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Abstract— This paper is concerned with cooperative control
of a kind of multiple fish-like microrobots. Most of previous
work on multi-robot cooperation is focused on the terrestrial
robots and seldom deals with underwater applications. In fact,
the tasks in hydro-environment is more challenging than those
in ground circumstances and need the cooperation of robots
much more. In this paper, we investigate this problem in the
framework of an adversarial game with several underwater
microrobots. A fuzzy reinforcement learning approach is
adopted to acquire cooperative behavior and a behavioral
hierarchical architecture is proposed. We conduct extensive
experiments to verify the effectiveness of the proposed algo-
rithms.

I. INTRODUCTION

Cooperation of multiple robots has been studied more and
more in recent years. The most important reason to use mul-
tiple robots is to solve some complex and difficult problems
in real word, such as engineering design, intelligent search,
military missions, and so on. In multi-robot systems, every
robot attempt, through their interaction, to jointly solve
tasks or to maximize utility. If the environment is uncertain
and dynamic, the interaction will be quite complicated. In
this circumstance, hand-coding based cooperation might be
not feasible. Instead, robot learning might be another good
way.

Robot learning is based on the idea that a robot can
be trained using incomplete data and then allowed to rely
on its ability to generalize the acquired knowledge to
novel environments. In all the robot learning algorithms,
reinforcement learning(RL) is one of the most attractive
learning framework with a wide range of application areas
[1]. RL does not require training data and estimates how
good or how bad it is for the robot to take a action in
a state through giving reinforcement signals(rewards and
punishment). RL has been applied to various behavior-based
systems and achieved successful results [2] [3].

In this paper, we investigate the cooperative control of
a kind of underwater microrobots based on reinforcement
learning. Most of the previous work on multi-robot learning
is concerned with ground mobile robots, and seldom deals
with underwater robots. As we know, compared with ground
environment, the underwater circumstance is more complex.
It is hard for the designers or researchers to operate the robot
by hand coding or based on some experiences. In such a
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situation, a preferable solution is to let the robots learn by
themselves to take the optimal actions in given states. The
robot employed in this paper is a kind of biomimetic fish-
like microrobot and the task is a cooperative water-polo in
an adversarial environment. Combined with behavior-based
approach, fuzzy reinforcement learning is utilized to enable
the microrobots cooperate and coordinate with each other
to achieve the common objective.

The paper is briefly outlined as follows. In Section II, the
fish-like micro-robot model is described and the cooperative
task is introduced. Section III presents the behavior-based
hierarchical architecture for cooperation and a survey of
reinforcement learning. In Section IV, the fuzzy reinforce-
ment learning algorithm is adopted to achieve a self-learning
cooperation strategy in an adversarial environment. Section
V gives the experiment results and discussions. Finally in
Section VI, we conclude the paper.

II. FISH-LIKE MICROROBOT MODEL AND TASK
DESCRIPTION

A. Description of the fish-like microrobot

Fig. 1 shows the fish-like microrobot prototype and its
mechanical configuration. The robot’s head and fore-body
are molded using fiberglass, in which installed the electrical
components: the control module, additional peripherals and
power supply. Its rear-body consists of three linked DC
servomotors which are wrapped by waterproofed skin. A
lunate foil is attached to the last link, which serves as the
tail fin. The microrobot mimics the carangiform swimming
mode of natural fish and the thrust is mainly generated by
undulatory motion of the rear flexible body and the tail.

For carangiform swimming mode, Lighthill [6] suggested
a travelling-wave model:

ybody(x, t) = (c1x+ c2x2)sin(kx+ωt) (1)

where ybody denotes the transverse displacement of the fish
body, x represents the displacement along main axis, k
indicates the body wave number (k = 2π/λ ), λ is the body
wave length, c1 is the linear wave amplitude envelope, c2 is
the quadratic wave amplitude envelope and ω is the body
wave frequency (ω=2π f =2π/T).

For simplicity and feasibility in engineering design, we
consider the discrete model of (1). We separate time variable
t from ybody. Then the travelling body-wave is decomposed
into two parts: the first part is the time-independent spline
curve sequences ybody(x, i) (i = 0,1, · · ·,M−1) in an oscil-
lation period, which is described by (2), and the second
part is the time-dependent oscillating frequency f , which
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(a) Prototype of the fish-like microrobot

(b) Mechanical configuration of robot fish.

Fig. 1. Fish-like microrobot prototype and its mechanical configuration .

is described as the times of recurring oscillations in a unit
time interval.

ybody(x, i) = (c1x+ c2x2)sin(kx± 2π
M

i) (2)

where i denotes the ith variable of the sequences ybody(x, i),
M, called body wave resolution, stands for discrete degree
of the travelling wave, the signs ” + ” and ”− ” represent
different initial moving directions, which are determined
based on different initial values.

When the robotic fish swims, its speed is adjusted by
modulating the joints’ oscillating frequency f , and its
orientation is tuned by different joints deflectionθ . Regulate
f and θ can produce a series of swimming gaits for the
microrobot.

Table I presents basic technical parameters of the fish-like
microrobot.

B. Task Description

Though a microrobot bears the virtue of agility and
maneuverability, it is often incapable when accomplishing
some complex missions. In this circumstance, cooperation
of multiple microrobot might be required as a solution.
Cooperative control has been demonstrated in many ground
robot systems. In this paper, we deal with the underwater
case and design a cooperative task Water Polo 2vs1 as
shown in Fig. 2. In a quadrate tank, there are three fish-like
microrobots and a polo. The two robots in the left side are

TABLE I

TECHNICAL PARAMETERS

Quantity Characteristic
Size (L ×W× H) ∼400mm×40mm×78mm
Weight ∼0.5 Kg
Number of the links 3
Maximum oscillating frequency 2 Hz (in calm water)
Length of oscillating part 178 mm
Maximum advancing speed ∼ 0.42 m/s
Minimum turning radius ∼ 200 mm
Maximum input torque 3.2 kg × cm
Working voltage 4.8 V
Actuator mode DC servomotor
Control mode Wireless (433 MHz)

teammates and called Offensive Side. The robot in the right
side is Defensive Side. If the Offensive Side push the polo
into the gate G in the given time, they succeed. Otherwise,
the Defensive Side wins.

Fig. 2. Two offensive robots Vs one defensive robot.

This task is inspired by the RoboCup which is now a
canonical platform for multi-agent cooperation. Compared
with the ground circumstance, the hydro-environment is
more complicated and uncertain, which makes the coop-
erative task more difficult to achieve. In this task we use
two robots for the Offensive Side and one for the Defensive
Side. That is because through experiments, we find, in
the water environment, attacking is more difficult than
defending.

III. CONTROL ARCHITECTURE FOR
COOPERATION

For the two sides in the task, we adopt different con-
trol mechanism: the Defensive Side takes a fixed reactive
defending strategy which will be presented in Section V;
while the Offensive Side will learn to cooperate with each
other and achieve the attacking commonly. In this section,
we fucus on the organizing approach of the Offensive Side.
A behavior-based hierarchical architecture is used as a basic
framework as shown in Fig. 3. Four levels are planned.
The first level is role assignments. Since in the attacking
task, two subtasks should be accomplished: pushing the polo
and blocking the defense robot. Based on the subtasks, we
defined two roles, namely Attacker and Blocker. Each role is
composed of several behaviors. There are totally two kinds
of behaviors: reactive behavior or deliberative behavior.

349

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



Reactive behaviors display response in direct to environ-
ment stimulation, while deliberative behaviors involve some
sort of cooperative intention. Here, a behavior represents
action or action sequence with intention. The behavior is a
reaction to some stimulus from the environment, or a way of
acting. For the fish-like microrobot, an action means a gait
sequence in a certain mode, which can be obtained from the
perspective of AI or bionics through extensive experiments.

Fig. 3. Behavioral hierarchical framework.

In principle, robot learning can be applied into every level
of the architecture. Considering the property of this task and
the efficiency, we adopt learning mechanism only in some
deliberative behaviors in the behavioral level. For every
behavior, we can design a learning controller. But in order to
improve the efficiency, we will define Reactive Behaviors by
hand-coding on a priori knowledge and use learning method
only in the deliberative behavior. Here we choose the block
behavior, which aims to prevent the defense from touching
the polo and help the attacker hold polo. This behavior is
not easy to defined by hand-coding method, since the hydro-
dynamics often makes the environment not like what people
imagine. So we prefer the robot learns by itself to become
a good blocker.

A. A survey of reinforcement learning

Fig. 4 shows the standard reinforcement learning model
of agent-environment interaction. It consists of

1) discrete set S of environment states s
2) discrete set A of agent actions a
3) scalar reinforcement learning signal r

On each step of interaction the agent percepts the current
state s of the environment, then chooses an action a. The
action changes the state of the environment to a new state
s′, and the value of this state transition is evaluated through
a scalar reinforcement signal r. The agent should choose
actions that tend to maximize the long-run sum of values
of the reinforcement signal.

In RL the following functions are defined:

Fig. 4. The standard reinforcement learning model

• R(s,a), the expected value of rewards; a function from
state-action pairs to numeric values, i.e., R : S×A → r

• T (s,a,s′), the state transition function from state-action
pair to state, T : S × A → π(S). It stands for the
probability of making a transition from state s to state
s′ using action a

In order to evaluate how good it is to take a action a in a
state s, a value function V ∗(s) is defined. The optimal value
of V ∗(s) can be given by

V ∗(s) = max
a

[R(s,a)+ γ ∑
s′∈S

T (s,a,s′) ·V ∗(s′)] (3)

where γ ∈ [0,1] is discount factor, γ ∑
s′∈S

T (s,a,s′) ·V ∗(s′)

represents the infinite discount sum of rewards which is
obtained assuming that the agent always selects the optimal
action in state s′. Given the optimal value function V ∗(s)
the optimal policy π∗(s) can be obtained as

π∗(s) = argmax
a

[R(s,a)+ γ ∑
s′∈S

T (s,a,s′) ·V ∗(s′)] (4)

In most circumstances, the optimal policy is unknown. In
that case, the value function can be learned using Temporal-
difference(TD) learning. The simplest TD update method,
known as TD(0) can be presented as

V (s) = V (s)+α[r + γV (s′)−V (s)] (5)

• α , learning rate, α ∈ [0,1]
• r, instantaneous reward
• γ , discount factor
• V (s), estimated value function of the current state s
• V (s′), estimated value function of the current state s′

This algorithm looks only one step ahead when adjusting
value estimates.

IV. COOPERATIVE BEHAVIOR ACQUISITION
BASED ON FUZZY REINFORCEMENT LEARNING

In this section, reinforcement learning is adopted to
acquire the block behavior for the Offensive Side.

A. Fuzzification of States and Actions

In reinforcement learning, discrete state set and action set
are required, while in our task, the state space and action
space are continuous. It is unlikely to store all states and
actions in a limited memory. Therefore, generalizing the
continuous states and actions with respect to a particular
method seems to be a more appropriate solution. Here we
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adopt fuzzy logic to discretize the state and action space.
Robots’ attitudes and the polo’s position were used as state
variables. These variables were fuzzificated into several
levels for the fuzzy inference system. All input variables
are two-dimensional.

First, as shown in Fig. 5, we make coordinates trans-
formation using polo as the origin and the direction from
the polo to the gate(G) as the new x coordinates. In this
new coordinates, we can get the membership function
representing the position states of the Blocker and the
Defense as shown in Fig. 6. Combined the positions of x
coordinates and y coordinates, we get 9 position states for
both the Blocker and Defense. For every position state, we
obtain 8 orientation states using fuzzy logic as illustrated
in Fig. 7.

Fig. 5. Coordinates transformation.

Fig. 6. Membership function representing the robot’s position.

The presentation of the position state of the robot are:

• LEFT -FRONT
• LEFT -MIDDLE
• LEFT -BEHIND
• MIDDLE-FRONT
• MIDDLE-MIDDLE
• MIDDLE-BEHIND
• RIGHT -FRONT
• RIGHT -NIDDLE

Fig. 7. Membership function representing the robot’s orientation.

• RIGHT -BEHIND

For the orientation state, there are

• FORWARD
• FORWARD-RIGNT
• RIGHT
• BACKWARD-RIGHT
• BACKWARD
• BACKWARD-LEFT
• LEFT
• LEFT -FORWARD

So for both the Blocker and Defense, there are 9 × 8 =
72 states, and for the blocking behavior, there are totally
72×72 = 5184 states as shown in Fig. 8.

Fig. 8. Representation of state.

For the action space, according to the dynamics of
the microrobot, we choose its orientation as the fuzzy
variable. After being fuzzificated as in Fig. 9, five actions
are obtained: SHARP-LEFT , LEFT , FORWORD, RIGHT ,
SHARP-RIGHT .

B. Q-learning process

We use an off-policy TD(0) algorithm Q-learning. The
standard one-step Q-learning is defined by

Q(s,a) = Q(s,a)+α[r + γ max
a

Q(s′,a)−Q(s,a)] (6)

where the parameters are similar to those in (5). In the
learning process:

1) Let α be large at initial state of learning and change
to be smaller as the learning progress runs.

2) Let γ be small at initial state and make it increase
gradually.
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(a)

(b)

Fig. 9. Fuzzification of action space.

3) The probability of selecting a from s is determined
by the Boltzman distribution function:

Pr(a) =
exp(Q(s,a)

T )

∑n
b=1 exp(Q(s,b)

T )
(7)

where T is the temperature parameter [9].
4) r is the reinforcement signal, which is determined by

the following rules:

• If the blocker move across between the defense
and the polo, r is a positive value.

• If the defense is forced to turn away from the
polo, r is a positive value.

• If the defense holds the polo, r is a negative value.
• If the attacker pushes the polo into gate, r is a

positive value.

After the optimal state-action pairs are obtained, we can
figure out the relations of the continuous inputs and outputs.
The Mamdani’s minimum fuzzy implication rules [10] and
the defuzzification strategy of centroid of area(COA) are
used.

V. SITUATION-BASED ACTION SELECTION FOR

DEFENDER

For the defense player, we propose a situation-based
action selection which is a hand-coded and reactive strategy.
Firstly, in order to describe the situations for polo attacking,
we introduce the working regions. As shown in Fig. 10, l is
a line connecting the center of the polo to the goal. Let us
draw a circle at the center of the polo with a radius r and
then partition it into four vectors. That are four working
regions: Pushing Region, Left Assistant Pushing Region,
Right Assistant Pushing Region and Overshot Region. Other
regions out of the circle is called Buffer Region.

• the Pushing Region (PR): this is an effective working
region, since in this region the fish-like robot can push

Fig. 10. Illustration of the pushing region

the disk to the direction of the goal and so the pushing
action is effective.

• the Left Assistant Pushing Region (LAPR): this region
is a semi-effective working region. The fish in this
region can not directly push the disk to the desired
direction, but it can help a fish in PR prevent the disk
floating away.

• the Right Assistant Pushing Region (RAPR): similar
to LAPR, this is also a semi-effective working region

• the Overshot Region (OR): this region is a forbidden
working region. When the fish swims into this region,
it will be located between the disk and the goal. In this
region, the fish is forbidden to touch the disk because
it will push the disk to the opposite direction to the
destination. In this case, the fish should first swim
around the disk and enter a effective working region
and then selects suitable actions.

• the Buffer Region (BR): In this region, the fish is a
little bit far from the disk, in will try to swim to an
effective region (PR, LAPR or RAPR) first.

Based on the situations, we design the following primitive
actions for the microrobot:

Action 0: This action is designed for the fish to swim
from a non-pushing region to the effective working region.
Basically, this is a simple Point −To−Point(PT P) control.

Action 1: As depicted in Fig. 11, the first action for
the fish is to swim approaching the disk and hit the disk
exactly along the direction from the disk to the gate in PR.
where (xF ,yF ,α) denotes the pose of the fish, (xD,yD) and
(xC,yC) stand for the center of the disk and the position of
the gate, β is the expected direction from the disk to the
gate, l1 indicates the expected moving direction of the disk.
Considering the fish’s bodylength and its inertia, We choose
a point G (xG,yG)which is located at the extended line of
l1 as the pushing-point. l2 is the section connecting the fish
to G, and l3 represents the perpendicular of l1 which pass
through point G.

If the pushing-point G locates between the fish and the
disk, that is, (xD − xF)× (xC − xD) > 0, we first define the
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Fig. 11. The action of pushing disk along the exact direction pointing
the gate

perpendicular bisector l4 for section l2. Then using r as
radius, we make a circle C which is tangental to l1 at point
G. If the circle intersects l4 at one point, we chose this
point as a temporary goal for the fish, or if they have two
intersections, we choose the point with small x-coordinates,
namely T as the temporary goal. While, if the fish is far
away from the disk and there is no intersection between C
and l1, G will be the temporary goal point for the fish. As
the fish moves, a series of temporary goals will be obtained,
which will lead the fish swim gradually to the pushing-
point.

After simple geometrical analysis, the positions of inter-
section points can be calculated by the following equation:

(x− xD −ρ cosβ − r sinα)2 +(y− yD −ρ sinβ + r cosα)2 = r2

y− 1
2 (yG + yF ) = xF − xG

yG − yF
(x− 1

2 (xG + xF ))
(8)

Action 2: Although when determining the pushing-point,
we give sufficient consideration for the dynamics of the
fish and the difficulty when controlling it, we still can’t
guarantee the fish will reach its destination in the expected
attitudes, especially its orientation. Once it gets to the
pushing-point with large orientation error, it may possible
miss the disk. In this case, we design the following action
which allows the fish to push the disk by shaking head.

As shown in Fig. 12 (a), if the fish approaches the
pushing-point (in a small neighbor region) and its orien-
tation satisfies the following condition, it will take a sharp
turn to the direction of the disk.

{
(xF ,yF) ∈ {‖(xG,yG)− (xF ,yF)‖ ≤ δ}
α ∈ {|α −β | ≥ ζ} (9)

where δ and ζ are the bounds for position error and
orientation error, which are determined empirically through
experiments. In our experiment, we choose δ = 5cm and
ζ = π

15 .
Action 3: This action is an assistant action, which is

implemented in LAPR or RAPR. In particular, this action
takes full advantage of the agility of fish’s tail. Fig. 12 (b)
indicates the fish pat the disk by its tail.

(a) (b)

Fig. 12. The fish pushes disk by shaking(throwing) head and pushing the
disk by tail.

VI. EXPERIMENTAL RESULTS

We conduct some experiments to evaluate the proposed
cooperative strategy and learning approach. In all the con-
ducted experiments, the learning process consists of a series
of trials. For every trial, when the polo is pushed into the
gate or the time steps number reaches 3000, the trial ends.

In Fig. 13, some typical scenarios in the experiment are
presented.

Fig. 13. Typical scenarios in one experiment. A-Attacker, B-Blocker, D-
Defense.(a) The initial state of the experiment. (b) The Defense swim to
the gate and defend its goal. The Attacker and Blocker start to approach the
polo. (c) The Defense is just in front of the gate and watch. The Blocker
overshoots the polo. (d) The Blocker blocks the Defense successfully. (e)
The Blocker missed the Defense and got punishment . (f) The Attacker
pushes the polo into the gate and the Offensive Side win.

Fig. 14 shows the change of the reinforcement signal of
the Offensive Side in the experiment. The straight red line
in the figure is called a tendency line, which is on the rise.
It means during the learning process, the microrobot gets
more and more positive rewards.

Fig. 15 illustrates the average time steps per trial that the
Offensive Side take to push the polo into the gate. If the
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Fig. 14. the total rewards per trial versus the number of trials

Offensive Side can’t manage it in a trial, we set the time
steps as 3000. It is noted the tendency line descends, which
means the Offensive Side take less and less time steps to
win the game through learning.

Fig. 15. The time steps to win per trial versus the number of trials

From the analysis on the results, we find the performance
can hardly maintain stable at both the explorative stage and
the last stage of the learning process. This might be due
to the disturbance and uncertainties produced by the hydro-
dynamics of the environment.

VII. CONCLUSIONS

In this paper, we have presented a multiple underwa-
ter microrobot cooperative architecture and using fuzzy
reinforcement to acquire the cooperative strategy in an
adversarial task. Due to the complexity of the hydro-
environment, the cooperation between underwater robots is
more difficult than that in ground robots. So We adopt fuzzy
reinforcement learning approach to investigate this problem
and aim to develop a suitable learning method to the

cooperative control of underwater microtobots. Experiments
verified the effectiveness of the proposed algorithms.
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