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ON THE LAPLACIAN SPECTRA OF PRODUCT

GRAPHS

S. Barik, R. B. Bapat, S. Pati

Graph products and their structural properties have been studied extensively
by many researchers. We investigate the Laplacian eigenvalues and eigenvec-
tors of the product graphs for the four standard products, namely, the Carte-
sian product, the direct product, the strong product and the lexicographic
product. A complete characterization of Laplacian spectrum of the Cartesian
product of two graphs has been done by Merris. We give an explicit com-
plete characterization of the Laplacian spectrum of the lexicographic product
of two graphs using the Laplacian spectra of the factors. For the other two
products, we describe the complete spectrum of the product graphs in some
particular cases. We supply some new results relating to the algebraic con-
nectivity of the product graphs. We describe the characteristic sets for the
Cartesian product and for the lexicographic product of two graphs. As an
application we construct new classes of Laplacian integral graphs.

1. INTRODUCTION

We consider simple graphs with a finite vertex set. If u and v are two adjacent
vertices in a graph G, we use uv or [u, v] to denote the edge. We write u ∼ v to
mean that u and v are adjacent; see Godsil and Royle [14]. For a graph G we use
V (G) and E(G) to denote its vertex set and its edge set, respectively. Given a graph
G on n vertices, its Laplacian matrix is the n × n matrix L(G) = D(G) − A(G),
where A(G) is the (0, 1) adjacency matrix of G and D(G) is the diagonal matrix of
vertex degrees of G. It is known that L(G) is a positive semidefinite matrix and the
smallest eigenvalue of L(G) is 0 with a corresponding eigenvector 11, the vector of all
ones. By S(G), we denote the Laplacian spectrum of G. For a graph G of order n,

we write S(G) = (λ1, . . . , λn) with the understanding that λ1 ≤ · · · ≤ λn. Fiedler
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[11] observed that, for a graph G the value λ2 > 0 if and only if G is connected.
This eigenvalue provides a measure of the connectivity of the graph and is known
as the algebraic connectivity of G. We denote it by a(G). The study of algebraic
connectivity has attracted a lot of researchers recently. For an overall background,
we refer the reader to [2, 7, 26, 27]. An eigenvector Y of L(G) corresponding to
a(G) is known as a Fiedler vector. By Y (v), we denote the coordinate of the vector
Y corresponding to the vertex v. A graph G is called regular if every vertex of G

has equal degree. A bipartite graph is called semiregular if each vertex in the same
part of a bipartition has the same degree.

Let F and H be two graphs with disjoint vertex sets {u1, . . . , um} and
{v1, . . . , vn}, respectively. A graph product G of F and H is a new graph, whose
vertex set is V (G) = V (F ) × V (H), the Cartesian product of V (F ) and V (H).
The adjacency of two distinct vertices (ui, vj) and (ur, vs) in V (G) is determined
entirely by the adjacency/equality/non adjacency of ui and ur in F and that of vj

and vs in H. That is, we may define the vertices (ui, vj) ∼ (ur, vs) if a subset of
the following alternate 8 conditions are satisfied.

1. ui ∼ ur and vj = vs,

2. ui 6∼ ur and vj = vs,

3. ui ∼ ur and vj ∼ vs,

4. ui 6∼ ur and vj ∼ vs,

5. ui ∼ ur and vj 6∼ vs,

6. ui 6∼ ur and vj 6∼ vs,

7. ui = ur and vj ∼ vs, and
8. ui = ur and vj 6∼ vs.

For example, one could define a product if either condition 1 or condition 2 or
condition 5 is satisfied. Thus, one can define 256 different types of graph products.
The graphs obtained by taking the products of two graphs are called the product
graphs, and the two graphs are called the factors.

Out of these, four graph products namely, the Cartesian product (condition 1
or condition 7), the direct product (condition 3), the strong product (condition 1 or
condition 3 or condition 7) and the lexicographic product (condition 1 or condition
3 or condition 5 or condition 7) are known as the standard graph products and have
been studied by many researchers. We refer the reader to the book by Imrich and
Klavžar [19] for a study of graph products and their structural properties. Note
that, these four graph products are associative and they have a common property
that ‘if we take the product of two simple graphs, then we will produce a simple
graph’. Also, except for the lexicographic product, the other three products are
commutative in the sense of isomorphism.

Like the graph operations such as union, join, corona etc., the graph products
are also used in constructing many important classes of graphs. Any graph invari-
ant can be studied on graph products. A standard problem is that of describing
some properties of a graph invariant of a product graph knowing the correspond-
ing invariants of the factors. Investigation of the adjacency spectra and Laplacian
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spectra of product graphs is also an interesting topic for researchers. Results de-
scribing the adjacency matrix and its spectra (also called the ordinary spectra) of
the product graphs can be found in Brouwer and Haemers [7] and Cvetković,
Doob and Sachs [10]. In [20], Kaveh and Alinejad have provided a general
expression for Laplacian matrix of product graphs using the Laplacian matrices
of the factors. They have characterized the Laplacian eigenvalues of the product
graphs in some particular cases and have noted that the product graphs find their
applications in structural mechanics, configuration processing, parallel computing.

Let us denote the cardinality of a set S by |S|. We remind our readers that,
as L(G) is positive semidefinite, its eigenvalues are nonnegative and we have a set
of real orthogonal eigenvectors. It now follows that a Fiedler vector has at least
one positive entry and at least one negative entry. Following Bapat and Pati [4],
let us call a vertex v a characteristic vertex if Y (v) = 0 and there is a vertex w ∼ v

such that Y (w) 6= 0. Let us call an edge [u, v] a characteristic edge if Y (u)Y (v) < 0.

By C(G, Y ) let us denote the set of characteristic elements of G with respect to Y.

In [4, Corollary 13], the authors showed that for a connected graph and a Fiedler
vector Y, we have 1 ≤ |C(G, Y )| ≤ |E(G)| − |V (G)|+ 2. In particular for a tree, the
cardinality of a characteristic set is 1. Fiedler [12, Item 2.5] showed that if T is
a tree and Y is a Fiedler vector with no zero entry, then a(T ) is simple. Merris

[25] proved that if C(T, Y ) is just a vertex then it remains the same vertex for any
other Fielder vector. The characteristic set has been able to gain some attention;
see, for example, [3, 15, 16, 23]. The algebraic connectivity and Fiedler vectors
find their applications in graph clustering.

Let G be a connected graph and W be a subset of vertices of G. Follow-
ing [5], we define a branch at W to be a component of G \ W. A branch at W is
called a Perron branch if the smallest eigenvalue of the principal submatrix of L(G),
corresponding to the branch, is less than or equal to a(G). If T is a tree with a
characteristic vertex v it is called Type I (recall that for a tree it is the same vertex
for any Fiedler vector). It is known that if T is a Type I tree with characteristic
vertex v, then there are at least two Perron branches at v; see Kirkland, Neu-

mann and Shader [23, Theorem 2]. It is known that there are infinitely many
Type I trees with nonisomorphic Perron branches; see Grone and Merris [17],
Kirkland [21] and [6, Corollary 3.6].

A graph is called a Laplacian integral graph if the Laplacian spectrum consists
of integers. The study of Laplacian integral graphs has attracted many researchers;
see Kirkland et al. [22] and the references therein. Using graph products, one
can construct new classes of Laplacian integral graphs.

In this article, our aim is to study the Laplacian spectrum, algebraic con-
nectivity and the characteristic set of the product graphs under the four standard
graph products.

Results describing the Laplacian eigenvalues and eigenvectors of the Carte-
sian product of graphs have already been derived; see Merris [26]. We supply a
new result relating the characteristic sets; see Theorem 5. As an application we
construct an infinite class of graphs with nonisomorphic Perron branches, whose
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characteristic set consists of vertices only. A result similar to that of Fiedler’s
monotonicity theorem is also supplied. These are done in Section 2.

Results describing the adjacency spectra of the direct (Kronecker) product
graph from those of the factors are available in the literature, when the factors
are regular graphs; see Cvetković [10, Section 2.5]. As the direct product of
regular graphs is regular, one can easily compute the Laplacian spectrum of the
direct product, in this case. First we supply a minor result which gives partial
information of the Laplacian spectrum of the direct product when only one of the
factors is known to be regular. Using that we give some conditions under which
the direct product of two Laplacian integral graphs is Laplacian integral. We then
provide a sharp upper bound for the algebraic connectivity of the direct product
of two graphs and provide a class on which the bound is attained. These are done
in Section 3.

For the strong product of two regular graphs, the Laplacian eigenvalues and
eigenvectors can be described from those of the factors easily using the correspond-
ing results of the Cartesian and the direct product. Observing that it is not possible
to describe the complete Laplacian spectrum of the strong product of graphs in gen-
eral, we mention a small observation giving partial information of the Laplacian
spectrum of the strong product when only one of the factors is known to be reg-
ular. Using that we give some conditions under which the strong product of two
Laplacian integral graphs is Laplacian integral. These are done in Section 4.

The Laplacian eigenvalues and eigenvectors of the lexicographic product of
graphs have been described in general, though not explicitly. In [24], Neumann and
Pati have characterized the Laplacian spectra of graphs G[T, G1, . . . , Gn], where
T is a tree of order n and G1, . . .Gn are any graphs; see Lemmas 1 and 3. In [8]
Cardoso, Freitas, Martins and Robbiano proved a similar characterization for
the graphs G[G, G1, . . . , Gn], where G was any graph of order n, however they have
used the notation G[G1, . . . , Gn]. Note that the graph operation G[G1, . . . , Gn]
was introduced by Schwenk in [28] viewing it as a generalization of the join
operation. Observe that, if we take G1 = G2 = · · · = Gn = H, then G[G1, . . . , Gn]
is nothing but the lexicographic product G[H ]. Interestingly, both the results in [8,
24] make use of the normalized version of the vertex weighted Laplacians introduced
by Chung and Langlands in [9], which is actually a perturbed Laplacian as
remarked in [24]. We have supplied a description of the Laplacian eigenvalues of
G[H ] explicitly in terms of the Laplacian eigenvalues of G and H. We also have
described the characteristic set of the lexicographic product of two graphs; see
Theorem 32. These are done in Section 5.

Recall that the Kronecker product A ⊗ B of two matrices A = [aij ] and B is
the partitioned matrix [aijB] and that (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). Let us
use Kn, Pn and Cn, to denote the complete graph, the path, and the cycle, on n

vertices, respectively. By ei we denote the vector with ith entry equal to 1 and all
other entries 0. By Jn we denote the matrix of all ones of size n. By In we denote
the identity matrix of size n.
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2. GRAPH CARTESIAN PRODUCT

The Cartesian product F�H of two graphs F and H is a graph with vertex
set V (F ) × V (H) where the adjacency of vertices is determined by the following
rule: (ui, vj) and (ur, vs) are adjacent if either

(

ui = ur and vj ∼ vs

)

or
(

ui ∼ ur

and vj = vs

)

. One may also view F�H as the graph obtained from F by replacing
each of its vertices with a copy of H and each of its edges with |V (H)| edges joining
corresponding vertices of H in the two copies. It is known that the graph F�H is
isomorphic to the graph H�F ; see [19].

Example 1. Let F = P2 and H =
C3. The graph F�H, obtained by
taking Cartesian product of F and
H, is shown in Figure 1.

Remark 2. If |V (F )| = m,

|V (H)| = n, then |V (F�H)| =
mn and |E(F�H)| = m|E(H)| +
n|E(F )|.

The graph Cartesian
product has been widely in-
vestigated and is arguably the
most interesting one among
all products; see Mohar [27].

Figure 1. Cartesian product

For example, by taking the n-fold Cartesian product of K2 one can get the n-cube
Qn on 2n vertices. It is known that F�H is connected if and only if the both the
graphs F and H are connected; see [19].

Let F and H be graphs on m and n vertices. Fiedler [11, Item 3.4] has
observed that

(1) L(F�H) = L(F ) ⊗ In + Im ⊗ L(H).

The next result is essentially contained in [11, Item 3.4]; see also Merris [26].

Theorem 3 (Fiedler [11]; Merris [26]). Let F and H be graphs with S(F ) =
(λ1, . . . , λm) and S(H) = (µ1, . . . , µn). Then the eigenvalues of L(F�H) are

λi + µj , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Moreover, if Xi is an eigenvector of L(F ) affording λi and Yj is an eigenvector of
L(H) affording µj , then Xi ⊗ Yj is an eigenvector of L(F�H) affording λi + µj .

In particular, a(F�H) = min(a(F ), a(H)). Furthermore, a(F�H) is simple if and
only if either a(F ) < a(H) with a(F ) simple or a(H) < a(F ) with a(H) simple.

The following is a direct application of Theorem 3. It describes a construction
of new Laplacian integral graphs from the known ones.

Corollary 4. Let F and H be two graphs on disjoint vertex sets. Then F�H is
Laplacian integral if and only if both F and H are Laplacian integral.
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The next result which describes the characteristic set of the Cartesian product
may be seen as continuation of Theorem 3. It is our main result of the section. It
will be followed by many applications. If X is a Fiedler vector of a graph F, then
by C̃(F, X) denote the graph whose vertex set is the set of all vertices involved in
C(F, X) (including the endvertices of the characteristic edges) and whose edge set is
the set of all characteristic edges in C(F, X). Let us refer to this as the characteristic
graph of F with respect to X.

Theorem 5. Let F and H be connected graphs on vertices {u1, u2, . . . , um} and
{v1, v2, . . . , vn}, respectively. Let F ∗ and H∗ be the empty graphs on V (F ) and
V (H), respectively. Let X and Y be Fiedler vectors of F and H, respectively. If
X ⊗ 11 is a Fiedler vector of F�H (this happens when a(F ) ≤ a(H)), then

C̃(F�H, X ⊗ 11) = C̃(F, X)�H∗

and if 11 ⊗ Y is a Fiedler vector of F�H (this happens when a(F ) ≥ a(H)), then

C̃(F�H, 11 ⊗ Y ) = F ∗
�C̃(H, Y ).

Proof. Assume that X ⊗11 is a Fiedler vector of F�H. Observe that ui ∈ C̃(F, X)
is a characteristic vertex if and only if (ui, vj) ∈ C̃(F�H, X⊗11), j = 1, 2, . . . , n, are

characteristic vertices. Similarly, ui ∈ C̃(F, X) is an endvertex of a characteristic
edge if and only if (ui, vj) ∈ C̃(F�H, X ⊗ 11), j = 1, 2, . . . , n, are endvertices of
characteristic edges.

Note also that ui ∼ uk in F if and only if (ui, vj) ∼ (uk, vj) in F�H, for each

vj ∈ H. Hence the edge [ui, uk] ∈ C̃(F, X) if and only if the edge [(ui, vj), (uk, vj)] ∈
C̃(F�H, X ⊗ 11), j = 1, 2, . . . , n. It follows that C̃

(

F�H, X ⊗ 11
)

= C̃(F, X)�H∗.

The other equality is proved similarly. �

We now give an illustration of Theorem 5.

Example 6. Take the path P3 with vertex set {u1, u2, u3} and the cycle C6 with vertex
set {v1, v2, v3, v4, v5, v6}. Note that X = [−1, 0, 1]T is a Fiedler vector of P3 and Y =
[1, 2, 1,−1,−2,−1]T is a Fiedler vector of C6. As a(P3) = a(C6) = 1, we see by Theorem
3, that X ⊗ 11 and 11⊗ Y are Fiedler vectors of P3�C6. Notice that C̃(P3, X) is the graph
with vertex set {u2} and no edges. Observe that

X⊗11 =
[

−1 −1 −1 −1 −1 −1 0 0 0 0 0 0 1 1 1 1 1 1
]T

,

so that the characteristic graph C̃(P3�C6, X⊗11) is the graph with vertices {(u2, vi) : i =
1, . . . , 6} and no edges. It can be seen (in Figure 2) that C̃(P3�C6, X⊗11) = C̃(P3, X)�C∗

6 .

Similarly, the characteristic graph C̃(P3�C6, Y ) is

(

{u1, u2, u3}, ∅
)

�

(

{v3, v4, v6, v1},
{

[v3, v4], [v1, v6]
}

)

=
(

{u1, u2, u3} × {v3, v4, v6, v1},
{

[(ui, v3), (ui, v4)], [(ui, v1), (ui, v6)] : i = 1, 2, 3
}

)

.
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Figure 2. Characteristic graphs of P3�C6 with respect to X ⊗ 11 and 11 × Y

As an immediate application of Theorem 3, we see that the ladder of length
at least 2 has a simple algebraic connectivity. Applying Theorem 5 we give a
description of the Fiedler vector and the characteristic set of a ladder of length
k (k ≥ 2).

Proposition 7. Let G = Pk+1�P2, be a ladder of length k (k ≥ 2) and vertex set
{1, 2, . . . , 2k + 2}; see Figure 3. Then a(G) is simple. Let X be a Fiedler vector of
Pk+1. Then X ⊗ 11 is a Fiedler vector of G. If k is even, then the characteristic
set of G consists of two zero vertices k + 1 and k + 2 only. If k is odd, then the
characteristic set of G consists of exactly two edges, [k, k + 2] and [k + 1, k + 3].

Proof. Since a(Pk+1) < a(P2) for k ≥ 2,

using Theorem 3, we see that a(G) =
a(Pk+1) and it is simple. By Theorem 5,
X⊗11 is a Fiedler vector of G and its char-
acteristic set is C̃(Pk+1, X)�P ∗

2 . The rest
follows routinely. �

Consider the grid G = P7�P3. We
know that a(G) is simple. Note that,

Figure 3. Pk+1�P2, the ladder

of length k

X = [−.3009,−.2413,−.1339, 0, .1339, .2413, .3009]T

is a Fiedler vector of P7. Hence, the vector X ⊗ 11 is a Fiedler vector of G. See
Figure 4, where values near each vertex are the values of the Fiedler vector. The
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vertices with valuations 0 are the characteristic vertices. Think of traversing along
the path [v0, v1, v2, v3]. Notice that the entries of the Fiedler vector increase along
this path.

Figure 4. Monotonicity of Fiedler vector

In general, a Fiedler vector of T�H may not have such a property, where T is
a tree and H is any graph. The following result gives us a sufficient condition for the
Fiedler vector of T�H to have the monotonicity property. We require a notation.
Let G be a graph and S be a subset of vertices and edges of G. Let V (S) be the
set of vertices involved in S (including the endvertices of edges). Let u ∈ V (G).
Then by the distance dist(u, S) of u from S we mean minv∈V (S) dist(u, v), where
dist(u, v) means the usual distance between u and v.

Proposition 8. Let T be a tree with a(T ) simple and H be a graph such that
a(T ) < a(H). Let Z be a Fiedler vector of G = T�H. Let P = [v0, v1, . . . , vk]
be a path such that dist(C(G, Z), vi+1) > dist(C(G, Z), vi), i = 0, 1, . . . , k − 1 with
dist(C(G, Z), v0) = 0. (In other words, P starts from the characteristic set and
goes strictly away from the characteristic set.) Then the entries of Z monotonically
increase (decrease, or are identically zero) along P if Z(v0) is positive (negative,
or zero).

Proof. Let V (T ) = {u1, . . . , um} and V (H) = {x1, . . . , xn}. Let X be a Fiedler
vector of T. Recall that |C(T, X)| = 1 and C(T, X) is either an edge or a singleton
vertex. Assume first that C(T, X) = [u1, u2] and X(u1) > 0. By Theorem 3, we
may assume that the Fiedler vector Z = X ⊗ 11. By Theorem 5,

C(G, Z) is the set of edges
{

[(u1, xi), (u2, xi)] : i = 1, . . . , n
}

.

Assume, v0 = (u1, x1). As dist(C(G, Z), vi+1) > dist(C(G, Z), vi), it follows
that vi = (uri

, x1), where P ′ = [u1, ur1
, ur2

, . . . , urk
] is a path in T which starts

at u1 and does not pass through u2. By Fiedler’s monotonicity theorem [13, Item
(3.14)], the entries of Y increase along P ′. As Z(v0) = X(u1) and Z(vi) = X(uri

),
for i = 1, . . . , k. The proof is complete in this case. The proof is similar in the case
when C(T, X) is a single vertex. �

As another application of our observations, we construct an infinite class of
graphs with nonisomorphic Perron branches, whose characteristic set consists of
vertices only.
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Proposition 9. Let T be a Type I tree with a characteristic vertex v with two
nonisomorphic Perron branches at v. Let H be any graph such that a(T ) < a(H).
Let G1 = T�H and Gk = Gk−1�H for k = 2, 3, . . . . Then the class consisting of
Gk, k = 1, 2, . . . is an infinite class of graphs with nonisomorphic Perron branches,
whose characteristic set consists of vertices only.

Proof. Let X be a Fiedler vector of T and C(T, X) = {v}. Since a(T ) < a(H),
using Theorem 3, a(G1) = a(T ) and X1 = X ⊗ 11 is a Fiedler vector of G1. By
Theorem 5, C(G1, X1) = {v}�H∗ = {v} × V (H) consists of the vertices (v, wi),
where wi ∈ H.

It will help to imagine the tree T (on the plane) first, and then put a (vertical)
copy of H at each vertex of T, and then put edges between two adjacent copies
of H, that is, a vertex h ∈ H at u goes to the same vertex at w when [u, w] ∈ T.

If we delete the whole copy at the vertex v from G1, we will have a disconnected
graph. In fact, if B is any branch of T at v, then B1 = B�H is a branch of
G1 at the characteristic set C(G1, X1) = {v} × V (H). Thus if P1 and P2 are two
nonisomorphic branches at {v}, then P1�H and P2�H are two nonisomorphic
branches at C(G1, X1). The fact that these two branches Pi�H, i = 1, 2, are Perron
branches, follows from the fact that the valuation given to a vertex (u, w) ∈ P1�H

by the Fiedler vector X1 = X ⊗ 11 is precisely the valuation given to u ∈ P1 by X,

that is, X1((u, w)) = X(u). Hence, if P1 was a branch with its vertices negatively
valuated by X, then P1�H is a branch at C(G1, X1) = {v}×V (H) with its vertices
negatively valuated by X1.

Put Gi+1 = Gi�H, i = 1, 2, . . . . Repeating our arguments, we see that Gi+1

has a Fiedler vector Xi+1 for which C(Gi+1, Xi+1) consists of vertices only and
there are two nonisomorphic Perron branches at C(Gi+1, Xi+1).

3. GRAPH DIRECT PRODUCT

Other names for direct product are categorical product, Kronecker product,
tensor product. Recall that the adjacency in the direct product F ×H of the graphs
F and H is determined by the following rule: (ui, vj) ∼ (ur, vs) in F ×H if ui ∼ ur

and vj ∼ vs. Note that, if ui ∼ ur in F and vj ∼ vs in H, then (ui, vj) ∼ (ur, vs)
and (ui, vs) ∼ (ur, vj) in F × H. Thus |E(F × H)| = 2|E(F )||E(H)|.

The following description of L(F × H) in terms of L(F ) and L(H) can be
found in Kaveh and Alinejad in [20].

Proposition 10. Let F and H be two graphs on m and n vertices, respectively.
Then

L(F × H) = D(F ) ⊗ L(H) + L(F ) ⊗ D(H) − L(F ) ⊗ L(H),

where D(G) is the diagonal degree matrix of a graph G.

Recall that the Cartesian product of two connected graphs is always a con-
nected graph. But this is not true for the direct product, as one can see in P2×P4.

Let F and H be two connected graphs. A necessary and sufficient condition for
F × H to be connected is known.
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Theorem 11 (Imrich and Klavžar [19]). Let F and H be graphs with at least
one edge. Then F ×H is connected if and only if both F and H are connected and
at least one of them is non-bipartite. Furthermore, if both F and H are connected
and bipartite, then F × H has exactly two connected components.

In terms of algebraic connectivity, it now follows that for graphs F and H

with a(F ) > 0 and a(H) > 0, we may have a(F ×H) = 0. This happens if and only
if both F and H are bipartite. Hence we cannot, in general, predict the Laplacian

eigenvalues of F ×H, only from the Lapla-
cian eigenvalues of F and H. Indeed, given
a(F ) > 0 and a(H) > 0, we require another
additional information ‘whether one of F

and H is non-bipartite’ in order to predict
that a(F × H) > 0. Bipartiteness cannot
be predicted from the Laplacian spectrum
as there are Laplacian cospectral graphs F

and H (see Figure 5) in which only one is
bipartite. These are taken from van Dam

and Haemers [29]. We shall need them
later.

Figure 5. Nonisomorphic

Laplacian cospectral graphs F

and H

In the case both F and H are regular, the graph F × H is regular and it is
known (see for example Cvetković [10, Section 2.5]) that if λi, i = 1, . . . , m and
µj , j = 1, . . . , n are ordinary (adjacency) eigenvalues of F and H, respectively, then
λiµj , i = 1, . . . , m and µj , j = 1, . . . , n are the adjacency eigenvalues of F × H.

Hence, when F and H are regular, the spectrum of L(F×H) can easily be computed
from the spectrum of L(F ) and L(H).

Theorem 12. Let F and H be connected regular graphs on m and n vertices and
of regularities r and s, respectively. Suppose that S(F ) = (λ1, λ2, . . . , λm) and
S(H) = (µ1, µ2, . . . , µn). Then

rµj + λis − λiµj ∈ S(F × H)

each for i = 1, . . . , m and j = 1, . . . , n. Indeed, if Xi is an eigenvector of L(F )
corresponding to λi and Yj is an eigenvector of L(H) corresponding to µj , then
Xi ⊗ Yj is an eigenvector of L(F × H) corresponding to rµj + λis − λiµj .

In the case when one of the two graphs F and H is regular one can describe
S(F × H) partially using that of F and H.

Proposition 13. Let F be a regular graph on m vertices with regularity r and H

be any graph on n vertices. Suppose that S(H) = (µ1, . . . , µn). Then

rµj ∈ S(F × H)

for each j = 1, 2, . . . , n.
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Proof. Let Yj be an eigenvector of L(H) for the eigenvalue µj . By Proposition 10,
we have

L(F × H) = D(F ) ⊗ L(H) + L(F ) ⊗ D(H) − L(F ) ⊗ L(H)

= rIm ⊗ L(H) + L(F ) ⊗ D(H) − L(F ) ⊗ L(H).

Thus rµj is an eigenvalue of L(F × H) afforded by the eigenvector 11 ⊗ Yj for
j = 1, . . . , n. �

The following is an immediate corollary.

Corollary 14. Let F be a regular graph and H be any graph. If F ×H is Laplacian
integral, then H is Laplacian integral.

Proof. Suppose that F is with regularity r and S(H) = (µ1, . . . , µn). It follows
from Proposition 13 that rµj ∈ S(F × H) for each j = 1, 2, . . . , n. Since F × H is
Laplacian integral, we have rµj is an integer for each j = 1, 2, . . . , n. Hence µj are
rational numbers and hence they are integers. �

In general, the direct product of two Laplacian integral graphs is not neces-
sarily Laplacian integral. For example, S(K3) = (0, 3, 3) and S(P3) = (0, 1, 3) but
S(K3 × P3) = (0, 1.2679, 1.2679, 2, 2, 2, 4.7321, 4.7321, 6). In fact Kn × P3, n ≥ 3,

is not Laplacian integral though Kn and P3 are Laplacian integral graphs. This
follows from the next proposition.

Proposition 15. Let n ≥ 3. Then

(i) 0 ∈ S(Kn × P3) with multiplicity 1,

(ii) 3n− 3 ∈ S(Kn × P3) with multiplicity 1,

(iii)
3n − 3 +

√
n2 − 2n + 9

2
∈ S(Kn × P3) with multiplicity n − 1,

(iv)
3n − 3 −

√
n2 − 2n + 9

2
∈ S(Kn × P3) with multiplicity n − 1, and

(v) n − 1 ∈ S(Kn × P3) with multiplicity n.

In particular, Kn × P3 is not Laplacian integral.

Proof. Let G = Kn×P3, n ≥ 3. Note that S(Kn) = (0, n, . . . , n), S(P3) = (0, 1, 3)
and G is of regularity n− 1. Thus, applying Proposition 13, 0, n− 1 and 3n− 3 ∈
S(G). Let L̂1 be the diagonal matrix diag(n− 1, 2n− 2, n− 1). By Proposition 10,
we have

L(G) =













L̂1 L̂2 · · · L̂2

L̂2 L̂1
. . .

...
...

. . .
. . . L̂2

L̂2 · · · L̂2 L̂1













, where L̂2 =





0 −1 0
−1 0 −1

0 −1 0



.
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Observe that if λ is an eigenvalue of L̂1 − L̂2 afforded by the eigenvector X, then















X

−X

0
...
0















,















X

0
−X

...
0















, · · · ,















X

0
0
...

−X















are n − 1 linearly independent eigenvectors corresponding to the eigenvalue λ of

L(G). Furthermore, each of these eigenvectors is orthogonal to 11 ⊗
[

1 0 −1
]T

,

an eigenvector of L(G) corresponding to the eigenvalue n − 1.

It can be verified that the eigenvalues of L̂1 − L̂2 are
3n − 3 ±

√
n2 − 2n + 9

2
and n − 1, and that

√
n2 − 2n + 9 is not an integer for n ≥ 3. �

It is natural to wonder whether we can have classes of graphs on which Lapla-
cian integrality of F and H is equivalent to Laplacian integrality of F × H. The
following result supplies such a class.

Corollary 16. Let F and H be two regular graphs of regularity r and s, respectively.
Then F×H is Laplacian integral if and only if both F and H are Laplacian integral.

Proof. Follows easily from Theorem 12 and Corollary 14. �

Another interesting problem is the following. Suppose that the graphs F and
H are Laplacian integral. Can we give a necessary and sufficient condition on F

and H so that F ×H is Laplacian integral? By Corollary 16, the condition ‘F and
H are regular’ is clearly sufficient. However, it is not necessary. Indeed, P3 × P3

being the disjoint union of the cycle C4 and the star K1,4 has Laplacian eigenvalues
S(P3 × P3) = (0, 0, 1, 1, 1, 2, 2, 4, 5).

Given a graph G, let ∆(G) denote the maximum degree of vertices in G and
ρ(L(G)) denote the spectral radius of L(G). Next we provide an upper bound for
the algebraic connectivity of the direct product. This is our main result of the
section.

Theorem 17. Let F and H be two graphs and G = F × H. Then

(2) a(G) ≤ ∆(F )∆(H) −
(

∆(F ) − ρ(L(F ))
)(

∆(H) − ρ(L(H))
)

.

The bound is sharp.

Proof. By Proposition 10, we know that L(G) = D(F )⊗L(H) + L(F )⊗D(H)−
L(F )⊗ L(H). Let X and Y be unit eigenvectors of L(F ) and L(H) corresponding
to the eigenvalues a(F ) and a(H), respectively. Let Z = X ⊗ Y. Note that Z ⊥ 11.

Thus

a(G) ≤ ZT L(G)Z

= ZT (D(F ) ⊗ L(H))Z + ZT (L(F ) ⊗ D(H))Z − ZT (L(F ) ⊗ L(H))Z
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≤ ∆(F )ρ(L(H)) + ρ(L(F ))∆(H) − ρ(L(F ))ρ(L(H))

= ∆(F )∆(H) − (∆(F ) − ρ(L(F ))(∆(H) − ρ(L(H))).

The bound given is sharp as the equality holds in the case where F = C2m and
H = C2n, m, n ≥ 2. Indeed, as F and H are bipartite, we have by Theorem 11,
a(F × H) = 0. On the other hand it is well known that ρ(L(Cn)) = 4, for even
n ≥ 4; see [11]. Thus

∆(F )∆(H) −
(

∆(F ) − ρ(L(F ))
)(

∆(H) − ρ(L(H))
)

= 4 − (−2)(−2) = 0. �

A natural problem is to characterize the class of graphs attaining the bound
in Theorem 17. The following result supplies an answer in a special case.

Proposition 18. Let F = C2n, n ≥ 2, and H a bipartite connected graph. Then
the equality holds in Equation (2) if and only if H is regular.

Proof. As F and H are bipartite, we have a(F × H) = 0. Hence, the equality
holds in (2) if and only if ρ(L(H)) = 2∆(H). Suppose first that ρ(L(H)) = 2∆(H).
Anderson and Morley [1] have proved that

ρ(L(G′)) ≤ max
{

d(u) + d(v) : [u, v] ∈ E(G′)
}

,

for any graph G′ and the equality holds if and only if G′ is a bipartite semiregular
graph. As ρ(L(H)) ≤ max

{

d(u) + d(v) : [u, v] ∈ E(H)
}

≤ 2∆(H) = ρ(L(H)),
we see that H is semiregular. Further, as d(u) + d(v) = 2∆(H) for some edge
[u, v] ∈ E(H), we see that H is regular. Conversely, if H is regular, then again by
the result of Anderson and Morley ρ(L(H)) = 2∆(H) and the equality in (2)
holds.

4. GRAPH STRONG PRODUCT

The strong product F � H of two graphs F and H is a graph where the
adjacency is determined by the following rule: (ui, vj) and (ur, vs) are adjacent in
F � H if either (ui = ur and vj ∼ vs in H) or (ui ∼ ur in F and vj = vs) or
(ui ∼ ur in F and vj ∼ vs in H). See Figure 6.

Figure 6. Graph strong product

Remark 19. Let F and H be two graphs. As E(F � H) = E(F�H) ∪ E(F × H) and
E(F�H)∩ E(F × H) = ∅ one immediately sees that

A(F � H) = A(F�H) + A(F × H) and L(F � H) = L(F�H) + L(F × H).

Thus, if |V (F )| = m, |V (H)| = n, then |E(F �H)| = m|E(H)|+n|E(F )|+2|E(F )||E(H)|.
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In general, the complete description of the Laplacian spectrum of F � H

cannot be obtained only from the Laplacian spectra of F and H. This is clear from
the following example.

Example 20. Consider the nonisomorphic Laplacian cospectral graphs F and H shown
in Figure 5. One can verify that

S(F � P2) = (0, 1.5279, 4, 6, 6, 6, 6, 6, 6, 6, 10, 10.4721)

and
S(H � P2) = (0, 1.5279, 4, 4, 6, 6, 6, 6, 8, 8, 8, 10.4721).

Though S(F ) = S(H), the graphs F � P2 and H � P2 have different Laplacian spectra.

In the case both F and G are regular the following description of the Laplacian
spectrum of F � H can easily be obtained from Theorems 3 and 12.

Theorem 21. Let F and H be connected regular graphs on m and n vertices
and of regularities r and s, respectively. Suppose that S(F ) = (λ1, λ2, . . . , λm)
and S(H) = (µ1, µ2, . . . , µn). Then (1 + s)λi + (1 + r)µj − λiµj ∈ S(F � H), for
i = 1, . . . , m, and j = 1, . . . , n. Indeed, if Xi is an eigenvector of L(F ) corresponding
to λi and Yj is an eigenvector of L(H) corresponding to µj , then Xi ⊗ Yj is an
eigenvector of L(F × H) corresponding to (1 + s)λi + (1 + r)µj − λiµj .

In the case when one of the two graphs F and H is regular one can give a
partial description of S(F × H), similar to that of Proposition 13.

Proposition 22. Let F be a regular graph on m vertices with regularity r and H

be any graph on n vertices. Suppose that S(H) = (µ1, . . . , µn). Then

(1 + r)µj ∈ S(F � H)

for each j = 1, 2, . . . , n. Indeed if Yj is an eigenvector of L(H) for µj , then 11 ⊗ Yj

is an eigenvector of L(F � H) for (1 + r)µj .

We have two corollaries similar to Corollaries 14 and 16.

Corollary 23. Let F be a regular graph and H be any graph. If F �H is Laplacian
integral, then H is Laplacian integral.

Corollary 24. Let F and H be two regular graphs of regularity r and s, respectively.
Then F �H is Laplacian integral if and only if both F and H are Laplacian integral.

In general the strong product of two Laplacian integral graphs is not a Lapla-
cian integral graph. For example, P3 � P3 is not Laplacian integral.

Example 25. We show that P3 � P3 is not Laplacian integral. Observe that

L(G) =





L̂1 L̂2 0

L̂2 L̂3 L̂2

0 L̂2 L̂1



,
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where

L̂1 =





3 −1 0
−1 5 −1

0 −1 3



, L̂2 =





−1 −1 0
−1 −1 −1

0 −1 −1



 and L̂3 =





5 −1 0
−1 8 −1

0 −1 5



.

Thus, if λ is an eigenvalue of L̂1 with a corresponding eigenvector X, then λ is an eigenvalue

of L(G) with a corresponding eigenvector





X

0
−X



. It is easy to see that the eigenvalues L̂1

are 3, 4 −
√

3, 4 +
√

3. Hence G is not Laplacian integral.

5. GRAPH LEXICOGRAPHIC PRODUCT

Let F and H be two graphs on vertex sets {u1, u2, . . . , um} and {v1, v2, . . . , vn},
respectively. The lexicographic product F [H ] of F and H is the product of F and
H where the adjacency is determined by the following rule: (ui, vj) and (ur, vs) are
adjacent in F [H ] if either (ui ∼ uj in F ) or (ui = ur and vj ∼ vs in H). Note that,
the lexicographic product of F and H can be obtained from F by substituting a

copy Hui
(say), of H for every vertex ui

of F and by joining all vertices of Hui

with all vertices of Hur
if ui ∼ ur in F.

Thus it is also known as composition or
substitution; see Harary [18].

If |V (F )| = m, |V (H)| = n,

then |V (F [H ])| = mn = |V (H [F ])|,
|E(F [H ])| = m|E(H)| + n2|E(F )| and
|E(H [F ])| = n|E(F )| + m2|E(H)|.

Figure 7. Graph lexicographic product

From the definition of lexicographic product it follows that if F and H are
two nontrivial graphs with at least two vertices, then F [H ] is connected if and only
if F is connected. Thus F [H ] � H [F ] whenever one of F or H is disconnected.
Even in the case both the factors are connected, it need not commute. For example,
taking F = K2 and H = P3, we see that F [H ] has 13 edges but H [F ] has only
11 edges. In [19], Imrich and Klavžar have characterized the cases when the
lexicographic product commutes.

The following result describes the Laplacian matrix of F [H ] using the Lapla-
cian matrices of F and H.

Proposition 26. Let F and H be graphs on m and n vertices, respectively. Then

(3) L(F [H ]) = L(F�H) + L(F ) ⊗ (Jn − In) + D(F ) ⊗ L(Kn).

Proof. Let F be on vertices {u1, u2, . . . , um} and H be on vertices {v1, v2, . . . , vn}.
It follows from the construction that the adjacency matrix of F [H ] is A(F [H ]) =
Im ⊗A(H)+A(F )⊗Jn and the degree matrix of F [H ] is D(F [H ]) = Im ⊗D(H)+
D(F ) ⊗ nIn. Thus,

L(F [H ]) = Im ⊗ D(H) + D(F ) ⊗ nIn − Im ⊗ A(H) − A(F ) ⊗ Jn
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= Im ⊗ D(H) + D(F ) ⊗ nIn + Im ⊗
(

L(H) − D(H)
)

+
(

L(F ) − D(F )
)

⊗ Jn

= Im ⊗ L(H) + L(F ) ⊗ Jn + D(F ) ⊗ (nIn − Jn)

= L(F�H) + L(F ) ⊗ (Jn − In) + D(F ) ⊗ L(Kn). �

Our next result describes the complete Laplacian spectrum of F [H ] using the
Laplacian spectra of F and H.

Theorem 27. Let F be a connected graph with vertex set {u1, . . . , um} and H be
any graph of order n. Suppose that S(F ) = (λ1, λ2, . . . , λm) and S(H) = (µ1, µ2, . . . ,

µn). Then

(i) λin ∈ S(F [H ]) for i = 1, . . . , m,

(ii) µj + d(ui)n ∈ S(F [H ]) for i = 1, 2, . . . , m and j = 2, . . . , n.

Thus
a(F [H ]) = min

{

a(H) + δ(F )n, a(F )n
}

,

where δ(G) denotes the minimum degree vertices in a graph G.

Proof. Using Proposition 26

L(F [H ]) = L(F�H) + L(F ) ⊗ (Jn − In) + D(F ) ⊗ L(Kn)

= L(F ) ⊗ In + Im ⊗ L(H) + L(F ) ⊗ Jn − L(F ) ⊗ In + D(F ) ⊗ L(Kn)

= Im ⊗ L(H) + L(F ) ⊗ Jn + D(F ) ⊗ L(Kn).

Let Xi and Yj be eigenvectors of L(F ) and L(H) corresponding to the eigen-
values λi and µj , respectively. Observe that for i = 1, 2, . . . , m,

L(F [H ])(Xi ⊗ 11) =
(

Im ⊗ L(H) + L(F ) ⊗ Jn + D(F ) ⊗ L(Kn)
)

(Xi ⊗ 11)

= λin(Xi ⊗ 11).

Thus λin ∈ S(F [H ]) for i = 1, . . . , m. Now for i = 1, 2, . . . , m and j = 2, . . . , n,

L(F [H ])(ei ⊗ Yj) =
(

Im ⊗ L(H) + L(F ) ⊗ Jn + D(F ) ⊗ L(Kn)
)

(ei ⊗ Yj)

=
(

µj + d(ui)n
)

(ei ⊗ Yj).

Thus µj + d(ui)n ∈ S(F [H ]), for i = 1, . . . , m

and j = 2, . . . , n.

Example 28. We give an illustration of Theorem
27. Take F = K2, H = P3, and thus m = 2, n = 3
here. The graph F [H ] is shown in Figure 8.
Notice that

Figure 8. K2[P3]

L(F ) =

[

1 −1
−1 1

]

; S(F ) = {0, 2}; v1,F =

[

1
1

]

, v2,F =

[

1
−1

]

;
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L(H) =





1 −1 0
−1 2 −1

0 −1 1



; S(H) = {0, 1, 3}; v1,H =





1
1
1



, v2,H =





1
0

−1



, v3,H =





1
−2

1



;

L(Kn) =





2 −1 −1
−1 2 −1
−1 −1 2



;

L(F [H ]) =

(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)

















4 −1 0 −1 −1 −1
−1 5 −1 −1 −1 −1

0 −1 4 −1 −1 −1
−1 −1 −1 4 −1 0
−1 −1 −1 −1 5 −1
−1 −1 −1 0 −1 4

















=

















1 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 1 0 0 0

0 0 0 1 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1

















+

















1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1

−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

















+

















2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

















= Im ⊗ L(H) + L(F ) ⊗ Jn + D(F ) ⊗ L(Kn)

Now, take Y2 = v2,H , the eigenvector corresponding to eigenvalue µ2 = 1 for H, and i = 1
so that d(u1) = 1. Then repeating the computation in the third equation block in the
proof, we have

L(F [H ])(e1 ⊗ Y2) = (I2 ⊗ L(H) + L(F ) ⊗ J3 + D(F ) ⊗ L(K3))(e1 ⊗ v2,H )

= e1 ⊗ 1v2,H + L(F )e1 ⊗ J3v2,H + D(F )e1 ⊗ L(K3)v2,H

= e1 ⊗ v2,H +

[

1
−1

]

⊗





0
0
0



 +

[

1
0

]

⊗





3
0

−3





=

















4
0

−4
0
0
0

















= 4e1 ⊗ Y2 =
(

µ2 + d(u1)n
)

(e1 ⊗ Y2).

The following construction is immediate.

Corollary 29. Let F and H be two graphs of order m and n, respectively. Then
F [H ] is Laplacian integral if and only if both F and H are Laplacian integral.

By Theorem 27, a(F [H ]) = min
{

a(H)+δ(F )n, a(F )n
}

. The following result
tells when each of the cases occur.

Corollary 30. Let F be a connected graph of order m and H be any graph of
order n. If F 6= Km, then a(F [H ]) = a(F )n. Furthermore, if F = Km, then
a(F [H ]) = a(H) + (m − 1)n.
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Proof. It is known (Fiedler [11]) that if F 6= Km, then a(F ) < δ(F ). Thus if F

is not a complete graph, then a(F [H ]) = a(F )n. If F = Km, then a(H) + δ(F )n =

a(H) + (m − 1)n =
(

a(H) − n
)

+ mn =
(

a(H) − n
)

+ a(F )n ≤ a(F )n. Thus by

Theorem 27, a(F [H ]) = a(H) + δ(F )n = a(H) + (m − 1)n. �

The following is an immediate corollary.

Corollary 31. Let T be a tree of order m and H be any graph of order n. Then
a(T [H ]) = a(T )n.

The next result follows from Theorem 27 and describes the characteristic set
of the lexicographic product. This is our main result of this section.

Theorem 32. Let F and H be connected graphs on vertices {u1, u2, . . . , um} and
{v1, v2, . . . , vn}, respectively. Let H∗ be the empty graph on V (H).

1. If F 6= Km, then the following statements hold.

(a) a(F [H ]) = a(F )n.

(b) If X is a Fiedler vector of F, then Z = X ⊗ 11 is a Fiedler vector of
F [H ].

(c) C̃(F [H ], X ⊗ 11) = C̃(F, X)[H∗].

2. If F = Km, then the following statements hold.

(a) a(F [H ]) = a(H) + (m − 1)n.

(b) If Y is a Fiedler vector of H, then Z = ei ⊗ Y are Fiedler vectors of
F [H ] for each i = 1, . . . , m. Hence 11 ⊗ Y is also a Fiedler vector.

(c) C̃(F [H ], ei ⊗ Y ) is isomorphic to the disjoint union of C̃(H, Y ) with
m − 1 copies of H∗.

Proof. Part (a) of both the items follow from Corollary 30. Part (b) of item 1
follows from the proof of Theorem 27. Following the same proof for part (b) of
item 2, we see that ei ⊗ Y is a Fielder vector for F [H ] as d(ui) = m − 1 for each
i = 1, . . . , m. Hence 11 ⊗ Y is also a Fiedler vector.

To prove part (c) of item 1, note first that the (u1, vj) entry of X ⊗ 11 is
X(u1) for each j = 1, . . . , n. Hence if u1 ∈ C(F, X) is a characteristic vertex, then
each of the vertices (u1, vj), j = 1, . . . , n, are characteristic vertices of F [H ] with
respect to X ⊗ 11. If [u1, u2] ∈ C(F, X) is a characteristic edge, then each of the
edges [(u1, vj), (u2, vk)], 1 ≤ j, k ≤ n is a characteristic edge of F [H ] with respect

to X ⊗ 11. Hence the characteristic graph C̃(F [H ], X ⊗ 11) is obtained by taking the
composition of the characteristic graph C̃(F, X) with H∗.

To prove part (c) of item 2, assume that we are considering Z = e1⊗Y. Notice
that the value given by this vector to the vertex (ui, vj) is 0 for each i = 2, . . . , m,

j = 1, . . . , n. As Y has a negative entry, say Y (v1) < 0 and a positive entry, say
Y (v2) > 0, we see that Z(u1, v1) < 0 and Z(u1, v2) > 0. Furthermore, the vertices
(u1, v1) and (u1, v2) are adjacent to each (ui, vj) for i = 2, . . . , m, j = 1, . . . , n.

Hence, each (ui, vj) for i = 2, . . . , m, j = 1, . . . , n, is a characteristic vertex of F [H ]
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with respect to Z. These vertices are the disjoint union of m − 1 copies of H∗.

Also notice that, Z(u1, vj) = Y (vj) for each j = 1, . . . , n. As the subgraph of F [H ]
induced by the vertices {(u1, v1), . . . , (u1, vn)} is isomorphic to H, its contribution
to the characteristic graph of F [H ] with respect to Z is isomorphic to C̃(H, Y ).
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