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Abstract. Grand tour is a method for viewing multidimensional data
via linear projections onto a sequence of two dimensional subspaces and
then moving continuously from one projection to the next. This paper
extends the method to 3D grand tour where projections are made onto
three dimensional subspaces. 3D cluster-guided tour is proposed where
sequences of projections are determined by cluster centroids. Cluster-
guided tour makes inter-cluster distance-preserving projections under
which clusters are displayed as separate as possible. Various add-on fea-
tures, such as projecting variable vectors together with data points, inter-
active picking and drill down, and cluster similarity graphs, help further
the understanding of data. A CAVE virtual reality environment is at our
disposal for 3D immersive display. This approach of multidimensional
visualization provides a natural metaphor to visualize clustering results
and data at hand by mapping the data onto a time-indexed family of 3D
natural projections suitable for human eye’s exploration.

1 Introduction

Visualization techniques have proven to be of high value in exploratory data
analysis and data mining. For data with a few dimensions, scatterplot is an
excellent means for visualization. Patterns could be efficiently unveiled by simply
drawing each data point as a geometric object in the space determined by one,
two or three numeric variables of the data, while its size, shape, color and texture
determined by other variables of the data. The ability to draw scatterplots is a
common feature of many visualization systems. Conventional scatterplots lose
their effectiveness, however, as dimensionality of data becomes large.

An idea comes out, then, to project higher dimensional data orthogonally
onto lower dimensional subspaces. It allows us to look at multidimensional data
in a geometry that is within the perceptibility of human eyes. Since there is
an infinite number of possibilities to project high dimensional data onto lower
dimensions, and information will eventually lose after the projection, the grand
tour[1,3] and other projection pursuit techniques[10,12] aim at automatically
finding the interesting projections or at least helping the users to find them.

Grand tour is an extension of data rotation for multidimensional data sets.
It is based on selecting a sequence of linear projections and moving continu-
ously from one projection to the next. By displaying a number of intermediate
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projections obtained by interpolation, the entire process creates an illusion of
continuous, smooth motion through multidimensional displays. This helps to
find interesting projections which is hard to find in the original data, owing to
the curse of dimensionality. Furthermore, grand tour allows viewers to easily keep
track of a specific group of data points throughout a tour. By examining where
the data points go from one projection to the next, viewers have a much better
understanding about data than using conventional visualization techniques such
as bar charts or pie charts.

Now the question becomes how to choose “meaningful” projections and pro-
jection sequences to maximize the chance of finding interesting patterns. One
simple way is choosing the span of any three arbitrary variables as a 3D sub-
space and then moving from this span to the next span of another three variables.
This is what we call “simple projection”. Each projection in the sequence is a
3D scatterplot of three variables. It is more than the 3D scatterplots, however,
because more information could be unveiled by the animation moving from one
projection to the next. Another straightforward way is random tour. By choosing
randomly a 3D subspace and moving to the next randomly chosen 3D subspace,
random tour creates a way for global dynamic browsing of multidimensional
data. In the data preprocessing stage of a data mining project, simple projec-
tion and random tour are efficient ways to examine the distribution of values of
each variable, the correlations among variables, and to decide which variables
should be included in further analysis. Although real world databases have often
many variables, these variables are often highly correlated, and databases are
mercifully inherently low-dimensional. Simple projection and random tour are
useful to identify the appropriate subspaces in which further mining is meaning-
ful.

There are various ways of choosing interesting projections and projection
sequences in a tour. For clustered data sets, one promising way is to use positions
of data clusters to help choosing projections. Let us assume that a data set is
available as data points in the p-dimensional Euclidean space and has been
clustered into k clusters. Each cluster has a centroid which is simply an average
of all the data points contained in the cluster. As we know, any four distinct
and non-colinear points uniquely determine a 3D subspace. If we choose the
centroids of any four clusters and project all data points onto a 3D subspace
determined by these four cluster centroids, the Euclidean distance between any
two of the four cluster centroids will be preserved and the four clusters will be
displayed as separate as possible from each other. We call this a cluster-guided
projection. Observe that there are (k

4) possible cluster-guided projections. By
using the grand tour to move from one cluster-guided projection to another, a
viewer can have quickly a good sense of the positions of all data clusters.

There were both linear and nonlinear techniques[2] for dimension reduction
of high dimensional data. Rather than nonlinear techniques such as Sammon’s
projection[15] which aims at preserving all inter-cluster distances by minimiz-
ing a cost function, we found linear projections more intuitive for the purpose
of unveiling cluster structure and suitable for human eye’s exploration. Linear
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projections and scatterplots could be found in many visualization systems (for
example, the earlier Biplot[11]). The idea of using grand tour of lower dimen-
sional projections to simulate higher dimensional displays was first proposed
in [1]. Techniques were developed to design the path of a tour, for example, to
principal component and canonical variate subspace[13], or to hill-climbing paths
that follows gradients of projection pursuit indices[5,10]. An example visualiza-
tion system which implements 2D projections and grand tour is XGobi[16]. For
the visualization of data clusters, a 2D cluster-guided tour was proposed in [8].

To exploit human eyes’ 3D nature of visual perception, we developed a visu-
alization system for 3D projection and cluster-guided tour. A CAVE immersive
virtual environment[6,7] is at our disposal for 3D immersive display. With the
CAVE as a 3D “magic canvas”, scatterplots can be drawn in mid-air in the 3D
virtual space. This helps greatly data analysts visualize data and mining results.
It helps to show 3D distributions of data points, locate similarity or dissimilarity
between various clusters, and furthermore, determine which clusters to merge or
to split further. Compared with other systems mentioned above, the grand tour
in the CAVE virtual environment has characteristics such as: (1) 3D projection;
(2) immersive virtual reality display; (3) cluster-guided projection determined
by 4 data clusters; and (4) vary intuitive add-on tools for interaction and drill-
down. It represents a novel tool to visualize multidimensional data and is now
routinely employed for preprocessing data and analyzing mining results. It is
also used to visually communicate mining results to clients.

The paper is organized as follows: Section 2 is to introduce grand tour . Sec-
tion 3 discusses in detail the 3D cluster-guided projections and cluster-guided
tour. Section 4 is for projection rendering inside the CAVE virtual environ-
ment. Section 5 presents add-on features such as projecting variable vectors to-
gether with data points, interactive picking and drill down, and cluster similarity
graphs. Section 6 concludes the paper with future work and directions.

2 Grand Tour

For easy illustration, suppose we are to make a 2D tour in 3D Euclidean space
(Fig. 1). A 2D oriented projection plan, or a 2-frame (a 2-frame is an orthonormal
pair of vectors), can be identified by a unit index vector that is perpendicular
to the plan. The most straight way to move from one 2D projection to the next
is a sequence of interpolated projections to move the index vector to the next
index vector on the unit sphere along a geodesic path.

For 3D grand tour of p-dimensional (p > 3) data sets, in the same way, it
is necessary to have an explicitly computable sequence of interpolated 3-frames
in p-dimensional Euclidean space. The p-dimensional data is then projected, in
turn, onto the 3D subspace spanned by each 3-frame. For the shortest path
to move from one 3D projection to another, the sequence of the interpolated
3-frames should be as straight as possible. Here “straight” means: If we think
of the interpolated 3D subspaces as being evenly-spaced points on a curve in
the space of 3D subspaces through the origin in Euclidean p-space (a so-called
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A Geodesic Path
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The Origin

Fig. 1. Moving 2D projections along a geodesic path in 3D space.

“Grassmannian manifold”)(Fig. 2), we should be able to choose that curve so
that it is almost a geodesic.

Moving along a geodesic path creates a sequence of intermediate projections
moving smoothly from the current to the target projection. This is a way of
assuring that the sequence of projections is both comprehensible, and also that
it moves rapidly to the target projection. For 3D projections, a geodesic path
is simply a rotation in the (at most) 6-dimensional subspace containing both
the current and the target 3D spaces. This implies that some pre-projection is
necessary in implementation so that computing data projections is within the
joint span of the current and the next 3D subspaces, the dimension of which can
be substantially smaller than p. Various smoothness properties of such geodesic
paths are explored in great detail in [3]. For a description of implementation
details, see [13, Subsection 2.2.1].

3 3D Cluster-Guided Projection and Cluster-Guided
Tour

Let {Xi}n
i=1 denote a data set, that is, a set of n data points each taking values

in the p-dimensional Euclidean space Rp, p > 3. Let X ·Y denote the dot product
of two points X and Y . Write the Euclidean norm of X as ‖X‖ =

√
X ·X, and

the Euclidean distance between X and Y as d(X, Y ) = ‖X−Y ‖. Let us suppose
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Fig. 2. A path of intermediate plans that interpolates a sequence of projection
plans.

that we have partitioned the data set into k clusters, k ≥ 4, and let {Cj}k
j=1

denote the cluster centroids.
Any four distinct and non-colinear cluster centroids Ca, Cb, Cc and Cd in

{Cj}k
j=1 determine an unique 3D subspace in Rp. Let K1, K2 and K3 constitute

an orthonormal basis of the subspace (this could be obtained by orthonormal-
izing Cb − Ca, Cc − Ca, and Cd − Ca). We can then compute a 3D projec-
tion by projecting the data set {Xi}n

i=1 onto the 3-frame (K1, K2, K3). This
projection preserves the inter-cluster distances, that is, the Euclidean distance
between any two of the four cluster centroids {Ca, Cb, Cc, Cd} is preserved af-
ter the projection. Specifically, let X |p = (X · K1, X · K2, X · K3) denote the
3D projection of a p-dimensional point X , then d(X |p, Y |p) = d(X, Y ) for any
X, Y ∈ {Ca, Cb, Cc, Cd}. This inter-cluster-distance-preserving projection is a
right perspective of view that these four clusters are visualized as far as possible
(Fig. 4).

There are various ways to choose the path (sequence of projections) of tour.
One way is to simply choose a tripod from the variable unit vectors of p-
dimension as the axes of one 3D projection and move from this projection to
the next whose axes are another tripod. This is what we call “simple projec-
tion”(Fig. 3). It gives a way to continuously check a sequence of scatterplots of
data against any three variables. Another straightforward way is random tour
where each projection in the sequence is randomly generated. This gives a way
for global dynamic browsing of multidimensional data.

Cluster-guided tour is a way to get cluster centroids involved in choosing
projection sequences: Given k cluster centroids, there are at most (k

4) combi-
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Fig. 3. Simple projection: a 3D scatterplot.

nations of unique 3D cluster projections. Each projection allows us to visualize
the multidimensional data in relation to four cluster centroids. To visualize the
multidimensional data in relation to all cluster centroids, we display a sequence
of cluster-guided projections and use grand tour to move continuously from one
projection in the sequence to the next.

The basic idea behind cluster-guided tour is simple: Choose a target pro-
jection from (k

4) possible cluster-guided projections, move smoothly from the
current projection to the target projection, and continue. We illustrate the 3D
cluster-guided projection and guided-tour on the Boston housing data set from
UCI ML Repository[4]. This data set has n = 506 data points and p = 13
real-valued attributes. The data set is typical (not in size, but in spirit) of the
data sets routinely encountered in market segmentation. The 13 attributes mea-
sure various characteristics such as the crime rate, the proportion of old units,
property tax rate, pupil-teacher ratio in schools, etc., that affect housing prices.
We normalized all the 13 attributes to take values in the interval [0, 1]. To en-
able the cluster-guided tour, any clustering algorithm could be used to cluster
the data set. Here we clustered the data set into 6 clusters by the Kohonen’s
Self-Organizing Map[14]. The six result clusters have 114, 46, 29, 107, 78, and
132 data points respectively. There are (64) = 15 possible 3D cluster-guided pro-
jections. We plot one of them in Fig. 4. To underscore the 3D cluster-guided
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Fig. 4. A 3D cluster-guided projection determined by centroids (big balls with
labels) of Clusters 1, 2, 4, 5. The four clusters are visualized as separate as
possible. A p-pod of variable vectors is shown. Each ray of the p-pod represents
the projection of a variable axis whose length represents the maximum value of
the variable.

projections in locating interesting projections, compare Fig. 4 to Fig. 3 where
we display a scatterplot of one of the attributes “industrial — proportions of
non-retail business acres” against two of the other attributes “minority” and
“ages of units.” Unlike the scatterplot, the 3D cluster-guided projections reveal
significant information about the positions of the clusters.

4 Rendering inside the CAVE Virtual Environment

CAVE is a projection-based virtual reality environment which uses 3D computer
graphics and position tracking to immerse users inside a 3D space. The CAVE
in IHPC has a 10× 10× 10 feet room-like physical space. Stereographic images
are rear projected onto three side walls and front projected onto the floor. The
four projected images are driven by 2 InfiniteReality graphics pipelines inside
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an SGI Onyx2 computer. The illusion of 3D is created through the use of LCD
shutter glasses which are synchronized to the computer display through infrared
emitters alternating the left and the right eye viewpoints. The CAVE allows
multiple viewers to enter the CAVE and share the same virtual experience. But
only one viewer can have the position/orientation of his/her head and hand
captured.

With the CAVE as a 3D “magic canvas”, 3D projection of high dimensional
data is rendered as a galaxy in mid-air in the virtual space(Figure 5). The
projection can be reshaped, moved back and forth, and rotated by using a wand
(a 3D mouse). Each data point is painted as a sphere with its color representing
the cluster it belongs. Spheres can be resized, and the speed of motion can be
manually controlled anytime during a tour by adjusting an X-Y sensor attached
on the wand. For easy identification, cluster centroids are painted as big cubs and
labeled with cluster names. The variable vectors, which show the contribution
to the projection of each variable, are visualized as lines in white color from
the origin and marked by the names of variables at their far ends. There are
two different ways of interactive picking: brushing with a resizable sphere brush;
and cluster-picking by selecting a cluster’s centroid. The CAVE has plenty of
space for data rendering. At some future time, we may have multiple viewing
projections synchronized and displayed simultaneously.

5 Add-On Features

5.1 Where We Are in a Tour?

A dizzy feeling besets many first-time viewers of high-dimensional data projec-
tions and they may ask “How do I know what I am looking at”. In geometric
terms, the task is to locate the position of a projection 3-frame in p-space. A
visual way of conveying this information is to project the variable unit vectors
in p-space like regular data, and render the result together with data points.

Examples of the application are shown through the Figures 3–5. A generalized
tripod called “p-pod” is an enhanced rendition of the p variable unit vectors in
p-space. Variable vectors in the p-pod can be treated as if they were real data,
rendered as lines, and labeled by variable names in the far ends so that they
are recognized as guide posts rather than data. In the figures, we choose the
maximum value rather than the unit value of a variable as the length of its
variable vector. The p-pod looks like a star with p unequal rays in 3D space,
each indicating the contribution of a variable to the current projection.

5.2 Interactive Picking and Drill-Down

An advantage of grand tour is that an viewer can easily keep track of the move-
ment of a certain group of data points during the whole journey of a tour. A
cluster, or a set of data points, could be picked up by pointing to the cluster
centroid or using a brushing tool. Data points picked up so far can be related
back to the data, thus makes it possible for further analysis such as launching
another mining process for drill down.
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Fig. 5. This is a cluster-guided projection in the CAVE. The wireframe box
indicates a 3D room where data points are plotted in mid-air. The cluster-guided
projection is determined by centroids of Clusters 1, 2, 4, and 5.

5.3 Cluster Similarity Graphs

3D cluster-guided projection is continuous transformation of data. Two points
which are close in Rp will remain close after projection. However, two points
which are close in a 3D projection need not be close in Rp. There is a loss of
information in projecting high-dimensional data to low-dimensions. To some-
what mitigate this information loss, we use cluster similarity graphs[9] as an
enhancement to cluster-guided projection.

A cluster similarity graph can be defined as follows. Let vertices be a set of
cluster centroids {Cj}k

j=1, and add an edge between two vertices Ci and Cj if
d(Ci, Cj) ≤ t, where t is a user-controlled threshold. If t is very large, all cluster
centroids will be connected. If t is very small, no cluster centroids will be con-
nected. It is thus intuitively clear that changing the threshold value will reveal
distances among cluster centroids. The cluster similarity graph can be overlaid
onto the projections. For example, straight lines connecting the cluster centroids
in the Fig. 6 represent a cluster similarity graph at a certain threshold. It can
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Fig. 6. An similarity graph adds yet another information dimension to cluster-
guided projections.

be seen that the Clusters 0, 1, 3 are close to each other, among which Cluster
3 is close to Cluster 4 which is close to Cluster 2. Cluster 5 is a standalone
cluster from all others. The cluster similarity graph adds yet another informa-
tion dimension to cluster-guided projections, and hence, enhances the viewing
experience.

6 Conclusion and Future Work

This paper discussed the use of 3D projections and grand tour to visualize higher
dimensional data sets. This creates an illusion of smooth motion through a mul-
tidimensional space. The 3D cluster-guided tour is proposed to visualize data
clusters. Cluster-guided tour preserves distances between cluster centroids. This
allows us to fully capture the inter-cluster structure of complex multidimen-
sional data. The use of the CAVE immersive virtual environment maximizes
the chance of finding interesting patterns. Add-on features and interaction tools
invite viewer’s interaction with data.

The cluster-guided tour is a way to use data mining as a driver for visual-
ization: Clustering identifies homogenous sub-populations of data, and the sub-
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populations are used to help design the path of tour. This method can also be
applied to the results generated by other data mining techniques, for instance, to
identify the significant rules produced by tree classification and rule induction.
All these are possible ways to allow a user to better understand both results of
mining and data at hand.

One important thing about an algorithm is its scalability. Grand tour scales
well to large data sets. Its computational complexity is linear to the number of
variables. The number of variables matters only in calculating projections, i.e.
dot products, which has a linear complexity to the dimensionality of arguments.
There are two major steps in grand tour, calculating a tour path and making
projections. Calculating a tour path is nothing with the total number of data
points. Making projections has a computational complexity linear to the number
of data points. This is in the sense that all data points have to be projected one
by one. For large data sets, this complexity can be greatly reduced by making
density map instead of drawing points.

The following directions is being explored or will be explored in the future:

– Working with categorical variables. In relational databases it is quite com-
mon for many of the variables to be categorical rather than numerical. A
categorical variable can be mapped onto a linear scatterplot axis in the same
way as a numeric variable, provided that some order of distinct values of that
variable is given along the categorical axis. Categorical values may be ex-
plicitly listed. The order of the values being listed will be the order these
values be arranged on the axis. Categorical values could be grouped together,
reflecting the natural taxonomy of values. Categorical values could also be
sorted alphabetically, numerically by weight, or numerically by aggregate
value of some other variable. We are working on having categorical variables
involved in a tour, and some results may come up soon.

– 3D density projection and volume rendering. Scatterplot loses its effective-
ness as the number of points becomes very large. It has also a drawback that
identical data records may coincide with each other. For a tradeoff between
computational complexity, comprehensibility and accuracy, we plan to use
dynamic projections of high dimensional density map as a model to visualize
data sets which contain large number of data points. 3D density projection
is important to study, especially when clusters are not balanced in size and
when clusters overlap with each other. Research is now on finding solutions
of problems such as: how to store the sparse, voxelized high dimensional data
more efficiently; and how to fast render a volume of high dimensional voxels
onto the projected 3-dimensional space.

– Parallel implementation for better performance. A parallel implementation
is necessary for the rendering of very large data sets. Since data points are
independently projected, it should be quite straightforward to parallelize
the code, for instance, by using multithreads on a shared memory machine.
Since our CAVE’s backend computer, the SGI Onyx2, is quite busy with
CAVE display, leaving few resources for projection calculation, a client-server
implementation is also necessary. This will be done through a high speed
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network connection to a more powerful SGI Origin2000. All projection data
will be calculated on the server and sent in real time to the CAVE. One
interesting issue here is how to transfer only the necessary projected data to
the CAVE in order that the transferred data can be directly rendered.
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