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Abstract— In this paper, the discrete-time series identification
of dynamic friction in actuated robotic joints during the sliding
regime is proposed. Considering the friction lag as a first-
order time delay element behind the static friction nonlinearity
a reasonable approximation of friction dynamics in sliding
is proposed. The regression signal model is derived based
on a discrete-time transformation of motion dynamics with
nonlinear friction. A robust identification scheme is formulated
in the Least-Squares (LS) sense by using an appropriate set of
model-related regressors. Further, the related Recursive-Least-
Squares (RLS) formulation is provided. The proposed modeling
and identification are evaluated experimentally by the offline
and online parameter estimation. For these purposes the first
vertical rotary joint of the base of a standard industrial robotic
manipulator has been used in laboratory environment.

Index Terms— Dynamic friction, time-series modeling, sliding
dynamics, robotic joint, recursive identification, parameter
estimation, industrial robotics, friction lag, nonlinearities

I. INTRODUCTION

High-performance control of robotic joints requires an

appropriate modeling and identification of dynamic behavior.

Here the nonlinear effects of dynamic friction play one of

the key roles when describing the actuated joint motion. Due

to time- and load-variant effects, the online identification

and adaptive methods to overcome friction are desirable in

applications. However, these can be cumbersome due to non-

trivial friction phenomena which are not directly detectable.

Several works have investigated adapting the modeled

friction for control. A recursive least-squares algorithm has

been applied to a simplified static friction model with indi-

vidual Coulomb and viscous friction coefficients for opposite

motion directions in [1]. This approach allowed to design an

adaptive friction compensator for DC-motor drives. Later,

an auto-tuning of feedforward friction compensator has been

proposed in [2] where, more advanced, the dynamic LuGre

friction model has been involved in the adaptation scheme.

Generally, all types of high-accuracy positioning systems,

including robotics, require an explicit consideration of fric-

tion effects. Various modeling and compensation techniques

have been proposed to this matter in the last two decades.

In [3], the friction compensator is based on the experimental

friction model and allows to compensate for non-modeled

nonlinear friction. Friction identification and compensation

in robotic manipulators have been addressed in [4] using

a single-state dynamic friction model and evaluating the
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same method on two different type (micro- and macro-

scale) manipulators. The experimental robot identification

and optimal excitation required therefor have been addressed

in [5]. In [6], a high precision position control using an

adaptive friction compensation has been presented which is

based on the regression friction modeling proposed former

in [7]. The modeling and identification of nonlinear friction

in a serial manipulator have been addressed in [8] in frame

of an industrial robot control. In [9], a simple technique to

identify the dynamic friction using the frequency response

functions obtained from the measurements and numerical

simulations has been proposed. The method has been applied

later in [10] for an observer-based friction control design. A

simultaneous identification of linear parameters of the drive

system and nonlinear rolling friction has been addressed

in [11]. Further, a detailed model-based analysis of rolling

friction has been provided in [12]. The above mentioned

works establish the importance of treating friction effects

in the controlled machines and mechanisms and diversity of

methods developed therefor.

Often, the challenge of dynamic friction modeling relates

to a straightforward identification during the operation, that

is crucial for multiple applications. Often it is worthwhile

to apply a simplified friction model, without losing the

faithfulness and generality, which could provide a simple

way to determine a possibly small set of free parameters.

The objective of this paper is to demonstrate one practical

solution of describing and identifying the sliding dynamic

friction in industrial robotic joints. The proposed method

bases on the discrete-time series modeling and the fact that

the sliding friction dynamics exhibits a characteristic lag

between the relative velocity and friction response. Further,

it should be noted that the considered friction dynamics

restricts oneself to the sliding regime [13] only. That is the

pre-sliding nonlinear (hysteresis) friction behavior, which can

be crucial in micro-displacement ranges, is out of scope of

this work. However, the proposed idea of discrete-time series

representation of dynamic friction, similar like another ap-

proach elaborated in [7], can be motivating for further efforts

towards more general and easy-identifiable friction models

reliable for applied control in robotics and mechatronics.

II. MODELING OF DYNAMIC FRICTION IN

ROBOTIC JOINTS

A. Single-mass joint dynamics with nonlinear friction

In order to analyze the dynamic friction in robotic joints a

simplified single (lumped) mass approach can be considered

as schematically shown in Fig. 1. This case, a concentrated
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Fig. 1. Single lumped-mass joint dynamics with nonlinear friction

moving mass (inertia) J is accelerated by a general joint input

force (torque) u. Mostly, the latter can be assumed as an

available control quantity which is proportional to the active

motor current of the joint actuator. The induced relative

velocity w is considered to be mainly damped by the feed-

back friction f (·). The latter can be assumed as a dynamic

nonlinear map of relative velocity onto the dissipative force

(torque) which is acting tangentially and in opposite direction

to the induced relative motion. In general case, the dynamic

friction map has to be considered as time-variant due to non-

constant properties of frictional interfaces, these depending

on the environmental and operation conditions. The latter in-

clude, among others, the thermal effects, normal mechanical

loads, dwell times, and wearing of contacting mechanisms.

All these effects are mostly of non-deterministic nature and

are extremely difficult, if at all possible, to be included into

a manageable friction model suitable for control.

Note that the simplified single lumped-mass modeling

does not consider the robot joint elasticities and residual

feedback manipulator dynamics (see e.g. [14] for details).

Recall that the impact of nonlinear elasticities and residual

(dynamic) joint loads can be also regarded as a coactive input

disturbance as shown e.g. in [15]. However, this type of joint

forces is out of scope of the recent work. Further, it is worth

noting that various modeling approaches available from the

literature, e.g. [7], [16], [12], can be used for describing the

dynamic friction as well.

B. Sliding dynamics with frictional lag

Since the sliding dynamics is characterized by a lag in

friction force relative to sliding velocity (see [13] for details)

an approximation of sliding dynamics can be achieved by

introducing a time lag transfer element behind the friction

nonlinearity. In other words, the output of static friction non-

linearity F will undergo the first-order time delay transition.

Simple case, the corresponding time constant τ determines

the impact of friction lag so that the latter is captured by

τ ḟ (t)+ f (t) = F(w) . (1)

The resulted approximation of dynamic friction f with lag

is illustrated by the block diagram in Fig. 2.

It can be shown that using the block transformations one

obtains the equivalent system structure described by the

following differential equation

Jτ ẅ(t)+ J ẇ(t)+F
(

w(t)
)

= u(t)+ τ u̇(t) . (2)
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Fig. 2. Approximation of sliding dynamics with friction lag

Important to note is that the resulted second-order velocity

dynamics, on the left-hand side of (2), is always positively

damped due to non-zero inertial term. Furthermore, it can

be seen that the second-order velocity dynamics does not

tend to an oscillating behavior since the restoring term F(·)
implies a discontinuity at zero crossing.

Recall that F(·) constitutes a velocity-dependent static

friction map which, simple case, can be represented by

combining the constant Coulomb and linear viscous fric-

tion denoted by Fc and σ correspondingly. More advanced,

the static nonlinear friction is captured by the well-known

Stribeck characteristic curve

F(w) = sgn(w)
(

Fc +(Fs −Fc)exp
(

−
∣

∣

∣

w

Vs

∣

∣

∣

δ))

+σ w . (3)

The static Stribeck curve is upper bounded by the adhesion

(also denoted as stiction) friction force Fs and low bounded

by the Coulomb friction force. The exponential factors Vs

and δ , which determine the nonlinear curvature of Stribeck

function, are denoted as Stribeck velocity and Stribeck

shape factor correspondingly. Further it is worth noting that

depending on the case-specific friction characteristics the

shape factor can be positive or negative as well.

III. DISCRETE-TIME SERIES MODEL

In order to identify the nonlinear joint dynamics with fric-

tion a discrete-time series model is derived in terms of a well-

known regression signal representation. Using a discrete-time

approximation of differential terms by means of the finite

difference equations the parameters of system dynamics (2)

are transformed into the corresponding regression parameters

which should be identified. The transformation steps required

for calculation are as following:

ẋ(t) ∼=
(

x(k)− x(k−1)
)

/Ts ,

ẍ(t) ∼=
(

x(k)−2x(k−1)+ x(k−2)
)

/T 2
s ,

a1 =
(

Jτ + JTs

)

/
(

Jτ + JTs +σT 2
s

)

,

a2 = Jτ/
(

Jτ + JTs +σT 2
s

)

,

b0 =
(

T 2
s + τT 2

s

)

/
(

Jτ + JTs +σT 2
s

)

,

b1 = τT 2
s /

(

Jτ + JTs +σT 2
s

)

,

c1 = FcT 2
s /

(

Jτ + JTs +σT 2
s

)

,

d1 = FsT
2

s /
(

Jτ + JTs +σT 2
s

)

.
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Here the finite sampling time is denoted by Ts and the

corresponding signal to be transformed is denoted by x.

Using the introduced regression parameters and solving

the dynamic equation (2), which is first transformed into the

discrete-time representation, results in

w(k) = a1 w(k−1)−a2 w(k−2)+b0 u(k)−b1 u(k−1)

−c1 g
(

w(k−1)
)

−d1 h
(

w(k−1)
)

. (4)

Here the static nonlinear functions

g(w) = sgn(w)
(

1− exp
(

−
∣

∣

∣

w

Vs

∣

∣

∣

δ))

, (5)

h(w) = sgn(w)exp
(

−
∣

∣

∣

w

Vs

∣

∣

∣

δ)

(6)

of joint velocity constitute the regressors related to the

Coulomb and adhesion friction forces.

Note that since the exponential Stribeck factors are nonlin-

ear in (5) and (6) they should be excluded from the regression

parameters and have to be assumed as constants determined

beforehand1. By doing this, it can be assumed that the expo-

nential shape factors Vs and δ characterize rather the struc-

tural friction properties which rely on the geometries and

texture of contacting surfaces. Thus, they can be considered

as less time-variant than the residual Stribeck parameters.

This appears as a sufficiently reasonable relaxation since the

spatial, thermal, and load-dependent conditions bear the main

influence on the frictional coefficients Fs, Fc, and σ . Further,

it should be noted that normal case the nonlinear regressors

(5), (6) are the static functions of instantaneous velocity at

k. However, since w(k) constitutes the unknown variable of

regression model its previous discrete-time value at k−1 is

assumed as argument in equation (4).

Now let us analyze the impact of the above assumption

on the model accuracy of predicting the joint dynamics

with nonlinear friction. The impact of previous discrete-

t
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w

u
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Fig. 3. Schematic representation of the sampled values at motion reversal

time velocity value on computing the nonlinear friction can

be demonstrated by means of a schematic representation

given in Fig. 3. Assume that the input quantity u changes

continuously its sign and the induced relative velocity w

follows it subsequently, while being lagged behind due to

1This is valid since a linear regression model as in (4) is assumed. In case
a nonlinear regression model is used also the exponential Stribeck factors
can be explicitly considered for the online estimation. This is, however, out
of scope of this work.

inertial motion. The use of the previous velocity value is not

critical when its sign at i-th and (i− 1)-th instants remains

the same. This is evident since the static nonlinear friction

map given by (5) and (6) depends strictly on the motion

direction, but at the same time has a quite smooth progression

at unidirectional motion. However, once the velocity sign

changes, e.g. see the instants k−1 and k in Fig. 3, the friction

terms will transiently contribute to the overall motion dy-

namics with a spurious sign and that until the next sampling

step k + 1. Analyzing the dynamic equation (4) it can be

recognized that both the propulsion input and inertial motion

terms can mitigate this transient discrepancy in computed

friction to a certain degree. However, if the motion reversal

occurs at sufficiently slow (quasi-static) conditions, the use

of a previous discrete-time velocity value can provoke certain

distortions in properly determining the motion reversal state.

IV. OFFLINE AND ONLINE IDENTIFICATION

A. Least-squares formulation

Since the discrete-time series model (4) is linear in pa-

rameters its identification can be formulated in a ‘classical’

least-squares (LS) sense

W = XP+E. (7)

Here the output and regressor values, W and X correspond-

ingly, are assumed to be observable. Recall that the model

regressors arise according to the discrete-time dynamics

described before in Section III. The vector of model errors is

denoted by E and P is the vector of linear model parameters

to be determined. In order to find the least-squares best fit

one should minimize the objective function

min
P

1

2
||XP−W ||. (8)

The partial derivative of the objective function with respect

to the parameters will be set to zero and yield the well-known

equation of the LS estimate

P̂ = (XT X)−1XTW . (9)

For instance, the dynamic velocity response is obtained

within numerical simulation by means of a persistent excita-

tion through the low-pass filtered band-limited white noise.

The performed LS parameter estimation yields the best fit of

the discrete-time series model (4) whose response is shown

in Fig. 4 together with the identification data. Here it is
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Fig. 4. Simulated and offline (LS) estimated output velocity

worth noting that the simulated identification data has been
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obtained by using the numerical model shown in Fig. 2 and

not the regression model (4). The numerical model has been

implemented using a fixed-step solver at 1 kHz rate. The

identification data used for the LS fit has been collected

equidistantly with the sampling time set to 10 ms.

B. Use of Recursive-Least-Squares (RLS) method

In terms of an online model identification a recursive

algorithm [17] updates the estimate of parameter vector at

each iteration step so that

P̂(k) = P̂(k−1)+ γ
(

w(k)− ŵ(k)
)

. (10)

Here γ constitutes a correction vector at discrete time instant

k and w is the measurable system output. Note that the model

prediction is computed based on the parameter estimate at

the previous time instant k−1 so that u(k)×P̂(k−1)→ ŵ(k).
Using the well-known recursive least square (RLS) algo-

rithm, first introduced in [18], one obtains the parameters

update by evaluating the following equation

P̂(k) = P̂(k−1)+R(k)X(k)e(k) . (11)

The prediction error is captured by e = w− ŵ and X con-

stitutes the vector of corresponding regressors. Note that the

correction factor in (11) is determined by

γ(k) = R(k)X(k) =
R(k−1)X(k)

XT (k)R(k−1)X(k)+λ
, (12)

where R is a n×n covariance matrix, assuming n is the num-

ber of parameters to be identified. At each step of recursive

algorithm the update of covariance matrix is computed by

R(k) =
1

λ

(

I − γ(k)XT (k)
)

R(k−1) , (13)

where I is the identity matrix. Further it is worth noting

that (12) and (13) imply the forgetting factor 0 < λ ≤ 1

which underweights the past measurements with respect to

the current data. Note that λ = 1 corresponds to the original

RLS in which all former observations contribute equally to

the parameter estimate independently of the history.
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Fig. 5. Simulated and online (RLS) estimated output velocity

Using the same vector of regressors as mentioned in

Section IV-A the RLS estimate starts by zero parameter

initialization having R0 at k = 0 set to a large-valued diagonal

matrix. The simulated and RLS estimated output velocities

are shown in Fig. 5. Here the same input-output data as used

before for the LS fit are applied. It can be seen that the main

transient oscillations vanish at time t > 4 s and the predicted

output velocity converges towards the simulated value.

V. EXPERIMENTAL EVALUATION

A. Industrial robotic manipulator

The experimental evaluation of the proposed modeling and

identification approach is performed on a standard industrial

robotic manipulator with six rotary joints. The first vertical

base-joint depicted in Fig. 6 is taken into consideration,

since this moves the largest inertial mass of the overall

robotic manipulator and is equipped by a large-scale gearing

mechanism with considerable impact of friction. At the same

,u w

joint 1

Fig. 6. First vertical base-joint of industrial robotic manipulator

time, the first vertical base-joint has no direct impact of

gravity and can be actuated over the total operation range

in a particular (vertical) arm configuration which is nearly

free of coriolis and centrifugal terms. For more details about

the employed experimental robotic system see [19], [20].

B. System excitation and data collection

The experimental data, used for the offline and online

identification, have been collected during the closed loop

control experiments, where a smooth multi-sinus (0.01–1

Hz) reference velocity is tracked by the industrial robot

controller set to a single joint operation mode. The joint

velocity varies between 1 deg/s and 20 deg/s and exhibits

frequent motion reversals (see further in Section V-D) which

are significant for dynamic friction behavior. The controlled

motor current i and angular joint velocity w are readout from

the industrial controller through an external TCP/IP-based

interface. The corresponding input joint torque, depicted in

Fig. 7, is computed from the measured motor current by

u=Ki, where the linear factor K includes the nominal motor

torque constant and inverse gear reduction ratio. Inspecting

the close-up views on the top of Fig. 7 it can be seen

that the available input signal is not smooth due to the

time discretization and signal quantization effects. Further,

it should be noted that the digital data processing, on the

part of the robot controller, and the TCP/IP communication

interface do not allow for a proper real-time data collection.

These aspects of a non-deterministic sampling time will be

further addressed in Section V-D, when evaluating the time-

series model.

C. Pre-estimation of Stribeck curve

Before applying the discrete-time series identification of

regression model the Stribeck function curvature has been
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Fig. 7. Applied input joint torque signal with close-up views

pre-estimated from experiments. This is done in order to

determine the exponential Stribeck factors excluded from the

estimate as mentioned before in Section III. The Stribeck

curve is fitted on the averaged support points of the joint

velocity collected during the bidirectional quasi-static drive

experiments. Due to the exponential parameter contribu-

tion the nonlinear curve fitting algorithm, the Levenberg-

Marquardt, has been applied. These results have been former

reported in [21]. Here the determined Stribeck curve is

depicted in Fig. 8 over the measurements (mean values with

corresponding spread) just for the sake of completeness.
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Fig. 8. Stribeck curve from bidirectional quasi-static drive experiments

D. Offline identification results

The controlled joint velocity response to the system ex-

citation described before in Section V-B is shown in Fig.

9 together with the LS model fit obtained offline by use

of the total identification data set. It can be seen that
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Fig. 9. Measured and offline identified robot joint velocity

despite the LS best fit the model prediction exposes several

outliers, in particular at higher velocity peaks. On the one

hand, it can be attributed to the simplification of sliding

friction dynamics which is undertaken in Section II-B. On

the other hand, a poor sampling quality of the data provides

an additional source of estimate uncertainties. To expose

this aspect consider the evaluated sample time during the

identification experiments as depicted in Fig. 10. Note that

the shown sample time of data collection is defined by

Ts = t(i)− t(i− 1) and that for the overall set of readout

data. From Fig. 10 one can recognize that despite an explicit
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Fig. 10. Evaluated sample time during the identification experiments

average value (about 22 ms) the sample time is subject

to a periodic pattern of different outliers. These indicate

an apparent latency in the digital data processing and can

amount almost up to twice of the average sample time. It

is evident that due to nondeterministic corruption of the

discrete-time signal series the identification data mismatches

the modeled dynamics to a larger extend, even if the ratio

between deterministic and corrupted data samplings remains

still relative low.

E. Online identification results

The same identification data has been used to estimate

the parameters of discrete-time series model online, i.e. by

applying the RLS method as in Section IV-B. The input

and output data are sequently proceeded to the identification

algorithm without additional filtering or interpolation steps.
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Fig. 11. Measured and online identified robot joint velocity

The measured and online-identified robot joint velocities

are depicted about each other in Fig. 11. It can be seen that

after the RLS estimate passes several transient oscillations,

an apparent match between the model and measurement

appears which is higher than this of the offline LS estimate.

Here it is important to note that due to assumed high process

and measurement noise the forgetting factor has been set

to a low value λ = 0.85 which means a high forgetting
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ratio. The corresponding convergence of model parameters

is visualized in Fig. 12. It can be recognized that all six

parameter trajectories proceed towards their stationary end-

values after they have been initialized in zero. However,

there are certain residual parameter fluctuations which are

conditioned by the data quality and impact of forgetting

factor. One can realize that, in particularly, the progress of

b0 and b1 is subject to an oscillating pattern. This comes as

not surprising in regard to non-smoothness of the associated

input time series.
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Fig. 12. Parameter convergence of RLS identification

VI. CONCLUSIONS

The discrete-time series modeling and identification of

a lumped-mass rigid robotic joint with nonlinear dynamic

friction have been proposed. The sliding dynamics, where

the micro-displacement stiction force is already overcome,

has been taken into consideration. The dynamic friction in

sliding is approximated by a time lag transfer element in

feedback, i.e. behind the static friction nonlinearity. The latter

is described by means of a well-known Stribeck characteris-

tic curve with partially linear parameters. The overall robot

joint dynamics is transformed into the discrete-time repre-

sentation, from which the corresponding regression model is

derived. Both, the offline and online identification approaches

have been formulated in the least-squares sense. Using the

experimental setup of an industrial robotic manipulator the

first vertical base-joint has been taken into consideration.

Based on the collected high-noisy discrete-time data the

identification has been accomplished in two stage. First, the

Stribeck characteristic curve has been pre-estimated from the

set of quasi-static drive experiments. This has been done

in order to determine two exponential curvature parameters

which are nonlinear and can not be included in the derived

linear regression model. Afterwards, the sampled control

and velocity signals from a multi-sinus reference trajectory

have been used for the offline and online identification. The

proposed modeling and identification method can be applied

to a wide range of industrial and non-industrial robotic

systems with nonlinear friction in the actuated joints. In

the future works, the proposed modeling and identification

approach will be extended to an adaptive, model-based

control framework for compensating the dynamic friction.
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