowable distance can be used for these metric

vectors. Text based technique is the oldest and simplest way to detect clone, which takes

each line of source code as code representation. In order to increase the performance,

lines are often transformed by a hash function and uninterested code, such as comments

and white spaces are filtered. The result of comparison is presented in a dot plot graph,

where each dot indicates a pair of cloned lines.

A clone pair can be determined as a sequence of uninterrupted diagonals line of spot.

Because text based technique does not perform any syntactical or semantically analysis

on source code, it's one of the fastest clone detection approaches. It can easily deal with

type-1 clone, and with additional data transformation, the type-2 can also be taken care.

However without information of syntactical or semantically level support, the third type

of clone cannot be detected at all.

4. AN EFFICIENT CLONE DETECTION PROCESS

A clone detector must try to find pieces of code of high similarity in a system's source

text. The main problem is that it is not known beforehand which code fragments can be

found multiple times. The detector thus essentially has to compare every possible

fragment with every other possible fragment. Such comparison is very expensive from a

computational point of view and thus, several measures are taken to reduce the domain of

comparison before performing the actual comparison. Once potential cloned fragments

are identified further analysis is carried out to detect actual clones. In our proposed

method, a hybrid technique based on textual and metric analysis is used to detect all types

of clones present in the source code.

Text based clone detection technique uses the transformation such as comments removal,

whitespace removal. Because text based technique does not perform any syntactical or

semantically analysis on source code, it is one of the fastest clone detection approach. It

can easily deal with type-1 clone, and with additional data transformation, the type-2 can

also be taken care. In Metric based technique, instead of comparing the code directly,

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

280

different metric of code are gathered and these metrics were compared to detect clones.

Many clone detection techniques today use metrics for detecting similar codes. The

proposed method is implemented as a tool in java. The system architecture of the tool is

as shown in Fig. 1.

Our proposed approach use metric based and text based technique to detect clones and

divided into two stages. In the first stage metric based technique is used for the selection

on potential clone. Potential clones are selected on the basis of metric match and after this

potential clones are further processed with text based technique. The potential clones are

compared line by line to determine whether two potential clones really are clones of each

other. The tool developed initially parses through the given input source code and

identifies the various methods present.

fig.1: Clone Detection Architecture

Clone detection process has been divided into number of phases. As shown in the fig.1

the phases include input and pre-processing, template conversion, metrics computation

and finally detecting the clone types. The pairs that show similar in textual comparison

are listed as the clones. The detection tool thus developed does not employ any external

parsers. It requires only less overhead compared to other methods.

4.1 Preprocessing and input Selection

All the source code uninteresting to the comparison phase is filtered out in this phase.

This phase also includes file integration, source code standardization and the

normalization. File integration involves the grouping of all the files of the same project

into a single large file for external parsing. This phase includes file integration, source

code standardization and the normalization. File integration involves the concatenation of

all the files of the same project into a single large file for external parsing. Here it

includes the removal of whitespaces, comments and pre-processor statements. After

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

281

removing the uninteresting code, the remaining source code is partitioned into a set of

disjoint fragments called source units. These units are the largest source fragments that

may be concerned in direct clone relations with each other. Source units can be at any

level of granularity, for example, files, classes, functions/methods, begin-end blocks,

statements, or sequences of source lines.

Source units may require to be further partitioned into smaller units depending on the

comparison technique used by the tool. For example, source units may be subdivided into

lines or even tokens for comparison. Comparison units can also be derived from the

syntactic structure of the source unit. For example, an if-statement can be further

partitioned into conditional expression, then and else blocks. The order of comparison

units within their corresponding source unit may or may not be important, depending on

the comparison technique. Source units may themselves be used as comparison units. For

example, in a metrics based tool, metrics values can be computed from source units of

any granularity and therefore, subdivision of source units is not required in such

approaches. The source code is re-structured to a standard format to establish the

similarity between the cloned fragments.

These steps are very similar to normalization procedures and produces gain in the recall.

Almost all approaches disregard whitespace, although line-based approaches retain line

breaks. Some metrics-based approaches however use formatting and layout as part of

their comparison. Most approaches remove and ignore comments in the actual

comparison. Most approaches apply identifier normalization before comparison in order

to identify parametric Type-2 clones. In general, all identifiers in the source code are

replaced by the same single identifier in such normalizations.

4.2 Template Conversion

Template conversion is the process of transformation of the input source code into a pre-

defined set of statements or conversion into a standard intermediary form. For example,

renaming of data types, variables, function names etc as shown in fig. 2. This type of

format used in textual analysis is called 'template'. The textual comparison of the selected

candidates while detecting the type-2 cloned methods where as per the definition,

function identifiers, variable names, types etc., are edited during the cloning process and

mere textual comparison would not suffice. Once the template conversion is over, the

source file and the template file is stored in the database for applying metrics. This

transformation can vary from very simple e.g., just removing the white space and

comments to very complex e.g., generating PDG representation and/or extensive source

code transformations. Metrics-based methods usually compute an attribute vector for

each comparison unit from such intermediate representations.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

282

SOURCE CODE TEMPLATE
int templconv(ptra, buff1,leng,

buff2)

DAT FUN_NAME(S,S,S,S)

char buff1[]; DAT S;

int leng; DAT S;

int ptra; DAT S;

char buff2[]; DAT S;

{ {

int i; DAT S;

int j; DAT S;

While(i<=leng) LOOP

{ {

If(buff1[ptra+j]!=buff2[ptrb+j]) IF

return TRUE; RETURN;

}; };

i++; ASSIGNMENT

STATEMENT;

j++; ASSIGNMENT

STATEMENT;

tembuf[ptra]=’\0’; ASSIGNMENT FROM

FUNCTION CALL

return TRUE; RETURN;

} }

fig.2: Example for template conversion

4.3 Metric Computation

A set of 12 existing method level metrics are used for the detection of type-1, type-2,

type-3 and type-4 clone methods. They are as follows:

1. No. of effective lines of code in each method : Get the number of lines of code,

Subtract white space lines, Subtract comment lines, Subtract the lines that contains only

block constructs (for example in C# begin block construct is the character '{' while end

block construct is the character '}'.

2. No. of arguments passed to the method: Calling the function involves specifying the

function name, followed by the function call operator and any data values the function

expects to receive. These values are the arguments for the parameters defined for the

function, and the process just described is called passing arguments to the function.

3. No. of function calls in each method: A function call is an expression containing a

simple type name and a parenthesized argument list. The argument list can contain any

number of expressions separated by commas. It can also be empty.

4. No. of local variables declared in each method: A variable declared as local is one

that is visible only within the block of code in which it appears. It has local scope. In a

function, a local variable has meaning only within that function block.

5. No. of conditional statements in each method: In computer science, conditional

statements, conditional expressions and conditional constructs are features of a

programming language which perform different computations or actions depending on

whether a programmer-specified Boolean condition evaluates to true or false.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

283

6. No. of looping statements in each method: A looping statement is one in which you

want to execute a statement (or many) as many number of times you want. It is useful

when you want to check some constraints with a specific value.

7. No. of return statements in each method: A return statement ends the processing of

the current function and returns control to the caller of the function. A value-returning

function should include a return statement, containing an expression.

8. No. of function calling in each method: Once a function has been declared and

defined, it can be called from anywhere within the program: from within the main

function, from another function, and even from itself. Calling the function involves

specifying the function name, followed by the function call operator and any data values

the function expects to receive.

9. No. of inheritance in each method: Inheritance is a way to compartmentalize and

reuse code by creating collections of attributes and behaviors called objects that can be

based on previously created objects.

10. No. of virtual functions in each method: A virtual function or virtual method is a

function or method whose behavior can be overridden within an inheriting class by a

function with the same signature.

11. No. of overloading constructor in each method: Overload constructor is multiple

constructors which differ in number and/or types of parameters.

12. No. of overriding functions in each method: Function over loading means two

functions will have same name but they differ in the number or type of arguments.

For each of the methods identified the metrics are computed and the corresponding

values are stored in a database Table I shows the metric values for the code fragment in

fig 2. After computing the metric values, the method pairs with equal or similar set of

values are identified by comparing the records in the database. The short-listed set of

candidates is then textually compared to be confirmed as clone pairs.

Table I: Metric values for fig. 2

 Sl. No. Metrics Value

1. No. of lines of code 18

2. No. of arguments passed 4

3. No. of local variables declared 6

4. No. of function calls 1

5. No. of conditional statements 1

6. No. of looping statements 1

7. No. of return statements 2

4.4. Finding Clone Types and Clone Pairs

By taking up a line by line comparison of the standardized and normalized source code

for type-1 clone method the identification of the potential clone pairs is done. That is

identical code fragments are selected except for variations in whitespace, layout and

comments. For type-2 clone comparison of templates are done. Here syntactically

identical fragments except for variations in identifiers, literals, types, whitespace, layout

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

284

and comments are taken. In the fragments there is some modifications except there is

some similarities means it must be declared as type-3 by matching template with the

exact code. Copied fragments with further modifications such as changed, added or

removed statements, in addition to variations in identifiers, literals, types, whitespace,

layout and comments can be said as type-3 clones.

It’s declared as type-4 clone when the fragments are completely different but produce

similar output. If the functionalities of the two code fragments are identical or similar and

referred as Type IV clones. That is when two or more code fragments that perform the

same computation but are implemented by different syntactic variants are said to be type-

4 clone. The identified cloned methods are then clustered separately for each type and the

clusters are uniquely numbered. Clustering gives a clear image of how the methods were

cloned and helps to provide an easier review process.

5. RESULTS AND DISCUSSION

The proposed software clone detection system has been implemented in the working

platform of JAVA (version JDK 1.6). Here we use the source code with more than 500

LOC. The main aim of the proposed method is to identify all the four clone types in the

source code. This can be achieved by the combining both textual analysis and metrics.

The step by step results obtained from the proposed method is described as follows.

fig. 3: Initial Process

Fig. 3 represents the initial screen obtained in the clone detection process to Load the

database (set of source programs). After loading the database, select the input files to

detect the clones.

For detecting the clones in the input files, initially, the textual analysis is performed in the

preprocessed codes. The textual analysis finds 2 types of clones such as type-1 and type-

2. It is presented in Fig. 4. Then, metric computations are performed to detect the

remaining clones in the source files. The metric analysis finds the remaining clones

which are described in fig. 5.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 –

6367(Print), ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

285

fig. 4: Textual Analysis

fig. 5: Metrics computation

fig. 6: Clone Detection Process

Finally, the clones available in the source files are detected in the efficient manner and the final

output is presented in fig.6.

Performance Measure

Detection result accuracy refers to a combination of both precision and recall. Precision denotes

the probability that a randomly chosen candidate clone group is relevant. Recall denotes the

probability that a relevant clone group, chosen from the hypothetical set of all relevant clone

groups, is contained in a detection result.

found clones of Number Total

 foundcorrectly clones of Number
P ecision =,Pr

code sourcethe in clones of number Total

correct found clones of Number
R call =,Re

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print),

ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

286

The precision and recall of the proposed method will evaluate the proposed system’s efficiency.

The following graph describes the comparison of performance measure.

fig. 7: Comparison of Precision and Recall

From the fig.7, we observe that our proposed method detects the clones available in the source

files in an efficient mannar. We compare the proposed work with the already existing clone

detection tool which uses suffix tree method that will give less precision and recall rate when

compared to our proposed method. The measures for the above graph is given in Table II.

Table II: Performance Measure

Methods

Performance Measure

Precision Recall

Proposed method 98 96

Suffix Tree method 97 85

6. CONCLUSION

The paper has proposed a light-weight technique to detect functional clones with the

computation of metrics combined with simple textual analysis technique. With the usage of

metrics the existing exponential rate comparison is an overhead. Since the string

matching/textual comparison is performed over the short listed candidates, a higher amount of

recall could be obtained. Proposed work is divided into two stages, selection of potential clones

and comparing of potential clones. The proposed technique detects exact clones on the basis of

metric match and then by text match. Potential clones are compared line-by-line to determine

whether two potential clones really are clones of each other. The early experiments prove that

this method can do at least as well as the existing systems in finding and classifying the function

clones in Java. The Precision and Recall plot describes the efficiency of the proposed work.

REFERENCES
1. Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna and Lorraine Bier,

"Clone Detection Using Abstract Syntax Trees," In Proc. of the International Conference

on Software Maintenance, Bethesda, MD, pp. 368 - 377, Nov 1998.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print),

ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

287

2. Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue, "CCFinder: A Multi-Linguistic

Token-based Code Clone Detection System for Large Scale Source Code," IEEE

Transactions on Software Engineering, Vol. 28, No. 7, pg. Software Engineering, Jul

2002.

3. Bruno Laguë, Daniel Proulx, Ettore M. Merlo, Jean Mayrand and John Hudepohl,

"Assessing the Benefits of Incorporating Function Clone Detection in a Development

Process," In Proc of the 1997 International Conference on Software Maintenance (ICSM

'97), Washington, DC, 1997.

4. J Howard Johnson, "Substring Matching for Clone Detection and Change Tracking,," In

Proc of the International Conference on Software Maintenance (ICSM), Victoria, British

Columbia, pp. 120–126, Sep 1994.

5. Magiel Bruntink, Arie van Deursen, Remco van Engelen and Tom Tourwe, "An

Evaluation of Clone Detection Techniques for Identifying Cross-Cutting Concerns," In

Proc. of the 20th IEEE International Conference on Software Maintenance, Washington,

DC, 2004..

6. Elizabeth Burd and John Bailey, "Evaluating Clone Detection Tools for Use during

Preventative," In Proc. of the Second IEEE International Workshop on Source Code

Analysis and Manipulation (SCAM’02), Montreal, Canada, Oct 2002.

7. Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwe, "On the Use

of Clone Detection for Identifying Crosscutting Concern Code," IEEE Transactions on

Software Engineering, Vol. 31, No. 10, pp. 804 - 818, Oct 2005.

8. Chanchal K. Roy, James R. Cordy and Rainer Koschke, "Comparison and Evaluation of

Code Clone Detection Techniques and Tools: A Qualitative Approach," Science of

Computer Programming, Vol. 74, No. 7, Feb 2009.

9. Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, and Arun Lakhotia, "Problems

Creating Task-relevant Clone Detection Reference Data," In Proc. of the 10th IEEE

Working Conference on Reverse Engineering, Victoria, Canada, Nov 2003.

10. Vera Wahler, Dietmar Seipel, Jurgen Wolff V. Gudenberg, and Gregor Fischer, "Clone

Detection in Source Code by Frequent Itemset Techniques," In Proc. of the Fourth IEEE

International Workshop on Source Code Analysis and Manipulation, Chicago, IL, pp.

128 - 135, Sep 2004.

11. Robert Tairas and Jeff Gray, "Phoenix-Based Clone Detection Using Suffix Trees," In

Proc. of the 44th annual southeast regional conference, New York, NY, 2006.

12. Chanchal K. Roy and James R. Cordy, "Scenario-Based Comparison of Clone Detection

Techniques," In Proc. of the 16th IEEE International Conference on Program

Comprehension, Washington, DC, 2008.

13. Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstrac, "Finding

Software License Violations Through Binary Code Clone Detection," In Proc. of the 8th

working conference on Mining software repositories, New York, NY, May 2011.

14. Yue Jia, David Binkley, Mark Harman, Jens Krinke and Makoto Matsushita, "KClone: A

Proposed Approach to Fast Precise Code Clone Detection," In Proc. of the Third

International Workshop on Detection of Software Clones (IWSC 2009), pp. 12-16, 2009.

15. Rainer Koschke, Raimar Falke and Pierre Frenzel, "Clone Detection Using Abstract

Syntax Suffix Trees," In Proc. of the 13th Working Conference on Reverse Engineering,

Benevento, pp. 253 - 262, Oct 2006.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 – 6367(Print),

ISSN 0976 – 6375(Online) Volume 3, Issue 1, January- June (2012), © IAEME

288

16. Stephane Ducasse, Oscar Nierstrasz and Matthias Rieger, "Research On the effectiveness

of clone detection by string matching," Journal of Software Maintenance and Evolution:

Research and Practice, Vol. 18, No. 1, pp. 37-58, 2006.

17. R. R. Brooks, P. Y. Govindaraju, M. Pirretti, N. Vijaykrishnan and M. Kandemir, "Clone

Detection in Sensor Networks with Ad Hoc and Grid Topologies," International Journal

of Distributed Sensor Networks, Vol. 5, pp. 209–223, 2009.

18. Shinji Kawaguchi, Takanobu Yamashinay, Hidetake Uwanoz, Kyhohei Fushida,

Yasutaka Kamei, Masataka Nagura and Hajimu Iida, "SHINOBI: A Tool for Automatic

Code Clone Detection in the IDE," In Proc. 16th Working Conference on Reverse

Engineering, pp. 313 - 314, Oct 2009.

19. Kodhai. E, Kanmani. S, Kamatchi. A, Radhika. R and Vijaya Saranya. B, "Detection of

Type-1 and Type-2 Code Clones Using Textual Analysis and Metrics," In Proc. of the

2010 International Conference on Recent Trends in Information, Telecommunication and

Computing, Washington, DC, pp. 241-243, 2010.

20. Nam H. Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M. Al-Kofahi and Tien N.

Nguyen, "Complete and Accurate Clone Detection in Graph-based Models," In Proc. of

the 31st International Conference on Software Engineering, Washington, DC, 2009.

